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Abstract—The exploration and categorization of essen-
tial and synthetic lethality genes hold significant impor-
tance in seeking effective and targeted therapies for diverse
ailments. This endeavor hinges upon genetic minimal
cut sets (gMCSs), which also find utility in metabolic
engineering. There have been various methods suggested
for calculating gMCSs. Still, with the emergence of nu-
merous new models and their growing intricacy, it has
become vital to introduce new algorithms in this field. This
paper presents a new algorithmic approach for computing
gMCSs, which utilizes linear programming techniques
to improve temporal efficiency. The key concept of the
method is to use a k-representative subset to replace the
target set with a smaller one. Availability and implementa-
tion: Software and additional material is freely available
at https://github.com/biogacop/fastMethod

I. INTRODUCTION

The remarkable progress in DNA sequencing has
paved the way for genome-scale models, constituting a
significant breakthrough in genetics that opens up new
avenues for research.

Constraint-based modeling has been developed as a
generalized approach to generate and study these models.
One of the key concepts in this approach is that of
minimal cut sets (MCS) [Klamt, 2006, Hädicke and
Klamt, 2011]. An MCS is a (minimal) set of reactions
that, when inhibited simultaneously, prevent a specific
task from being performed. It has been used to support
the targeted design of microbial strains for bio-based
production [Harder et al., 2016, Banerjee et al., 2020,
von Kamp and Klamt, 2017, Alter and Ebert, 2019], to
prevent the proliferation of certain bacteria (Guil et al.
[2022]) or for the discovery of potential targets for
cancer ([Tobalina et al., 2016, Apaolaza et al., 2017]).
Implementing deletion strategies at a genetic level is
often challenging due to conflicts when considering
gene-protein-rules (GPRs) on a network. As a result,
the concept of MCS has expanded to include a minimal
genetic cut set (gMCS). A gMCS is a minimal set

of genes that, when inhibited, prevent certain states or
modes of the network+ [Machado et al., 2016, Apaolaza
et al., 2017, Schneider et al., 2020]. This concept of
gMCS is also referred to as essential or synthetic lethal
genes in the biomedical field when there are one or more
genes, respectively.

In recent years, several methods have been developed
to compute gMCSs (refer to section II-B). However, most
of these methods utilize MILP approaches for analysis,
which can be expensive in terms of time and resources
and may lack numerical stability. However, due to the
growing intricacy and quantity of models accessible
[Chen et al., 2022, Robinson et al., 2020], introducing
fresh algorithms has become a crucial objective in this
area. New methods must handle large networks, implicit
targets and execute fast. This is particularly vital in
medical contexts, where using multiple linked models
to analyze differences between normal and pathological
models is crucial, as mentioned in Foguet et al. [2022],
Gustafsson et al. [2023].

Our paper introduces a new technique for calculating
genetic minimal cut sets. We achieve this by limiting
the search space and computing hitting sets for a spe-
cific subset of the target set. Our approach has proven
highly effective for identifying gMCSs with fewer genes
(typically 4 or 5). We have achieved efficiency rates that
surpass those of previous methods by 10x to 30x.

The key concept is that of a k-representative subset
of a target set T for a particular integer k ≥ 1. A
subset T’ of T is said to be k-representative if it has
precisely the same gMCSs of cardinality ≤ k than T so
we can compute those gMCSs in T’ instead of using
the whole set T. We have created an algorithm that
builds k-representative subsets iteratively. The process
starts by computing a 1-representative subset and then
successively extending it to k-representative subsets as k
increases. The extensions are obtained by modifying the
Berge algorithm Berge [1984] and filtering the resulting
hitting sets using linear optimization problems (LP).
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Substituting mixed-integer linear programming (MILP)
problems with linear programming (LP) ones accelerates
the method compared to previous proposed techniques.

As case studies, we use this new method to cal-
culate synthetic lethalities of length ≤ 4 in two dif-
ferent networks: iML1515, a reconstruction model for
Escherichia coli [Monk et al., 2017], and Human1, a
unified human GEM lineage [Robinson et al., 2020]. We
also calculate genetic interventions that ensure couple
growth of biomass and ethanol in anaerobic conditions
for the model iJO1366, another reconstruction model for
Escherichia coli [Orth et al., 2011].

The iML1515 and iJO1366 models are available from
BIGGs [Schellenberger et al., 2010], while the Human1
model can be obtained from Metabolic Atlas [Li et al.,
2023]1.

II. MATERIAL AND METHODS

A. Metabolic networks

A metabolic network is represented by a tuple com-
prising three elements: M , R, and S. M and R are sets
that represent the metabolites and reactions, respectively.
Meanwhile, S is a stoichiometry matrix that belongs to
Mm×n(R). This matrix serves as a link between the
metabolites and reactions in the network. The values of
m and n represent the number of internal metabolites
and reactions, respectively. Each state of the network is
represented by a flux vector v ∈ Rn, where vi represents
the activity level of reaction ri.

The variation in concentrations of the metabolites is
summarized in Equation (1)

dx

dt
= S · v (1)

The equation representing the steady-state constraint
is (2), where internal metabolite concentrations remain
constant over time.

S · v = 0 (2)

Only internal metabolites must be included as rows in
this formulation’s stoichiometric matrix S.

Each reaction in R has upper (ui) and lower (li)
bounds on its reaction rates vi. Therefore, equation 3
imposes a set of constraints on any flux vector.

li ≤ vi ≤ ui; ∀ri ∈ R (3)

A vector is called feasible or a network mode if it
satisfies equations (2) and (3). The collection of all

1https://github.com/SysBioChalmers/Human-GEM

modes of the network is referred to as its feasible cone
and is denoted by

C = {v ∈ Rn | S · v = 0, li ≤ vi ≤ ui, ∀ri ∈ R}

Given a mode v ∈ C, its support is the set of reactions
that appear with nonzero flux in v:

supp(v) = {ri ∈ R | vi ̸= 0}

B. Genetic minimal cut sets

A cut set for a target set of modes T is a set of
reactions that hit all the target modes. In other words,
C intersects with every element e in T. A Minimal Cut
Set (MCS) C is one where no proper subset of C is also
a cut set for T [Hädicke and Klamt, 2011].

Metabolic networks often contain gene information in
the form of gene protein rules (GPRs). GPRs for a re-
action, denoted as r, are Boolean expressions indicating
which gene combinations must be active to allow flux
through r.

These GPRs extend the concept of minimal cut sets to
that of genetic minimal cut sets, gMCS, [Machado et al.,
2016, Apaolaza et al., 2017].

A genetic cut set (gCS) for a target set T is a set of
genes G that, when knocked out, renders none of the
elements t ∈ T a valid mode for the modified network.
A gCS for T is minimal, a gMCS, if it does not contain
any proper subset that is also a gCS for T.

C. Computing gMCSs

There have been multiple methods suggested for cal-
culating MCSs and gMCSs. A straightforward method
is to test all gene combinations of increasing length to
detect and filter the minimal gCS by inclusion. This
approach is limited to small cardinalities, typically no
more than two genes, but can be enhanced by narrowing
the search space. This field of study originated with the
SL-Finder algorithm [Suthers et al., 2009] and has since
been applied to other algorithms like fastSL [Pratapa
et al., 2015] and rapidSL [Dehghan Manshadi et al.,
2022].

A second approach relies on computing (a base of)
the target set and computing MCSs as hitting sets of
their supports, often using a variation of Berge’s Al-
gorithm [Berge, 1984, Jungreuthmayer et al., 2013a,b].
These methods often rely on a large base set, making
it impossible to use them in large networks [Schneider
et al., 2020].

New methods were developed to utilize the relation-
ship between cut sets of the network and elementary
flux modes of a specific dual network. This approach
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was initially suggested in Ballerstein et al. [2012]. This
method can also be applied to gMCs by adding genes
to the network, as shown in Machado et al. [2016] and
Schneider et al. [2020]. Alternatively, a gene matrix can
be introduced, as described in Apaolaza et al. [2017].
However, this later technique is currently restricted to
analyzing synthetic lethalities. All of these methods use
the K-shortest EFM algorithm (De Figueiredo et al.
[2009]), which relies on solving mixed integer linear
problems (MILP), resulting in high time and resource
costs.

1) Computing gMCSs for reactions and modes:
We begin our approach by examining the process of
identifying gCSs and gMCSs for individual reactions.

Usually, the GPR for a given reaction r ∈ R comes in
two forms: a sum of products (Disjunctive Normal Form
or DNF) or a product of sums (Conjunctive Normal Form
or CNF).

• Notice that if the GPR is in DNF form, any gCS
can be found by identifying the hitting set for the
sets of genes corresponding to the summands.

• If the GPR for r is in DNF form, then its gCSs are
the supersets of the sets of genes corresponding to
each factor.

For our purposes, the second type of expression is more
desirable. Moreover, converting GPRs from DNF form
to CNF form is easy with the following algorithm.

• Begin with a reaction r that has a GPR in DNF
form.

• Express each term as a collection of genes.
• The GPR for r can be expressed as the product

of sums of minimal hitting sets. These sets can be
computed using Berge’s Algorithm.

After being transformed into CNF form, the gMCSs
for r are the factors of its GPR that do not contain any
other factor as a subset.

It’s important to note that if we want to focus on gCSs
with length ≤ k for some natural number 1 ≤ k ∈ N,
we can limit ourselves to factors containing at most k
terms.

Example 1:

1) Consider the metabolic model containing 5
metabolites, 8 reactions, and 9 genes given in the
following figure

m1

m0 m2 m4

m3

m5 m6

r4

r0 r2

r1

r3

r8

r5 r7

r6

r9 r10

The GPRs for these reactions can be found in Table
I.

Reaction GPR Reaction GPR
r0 g0 r5 g4
r1 g1 r6 g4
r2 g1 r7 g0 ∧ (g5 ∨ g6 ∨ g7)
r3 g2 r8 g8
r4 g3 r9 (g1 ∧ g2) ∨ (g3 ∧ g4)

Table I
THE GENE PROTEIN RULE FOR ALL REACTIONS IN THE MODEL IS

PRESENTED IN CNF FORM.

The GPR for reaction r7 is in conjunctive normal
form (CNF). Its greatest minimal cut sets (gMCSs)
are the factors {g0} and {g5, g6, g7}.
However, the GPR for r9 is expressed in dis-
junctive normal form (DNF). According to the
algorithm described above, it can equivalently be
stated as (g1∨g3)∧(g1∨g4)∧(g2∨g3)∧(g2∨g4),
so it has four gMCSs corresponding to its factors.

2) The model Human1 version 1.16 contains 13085
reactions, of which 8091 have an associated GPR
rule. Out of these, 8087 rules are in DNF form,
while only 4 are in CNF form.
The GPR of reaction MAR07161 is in CNF form
and includes twenty-eight factors with a length of
1, one factor with a length of 2, one with a length
of 3, and one with a length of 4. As a result, there
are thirty-one gMCSs for this reaction with lengths
1, 2, 3, and 4, each corresponding to the different
factors.
The GPR for reaction MAR04611 is in DNF form
and consists of two summands, each of which has
four genes. Three genes are present in both sum-
mands. After being converted to CNF, it contains
four factors that correspond to its gMCSs. These
gMCSs consist of three gMCSs of length 3 and
one gMCS of length 2.

We will use gMCS(r) to denote the set of gMCSs
associated with reaction r, and gMCSk(r) to stand for
the set of gMCSs for r with length ≤ k.
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In order to expand the examination of gCSs to modes,
it should be noted that a group of genes, denoted as G,
is classified as a gCS for a given mode e only if there
exists a reaction r within the support of e where G is
also considered a gCS for r.

We use gMCS(e) to denote the set of gMCSs for a
mode e, and gMCSk(e) for the set of gMCSs for e with
length ≤ k.

We introduce the concept of a reduced set of genes to
characterize gMCSs for a given mode.

Definition 2.1: A set of sets of genes, S, is considered
reduced if each subset C in S has no proper subset C ′

in S.
Given a set of gene sets S, its reduction is defined as

S′ = {C ∈ S | C is minimal} ⊂ S.
The gMCSs for a specific mode e are characterized

by Proposition 2.1.
Proposition 2.1: Let e ∈ C be a mode of the network.

Then
• gMCS(e) is the reduction of⋃

r∈supp(e)

gMCS(r)

.
• For any 1 ≤ k ∈ N, gMCSk(e) is the reduction of⋃

r∈supp(e)

gMCSk(r)

.
2) Calculating gMCSs for sets of modes.: We can

now compute gCSs and gMCSs for a target set of modes.
For gCSs, this extension is simple.
Proposition 2.2: The set of gCSs for a target set of

modes T is the intersection of the gCSs of each mode
in T.

gCS(T ) =
⋂
e∈T

gCS(e)

However, this statement no longer applies to gMCSs.
To clarify this question, let’s rephrase our definition of a
gCS for the target set T. A set of genes C is a gCS for
T if it is a gCS for any element e in T. In other words,
for each mode e in T, there exists at least one element
G′ in gMCS(e) such that G is a superset of G′.

This description can be viewed as an extension of the
idea of a hitting set.

Definition 2.2: We say that C is a hitting set for T if,
for any e ∈ T, there exists an element G′ ∈ gMCS(e)
such that G′ is a subset of G.

GCSs refer to the hitting sets for T. At the same time,
gMCSs can be recognized as the minimal hitting sets
for T. Identifying gMCSs with minimal hitting sets has
the advantage of being easily adaptable to the Berge
algorithm for their detection (refer to Algorithm 1).

Algorithm 1: Modified Berge algorithm
Data: A set of modes T
Result: The set of gMCSs for T
Initialization CS = {∅};
for e ∈T do

for C ∈ CS do
Check if C is a superset of some
C ′ ∈ gMCS(e) ;

if False then
for C ′ ∈ gMCS(e) do

CS ← C ∩ C ′;
end
Remove C from CS

end
end

end

Example 2:
Let’s continue with Example 1. Consider the set of

modes denoted by T as follows:

{{r0, r1, r4, r7}, {r0, r2, r5, r7}, {r0, r3, r6, r7}}

For all reactions except r7, the genetic support consists
only of its associated gene. For reaction r7, the genetic
support is

gMCS(r7) = {{g0}, {g5, g6, g7}}

We have the following for any mode in ”T”:
• gMCS({r0, r1, r4, r7}) =
{{g0}, {g1}, {g3}, {g5, g6, g7}}

• gMCS({r0, r2, r5, r7}) =
{{g0}, {g1}, {g4}, {g5, g6, g7}}

• gMCS({r0, r3, r6, r7}) =
{{g0}, {g1, g2}, {g3, g4}, {g5, g6, g7}}

It is easy to use Algorithm 1 to
check that T has exactly five gMCSs:
{{g0}, {g1, g2}, {g1, g4}, {g3, g4}, {g5, g6, g7}}.

D. Using gMCSs to tackle various genetic strategies

The target set, T, usually contains undesired steady-
state fluxes that require elimination. A list of supports
does not explicitly define this set, but rather by inequali-
ties set forth by a matrix T ∈ Rs×n and a vector t ∈ Rs.
The set can be defined as T= {v ∈ C | T · v ≤ t}
[Schneider et al., 2020].

Let’s start by discussing how to block the biomass
reaction. Our focus is on all modes where there is a
nonzero flow through the biomass reaction, denoted as
rbiomass. This region is not defined by a restriction of the
form T ·v ≥ 0. we need to first calculate the highest flow
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through rbiomass, which results in a value of rmax
biomass.

We will block modes with biomass values exceeding p ·
rmax
biomass, where p is a proportion that we will set at p =
0.01.

T={v ∈ C | rbiomass ≥ p · rmax
biomass}

Imagine that we aim to promote the coupled growth
of biomass and a byproduct that is linked to exchange
reaction r. Our goal is to remove any pathways that
enable the flow of flux through rbiomass without also
carrying flux through r. We will determine the highest
possible flux that can pass through rmax

biomass and use a
target set that accounts for various definitions of flux
coupling [Schneider et al., 2020].

T= {v ∈ C | vbiomass ≥ p · rmax
biomass, vethanol = 0}

In this case, the variable p represents the same pro-
portional constant as in the previous scenario.

It’s important to note that any genetic intervention
targeting this set falls into one of two categories:

• Interventions blocking the biomass reaction.
• Interventions that ensure ethanol production when-

ever rbiomass > p · rmax
biomass.

We only need interventions in the second class, but it’s
easier to calculate all and filter by the maximal biomass
flux in any genetic intervention.

E. Computing gMCSs for large target sets

Consider the target set given by T= {v ∈ C | T · v ≤
t}. The primary challenge in this process is to calculate
all the modes (or EFMs) present in T, which can be
a time-consuming task for most networks (Schneider
et al. [2020]). When dealing with computable target sets,
they are often too large to use the methods previously
discussed effectively.

1) k-representative subsets: To solve this issue, we
recommend computing a smaller subset of modes called
T’ from the larger set T. By doing this, we can use
the gMCSs of T’ as an in-between step to identify the
gMCSs for T.

To begin, we need to analyze the relationship between
the gMCSs of a target set T and a subset T’⊂T.

Proposition 2.3: The following properties apply to any
T’ subset of T:

• Any gCS for T is also a gCS for T’
• Any gCS for T must contain a gMCS for T’
• If a gMCs for T’ is a gCS for T then it is also a

gMCS for T
According to Proposition 2.3, we can calculate the

gMCSs for T by first computing the genetic minimal
cut sets for T’ and then eliminating those that are not

minimal among the genetic cut sets for T. To guarantee
that the resulting gMCs are minimal, we should compute
them in increasing length. Thus, for every computed
gCS, we can verify that it does not include any other
gMCS with a smaller length.

However, there is a potential obstacle we need to
avoid. Not all gMCSs for T’ of a given length are also
gMCSs for T. This means that if we are computing gCSs
for T’ to use as potential gMCSs for T of a given length
k, we cannot eliminate those that contain any gMCS for
T’ of length ≤ k − 1. We need to identify the gMCSs
for T and exclude any gCSs for T’ that have them. If C ′

is a gMCS for T’ whose length is less than k, then any
superset C of C ′ will also be T’. This set may not be
filtered out, so we will need to consider it as a potential
candidate for being a gMCS for T. As a result, we will
receive a large number of candidates to be gMCSs for
T.

Example 3: Following with Example 1, consider
T’={{r0, r1, r4, r7}} ⊂ T. Suppose we are interested in
computing those gMCSs of length ≤ 2 for T.

We compute the gMCSs of length 1 for T’ as
{{g0}, {g1}, {g4}}. Only {{g0}} is a gMCS for T.

Let’s calculate the gCSs of length 2 for T’, which are:

{{{g0, g1}, {g0, g2}, {g0, g3}, {g0, g4}, {g0, g5}, {g0, g6}

, {g0, g7}, {g1, g2}, {g1, g3}, {g1, g4}, {g1, g5}, {g1, g6}

, {g1, g7}, {g4, g2}, {g4, g3}, {g4, g5}, {g4, g6}, {g4, g7}}

To simplify the gCS for T, we can eliminate any
gCS that only contains the unique gMCS of length 1,
which is g0. However, we cannot eliminate gCS that
contain either g1 or g2 as they are not gMCSs for T.
For instance, {g1, g2} is a legitimate gMCS for T even
though it includes g1.

It’s important to note that there is a significant issue.
If we denote the number of genes in the network as
s, for each C ∈ gMCS(T ′)\gCS(T ) of length k,’
we can obtain up to ( s−1

k−k′) candidates may belong in
gMCSk(T ).

To solve this issue, we propose the idea of a k-
representative subset T’⊂ T.

Definition 2.3: A set of modes T’ is k-representative
if any gMCS for T’ of length less than or equal to k is
also a gMCS for T.

Example 4: The subset T’ defined in Example 3 was
not 1-representative because there were gMCSs of length
1 for T’ that are not gMCSs for T.

On the other hand, T” = {{r0, r3, r6, r7}} is 1-
representative, because it has only one gMCS of length
1, {g0}, which is also a gMCS for T.
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According to Definition 2.3, if a subset T’ ⊂ T is k-
representative of the target region T, then a gMCS of
length k + 1 for T’ is also a gMCS for T if it is a gCS
for T.

2) Computing gMCSs for T by using k-representative
subsets: We have all the necessary components to begin
computing gMCSs for target set T.

We begin by finding a k-saturated subset T’ of T for
a particular integer k, where k is a natural number. To
accomplish this, choose any nonzero mode, e.

Please note that if gMCS(e) = ∅, then according
to 2.3, there are no gMCS for T as well. In all other
scenarios, determine the smallest length of elements in
gMCS(e) as k and identify all gMCSs with length k.
While {e} may not be k-representative, it can be easily
extended to a k-representative set T’. Start by creating
T ′ = {e}. Knock out all genes in any Ci ∈ gMCSk(e)
and choose a linear function f on the reactions. Then,
pose the LP problem:

Maximize f (4)

subject to S · v = 0

vi ≥ 0 ∀ri ∈ Irr

T · v ≥ t

If the problem cannot be solved, then Ci becomes a
gMCS for T. If we do find a mode ei ∈ T where Ci is
not a cut set, then we add ei to T’.

We have computed all the gMCSs of length k for T
and a k-saturated subset T’.

Proposition 2.4: The subset T’ that has been obtained
is a subset of T that is k-saturated.
Proof: It is worth noting that, according to Proposition
2.3, any set Ci belonging to gMCSk(T ′) can also be
found in gMCSk({e}). If Ci was not a gMCS for T , we
know that there is a mode ei such that Ci is not a gCS
for ei. This contradicts the assumption that Ci belongs
to gMCS(T ′). □

The steps to construct k, all gMCSk(T ), and the k-
saturated subset T ′ ⊂ T are outlined in Algorithm 2.

Suppose we have a subset T’⊂ T that is k-
representative for i < k ∈ N and we have already
computed all the gMCs for T of length ≤ k. We
can expand the set T’ to T” such that T” is a (k+1)-
representative subset of T while computing the gMCs
for T of length k+1.

• Begin by setting T ′′ equal to T ′.
• Compute all gCSs of length k + 1 for T ′ using

Algorithm 1, and then filter them by removing
any gCSs containing an element of gMCSk(T ) =

Algorithm 2: Algorithm for computing all k
gMCSs for T while also constructing a k-
representative set

Data: A set of modes T
Result: A k-representative set of modes T’ and

gMCSk(T )
Initialization: T’={e} for some e ∈ T;
k = min(length(C) | C ∈ gMCS(e));

for C ∈
⋂

e∈T ′ gMCSk(e) do
Check if C is a cut set for T;
if False then

Find e′ ∈ T such that C is not a cut set
for e′;

T’← T’∪{e′};
else

C is a gMCs for T of length k
end

end

gMCSk(T ′). The remaining gCSs are candidates
for gMCSk+1(T ).

• Proceed as in Algorithm 2 to check if candidate Ci

is in gMCSk+1(T ).
• In any other case, find a mode ei ∈ T such that Ci

is not a gCS for ei. Add it to T ′′

The summarized process can be found in Algorithm
3.

Algorithm 3: algorithm to extend a k-
representative set of modes to a (k+1)-
representative set

Data: A k-representative set of modes T’ and
gMCSk(T )

Result: A (k+1)-representative set of modes T”
and gMCSk+1(T )

Initialization: T”=T’;
Compute gMCSk+1(T ′′)
for Ci ∈ gMCSk+1(T ′′) do

Check if Ci is a cut set for T;
if False then

Find ei ∈ T such that Ci is not a cut set
for ei;

T”← T”∪{ei};
else

If Ci does not contain any gMCS of
length ≤ k, then Ci is a gMCS for T of
length k + 1.

end
end
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Combining both methods yields an algorithm that
finds all gMCSs for T of length ≤ k given integer k ≥ 1.
Additionally, the algorithm computes a k-representative
subset T’ of T.

Example 5: Let’s utilize the model that was previously
established in Example 2.

We obtain all gMCSs for T of length ≤ 3 using Algo-
rithms 2 and 3. We start by taking e = {r0, r1, r4, r7},
T ′ = {e}.

Let’s compute gMCS(e) which is equal to
{{g0}, {g1}, {g3}, {g5, g6, g7}}. Since k = 1, we can
get gMCS1(e) which is equal to {{g0}, {g1}, {g3}}.

We have three candidates for being gMCSs for T
of length k = 1. After solving the corresponding LP
problems, we obtain the following:

• {g0} is a gMCS for T.
• {g1} is not a gMCS for T. We obtain mode e1 =
{r0, r2, r5, r7} ∈ T with {g1} not being a gCS for
e1. We actualize T’={e, e1}.

• {g3} is not a gMCS for T’.
We obtained a unique gMC of length 1, {g0}, and
the 1-representative subset T’={e1, e2}, where e1 =
{r0, r1, r4, r7} and e2 = {r0, r3, r6, r7}.

First, we need to calculate gMCSs2(T ′), and then we
can expand T’ to a 2-representative subset of T.

We get

supp2G(e) = {{g0}, {g1}, {g3}}

supp2G(e
1) = {{g0}, {g2}, {g4}}

Using Berge’s algorithm, the mGCS for
T’ of length less than or equal to 2 are
{{g0}, {g1, g2}, {g1, g4}, {g3, g2}, {g3, g4}}. We check
if any of them are a gCS for T.

• {{g1, g2}, {g3, g4}} are gMCSs for T
• {g2, g3} is not a gMCS. We can get a mode
e2 = {r0, r3, r6, r7} ∈ T such that {g3, g2} is not a
gMCS for e2. We add it to T’

• {g1, g4} is not a gMCS for T’
We have completed the computation of gMCS2(T ).

Now, T’ is a 2-representative subset of T.
Next, we calculate the gMCSs with a length of 3.

Beginning with T ′ = {e, e1, e2}, we get:

supp3G(e) = {{g0}, {g1}, {g3}, {g5, g6, g7}}

supp3G(e
1) = {{g0}, {g2}, {g4}, {g5, g6, g7}}

supp3G(e
2) = {{g0}, {g1, g2}, {g3, g4}, {g5, g6, g7}}

By employing Berge’s algorithm once more, the
gMCS for T’ with length ≤ 3 are

{{g0}, {g1, g2}, {g1, g4}, {g5, g6, g7}}

They are all gMCS for T. Therefore,

gMCS3(T ) = {{g0}, {g1, g2}, {g1, g4}, {g5, g6, g7}}

III. RESULTS

A. Test bed

The evaluation platform was a double-socket Intel
Xeon Gold 6226R with 384 GB RAM running on a
CentOS 8.2 (4.18.0 kernel) provided by the Research
Group of the High-Performance Computer Architecture
(GACOP) of the University of Murcia (Spain). The
network models were analyzed using the COBRApy
package with Python 3.6 kernel in a Jupyter Note-
book. We utilized Cplex version 12.10 to solve the LP
problems that were associated ((https://www.ibm.com/
academic/topic/data-science)).

B. Network models used as case studies

For our case study, we selected three network models
to test our algorithm. We utilized two of them, namely
iML1515 and Human1, to compute their synthetic lethal-
ities. On the other hand, we used the third one to de-
termine genetic interventions that can guarantee growth
coupling between biomass and ethanol.

The first reconstruction model used is iML1515 for Es-
cherichia coli, which has 2712 reactions, 1877 metabo-
lites, and 1516 genes. This model can be found in
Schellenberger et al. [2010] and was previously used
in Schneider et al. [2020] to compare their algorithm’s
efficiency in computing gMCs to the one proposed in
Apaolaza et al. [2017]. In their study, they set the
maximum length of the computed gMCs to k=4. We also
used this maximum length for all our cases.

We utilized the unified human GEM lineage, known
as Human1, as our second model. Its latest release
(version 1-16) can be obtained from https://github.com/
SysBioChalmers/Human-GEM and consists of 13085
reactions, 8499 metabolites, and 2897 genes.

Finally, we have explored genetic modifications to
promote the production of ethanol from biomass in
oxygen-free environments using the iJO1366 model.
This model, like the one for Escherichia coli that can be
downloaded from BIGG, encompasses 2583 reactions,
1805 metabolites, and 1367 genes.

C. Obtained metabolic interventions.

We begin our study using the iML1515 reconstruction
model for Escherichia coli. As demonstrated in Schnei-
der et al. [2020], this model contains 889 gMCSs that
are of a length less than or equal to 4.
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We computed all gMCs and recorded runtimes while
executing the Algorithm ten times to ensure its correct-
ness. Table II displays the number of gMCSs for each
length and the time taken to compute all gMCs up to
that length in seconds.

k Number of gMCs Min time Max time Meantime
1 196 10,41 10,65 10,54
2 78 21,26 21,86 21,59
3 119 36,02 37,26 36,68
4 496 316,58 424,94 364,19

Table II
TIME IN SECONDS FOR OBTAINING SYNTHETIC LETHALITIES OF

LENGTH ≤ 4 IN iML1515

We computed all gMCs with length ≤ 4 for version
1.16 of the Human1 model as a second example.

This model contains 133 gMCSs with a length of 4
or less. Table III displays the amount of gMCSs at each
length. It also indicates the time in seconds needed to
compute all gMCs with lengths up to this value.

k Number of gMCs Min time Max time Meantime
1 92 9.82 12.70 10.64
2 14 31.39 40.24 33.09
3 15 55.01 60.21 56.37
4 12 484,72 758,76 617,30

Table III
TIME IN SECONDS FOR OBTAINING SYNTHETIC LETHALITIES OF

LENGTH ≤ 4 IN Human1

For our third example, we focused on exploring ge-
netic interventions that could enable the coupling of
ethanol and biomass growth under anaerobic condi-
tions in the iJO1366 model. To begin, we restricted
the model’s ability to have flux through the exchange
reaction linked to O2 in this particular model.

We found 195 genetic interventions of length 4 or less.
We ran the Algorithm ten times and recorded its run
times in seconds. The corresponding results are shown
in Table IV.

k Candidates Interventions Min time Max time Meantime
1 0 0 3,09 3,25 3.16
2 81 3 11.33 11.79 11.56
3 223 47 28.16 29.77 28.83
4 509 145 156.78 173.75 165.15

Table IV
TIME IN SECONDS FOR OBTAINING GENETIC INTERVENTIONS OF
LENGTH ≤ 4 IN iJO1366 FOR THE COUPLE GROWTH OF ETHANOL

You can access the software, models,
and all computed gMCSs by visiting
https://github.com/biogacop/fastMethod.

D. Discusion

The gMCS framework is a powerful tool for exploring
genomic scale models.

When evaluating methods for computing gMCSs, it
is important to consider their ability to handle large
networks, implicit target sets and obtain reasonably small
execution times. It would also be desirable if a single
technique could address all related problems, including
identifying synthetic lethal genes and suggesting genetic
interventions for the growth coupling of byproducts.

Our algorithm has met the first two criteria and
has been proven to work in various scenarios through
different case studies. In regards to execution times,
Schneider et al. [2020] reported that their approach
required 65 minutes to compute the gMCSs, while the
technique outlined in Apaolaza et al. [2017] took 163
minutes. It’s important to note that our execution times
are significantly better, with improvements of 10x and
27x, respectively.

There is no conclusive evidence regarding the neces-
sary time for the other approaches when applied to all
our case studies. Nevertheless, it is worth noting that
although the runtimes for Human1 may be longer than
those for iML1515, the disparity is not significant con-
sidering the size differences between the two models. It’s
important to mention that the elapsed time is determined
by both the model’s size and the number of gMCSs being
computed. Specifically, it relies on the size of the model
and the number of gMCSs that have the resulting sets
T’ introduced by the algorithm.

IV. CONCLUSIONS

A Genetic Minimal Cut Set (gMCS) is a set of genes
that, when inactivated, prevents any mode of a specific
target set. The target set varies depending on the desired
genetic intervention. This concept offers a comprehen-
sive method of examining essential and synthetic lethal
genes, as well as metabolic engineering techniques to
guarantee growth coupling for desired byproducts.

Numerous algorithms have been created to calculate
gMCSs, with the majority relying on developing a dual
network and utilizing MILP approaches for analysis. Re-
grettably, these techniques may lack numerical stability
and can be costly in both time and resources.

In this paper, we present a novel algorithm for comput-
ing gMCSs. The new approach employs linear program-
ming techniques, resulting in more efficient runtimes.
The main idea is to use a k-representative subset of the
target set. This enables us to replace the target set with a
smaller one, which is necessary when the set is too big
or cannot be calculated. Our method uses LP problems,
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eliminating the need for MILP techniques and resulting
in shorter execution times.

For our Algorithm tests, we utilized three models:
iML1515 and version 1.16 of Human1 to assess the
effectiveness of our algorithm in computing essential
and synthetic lethality genes in medium and large-scale
networks. Lastly, we used the iJO1366 model to examine
potential genetic interventions for the growth coupling of
ethanol and biomass under anaerobic restriction. We have
demonstrated that our method meets the requirements
and outperforms alternative techniques in the first case
study.

The technique discussed in our paper has the potential
to improve the use of gMCS in various fields, including
medicine. This technique can assist in targeting a single
essential gene or a combination of genes, synthetic
lethality, which can help cure certain illnesses. Further-
more, this technique can also be used in biotechnology
to enhance the creation of new byproducts.
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