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Abstract

Ensuring safety and achieving human-level driving performance remain challenges for autonomous vehicles, especially in safety-

critical situations. As a key component of artificial intelligence, reinforcement learning is promising and has shown great

potential in many complex tasks; however, its lack of safety guarantees limits its real-world applicability. Hence, further

advancing reinforcement learning, especially from the safety perspective, is of great importance for autonomous driving. As

revealed by cognitive neuroscientists, the amygdala of the brain can elicit defensive responses against threats or hazards, which

is crucial for survival in and adaptation to risky environments. Drawing inspiration from this scientific discovery, we present

a fear-neuro-inspired reinforcement learning framework to realize safe autonomous driving through modeling the amygdala

functionality. This new technique facilitates an agent to learn defensive behaviors and achieve safe decision making with fewer

safety violations. Through experimental tests, we show that the proposed approach enables the autonomous driving agent to

attain state-of-the-art performance compared to the baseline agents and perform comparably to 30 certified human drivers,

across various safety-critical scenarios. The results demonstrate the feasibility and effectiveness of our framework while also

shedding light on the crucial role of simulating the amygdala function in the application of reinforcement learning to safety-

critical autonomous driving domains.
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Abstract—Ensuring safety and achieving human-level driving performance remain challenges for autonomous vehicles, especially in
safety-critical situations. As a key component of artificial intelligence, reinforcement learning is promising and has shown great
potential in many complex tasks; however, its lack of safety guarantees limits its real-world applicability. Hence, further advancing
reinforcement learning, especially from the safety perspective, is of great importance for autonomous driving. As revealed by cognitive
neuroscientists, the amygdala of the brain can elicit defensive responses against threats or hazards, which is crucial for survival in and
adaptation to risky environments. Drawing inspiration from this scientific discovery, we present a fear-neuro-inspired reinforcement
learning framework to realize safe autonomous driving through modeling the amygdala functionality. This new technique facilitates an
agent to learn defensive behaviors and achieve safe decision making with fewer safety violations. Through experimental tests, we show
that the proposed approach enables the autonomous driving agent to attain state-of-the-art performance compared to the baseline
agents and perform comparably to 30 certified human drivers, across various safety-critical scenarios. The results demonstrate the
feasibility and effectiveness of our framework while also shedding light on the crucial role of simulating the amygdala function in the
application of reinforcement learning to safety-critical autonomous driving domains.
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1 INTRODUCTION

AUTONOMOUS driving has attracted considerable at-
tention from both academia and industry across the

globe in recent years. The societal benefits of this paradigm
are expected to include safer transportation, reduced con-
gestion and lower emissions. However, the safety aspect
of autonomous driving is still a major concern for large-
scale deployment. Many real-world scenarios contains in-
evitable nonstationarity and uncertainty, which may lead
autonomous vehicles to exhibit undesirable and unsafe driv-
ing behaviors and might even cause fatal casualties. To deal
with these potential risks, there is still a long way to go
to meet the strict requirements and high expectations with
regard to the deployment of autonomous driving in society.

Modern artificial intelligence (AI) technologies have
made numerous accomplishments [1], [2], [3], [4], exert-
ing a strong impetus on the advancement of autonomous
driving [5], [6]. Noticeably, reinforcement learning (RL) has
emerged as a prominent field within AI, demonstrating
remarkable achievements across various challenging deci-
sion tasks, such as Go [7], StarCraft [8], and autonomous
racing [9]. Consequently, researchers have attempted to
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explore various RL algorithms along with their applications
in autonomous driving [10]. Although existing approaches
have achieved many compelling results, the lack of safety
guarantees limits the applicability of RL in safety-critical
autonomous driving domains. In light of this concern, many
researchers have made efforts to study safe RL methods
for ensuring the safety of autonomous vehicles. A com-
mon paradigm is to combine traditional RL algorithms
with safety checkers [11] or constraints [12] to optimize
driving policies while guaranteeing or encouraging safety.
Yet it is inevitable that the agent will encounter numerous
hazardous situations before it can effectively learn to avoid
safety violations, even with the integration of sophisticated
techniques to minimize the likelihood of failures.

Recently, some researchers have advocated for increased
research efforts in “NeuroAI” since it holds the promising
potential to catalyze the advancement of next-generation AI
technologies [13]. RL theory is derived from the neuroscien-
tific and psychological perspectives on organism behavior
[14]. A common assumption regarding RL from the brain
science perspective is that the dopamine neurons in the
midbrain code for reward prediction errors, which enable
the striatum to learn rewarding behaviors [15]. Most existing
computational RL frameworks can be represented with this
mechanism [16]. However, in recent years, many neurosci-
entists have argued that the amygdala plays a central role
in the RL function of the brain, perhaps a more important
role than the striatum but certainly a more important role
than is attributed to it in current RL frameworks [15], [16].
The amygdala fear circuit in the brain can predict dangers
and elicit defensive behavioral responses against threats
and harms; this is crucial for survival in and adaptation to

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including 

reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or 

reuse of any copyrighted component of this work in other works.
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Fig. 1. Schematic of the proposed FNI-RL framework for safe autonomous driving. (a) RL-related functional systems in the brain. (b) Adversarial
imagination module for simulating the amygdala mechanism. (c) Fear-constrained actor-critic technique. (d) Agent-environment interaction loop.

potential risky environments [17]. Amygdala lesions inhibit
the fear learning and avoidance behavior elicited by threats.
Moreover, some studies in neuroscience and psychology
have highlighted the necessity of actively forecasting haz-
ards or contingencies via world models to ensure the sur-
vival of organisms [17].

Consequently, motivated by the aforementioned in-
sights, in this work, we hope to establish linkages between
AI, neuroscience and psychology and explore a novel RL
framework by modelling the amygdala functionality of
the brain to further advance safe decision making for au-
tonomous vehicles. More specifically, building upon the cur-
rent computational framework for the dopamine-striatum
mechanism, we present a fear-neuro-inspired RL (FNI-RL)
technique to model the process of RL in the brain by consid-
ering the amygdala functionality, enabling the autonomous
driving agent to learn defensive behaviors effectively. We
encourage the agent to undertake risky explorations within
its own imagination through a model-based setting, while
executing safe decisions during interactions with the real
environment to the greatest extent possible.

An overview of the proposed approach is illustrated in
Fig. 1. In light of the RL-related functional systems in the
brain, we first present an adversarial imagination mech-
anism to simulate safety-critical situations with a learn-
able adversary and world model, facilitating the agent to
cope with unseen hazardous scenarios and enhance pol-
icy robustness against uncertainties and nonstationarities.
Concretely, we leverage a mixed policy comprising both
the agent and the adversary to interact with the learned
world model, where the agent seeks to keep its fear within
specified bounds while the adversary aims to maximize the
agent’s fear. Here a fear model is constructed to estimate the
fear of the agent in response to the recognition of dangers

or contingencies. Based on the findings in neuroscience [17],
[18], our fear model incorporates both negative stimuli (e.g.,
safety violations) and environmental uncertainties. Addi-
tionally, we develop a fear-constrained actor-critic (FC-AC)
algorithm that enables the agent to learn defensive driving
behaviors and ensure safe decision making, via effectively
assessing unsafe policy trajectories and adhering to the
imposed fear constraints.

Compared with existing studies, the main contributions
of this work are summarized as follows1. (1) Drawing
inspiration from the fear neurons in the brain, we present
a computational FNI-RL framework to enhance the safety
of autonomous vehicles. (2) An adversarial imagination
technique is advanced to simulate safety-critical situations,
which facilitates the agent to tackle unseen risky scenarios
and improve the policy robustness against uncertainties and
nonstationarities. Here a fear model is devised to recognize
and estimate dangers and contingencies. (3) An FC-AC al-
gorithm is developed to enable the agent to learn defensive
driving behaviors and realize safe decision making with
fewer safety violations.

We demonstrate the feasibility and effectiveness of the
proposed FNI-RL approach for safe autonomous driving in
comparison with state-of-the-art AI agents and 30 certified
human drivers. The simulation tests are performed based
on the simulation of urban mobility (SUMO) package [19].
In addition, experimental evaluations are also carried out in
three critical situations on a human-in-the-loop test platform
(Fig. 4B) with a high-fidelity driving simulator, Car Learning
to Act (CARLA) [20]. The results indicate that, enhanced by
the developed FNI-RL algorithm, the autonomous driving
agent can generate defensive decision making behaviors,

1. The code and supplementary video are available at https://github.
com/TMIS-Turbo/FNI-RL

https://github.com/TMIS-Turbo/FNI-RL
https://github.com/TMIS-Turbo/FNI-RL
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thereby significantly improving safety and achieving human
drivers’ performance in various safety-critical scenarios.

2 RELATED WORK

2.1 Safe Autonomous Driving
In recent years, researchers have endeavored to enhance
the safety of autonomous vehicles by various perspectives
or methods [21], [22], such as generating diverse driving
scenarios [5], [6], imitating human driver behaviors [23],
[24], learning safe and robust policies via RL [25], [26].

In [27], a scheme called AdvSim is presented for gener-
ating safety-critical scenarios. AdvSim optimizes the vehicle
trajectories jointly to perturb the driving paths of surround-
ing vehicles. Moreover, incorporating AdvSim-generated
safety-critical scenarios in training can benefit the safety of
autonomous vehicles. In [28], a technique named STRIVE is
introduced, which utilizes a graph-based conditional vari-
ational autoencoder (CVAE) model to automatically gener-
ate challenging scenarios. Here the scenarios generated by
STRIVE can be employed to to optimize hyperparameters
of a rule-based planner. In [29], a gradient-based scenario
generation method called KING is proposed, which utilizes
a kinematic motion model to guide the generation of ad-
versarial scenarios. Additionally, the safety of autonomous
driving can be enhanced by augmenting the training data
with the generated scenarios from KING. However, these
methods rely on pre-collected datasets to learn traffic pri-
ors. Furthermore, they do not optimize driving policies by
integrating generated safety-critical scenarios with RL. In
[30], a causal generative model is devised to generate safety-
critical scenarios through causal graphs derived from hu-
man priors. The authors also empirically demonstrate that
incorporating the generated scenarios as additional training
samples can enhance the performance of RL-based driving
policies. Nevertheless, this technique depends heavily on
human priors. In contrast, our FNI-RL approach for learning
safe autonomous driving policies does not rely on any pre-
collected datasets or human priors. In addition, unlike the
aforementioned methods, FNI-RL optimizes both driving
policies and the adversarial sample generation module si-
multaneously in an online learning manner, as the RL agent
interacts with the real environment.

An imitation learning (IL) technique with on-policy RL
supervisions is developed to enhance the performance of
autonomous vehicles in [31]. A human-in-the-loop learning
scheme called human-AI copilot optimization is advanced
to facilitate the learning of safe driving policies in [32]. This
approach integrates interventions from human experts into
the interaction between the agent and the environment to
guarantee both efficient and safe exploration. Furthermore,
some researchers have employed RL methods with safety
constraints based on prior knowledge [33] or rules [34]
to optimize driving policies while simultaneously guaran-
teeing the satisfaction of the imposed constraints. In [35],
the authors present a constrained adversarial RL algorithm
that aims to realize safe autonomous driving from the per-
spective of robust decision making. While these approaches
can effectively improve the safety of autonomous vehicles,
they either heavily rely on pre-collected datasets or human
priors, or they have to go through a substantial number of

safety violations to learn safe driving policies. In contrast,
the proposed FNI-RL approach allows the agent to acquire
safe driving skills with fewer safety violations, without the
requirement for pre-collected datasets or human priors.

2.2 Safe Model-Free Reinforcement Learning

A popular class of safe model-free RL (SMFRL) methods is
dedicated to solving the constrained Markov decision pro-
cess (CMDP) to ensure the acquisition of safe policies [36].
These studies extensively combine model-free RL frame-
work with Lagrangian methods to restrict the cost value
of the policy below a predetermined threshold [37]. In the
latter case, the policies and Lagrangian multipliers are opti-
mized iteratively via the dual theory [38]. There are also SM-
FRL algorithms that incorporate reachability analysis [39],
[40] or expert information [41], [42]. For instance, in [41], a
SMFRL framework with prior knowledge is developed to
ensure safe exploration. Although the above methods have
achieved many competitive results, they either suffer from
a large number of unsafe interactions during training or
heavily depend on human priors. In contrast, FNI-RL does
not require any prior knowledge and enables the agent to
learn safe driving skills with fewer safety violations.

2.3 Safe Model-Based Reinforcement Learning

In safe model-based RL (SMBRL), apart from learning a
policy model, an additional environment model is required
to be learned, which can be leveraged to generate possible
trajectories or evaluate the safety of actions before executing
them in the real environment [43], [44], [45]. By incor-
porating cost constraints throughout the learning process,
SMBRL methods have the potential to prevent dangerous
exploration behaviors while ensuring sample efficiency [46],
[47], [48]. For example, in [45], a SMBRL scheme is proposed
to minimize safety violations during training. This method
involves learning an ensemble of probabilistic dynamics
models to plan ahead a short time into the future and ap-
plies heavy penalties to unsafe trajectories. In [47], a SMBRL
technique is introduced to cope with safety-critical tasks,
which adopts the learned Bayesian world model to generate
trajectories and estimate an optimistic bound for the task
objective and pessimistic bounds for the constraints. Then,
the augmented Lagrangian approach is employed to solve
the constrained optimization problem with the estimated
bounds. In [48], a SMBRL algorithm is developed with a
Lagrangian relaxation-based proximal policy optimization
technique and an ensemble of environment model. In this
framework, both epistemic and aleatoric uncertainties are
simultaneously taken into account during the learning of
the dynamics models. Unlike the methods mentioned above,
drawing inspiration from the fear neurons in the brain,
FNI-RL incorporates the adversarial imagination technique
that can simulate safety-critical situations via the learned
adversary and world model, assisting the agent in handling
unseen risky scenarios and enhancing policy robustness
against uncertainties and nonstationarities. Additionally, in
FNI-RL, the agent is required to comply with the fear
constraint that encompasses the dangers and uncertainties
estimated by the adversarial imagination.
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3 METHODOLOGY

The proposed FNI-RL framework for the safe decision mak-
ing of autonomous vehicles is mainly composed of the ad-
versarial imagination technique and the FC-AC algorithm.
The framework of our approach is illustrated in Fig. 1.

3.1 Adversarial Imagination
We develop the adversarial imagination technique by com-
bining the adversarial agent with the world model to sim-
ulate the worst-case situations in the imagination, enabling
our autonomous driving agent to tackle unseen critical sce-
narios and improve policy robustness. Here a mixed policy
πmix(·) is defined as:

πmix(·|s) ≡ α · π(·|s; θ) + (1− α) · π̄(·|s; θ̄), (1)

where α is a weight between 0 and 1, π(·) and π̄(·) represent
the stochastic policies of the protagonist and the adversary,
θ and θ̄ are the parameters of the policy network and the
adversarial policy network, and s denotes the state of the
agent, respectively. An action perturbed by the adversary,
denoted as ã, can be sampled from the mixed policy, i.e.,
ã ∼ πmix(·|s). The protagonist endeavors to optimize the
expected return while ensuring that its fear remains within
predefined bounds. Conversely, the adversary aims to max-
imize the protagonist’s fear.

In organisms, fear can be elicited by certain negative
stimuli [17]. For instance, watching or experiencing a fright-
ening traumatic accident is capable of arousing fear in
humans. In RL, the reward function serves as an incentive
used to evaluate the behaviors of the agent. Similarly, in
constrained RL [36], we can view the cost function as a form
of negative stimulus, such as collisions. Furthermore, fear
can also be caused by uncertainties [49], [50]. For example,
a human being may feel fear in an uncertain environment.
Consequently, we construct the fear model to incorporate
both the anticipated negative stimuli and epistemic uncer-
tainties simultaneously, and it can be expressed as follows:

f(s, ã) = β · ĉ(s, ã) + (1− β) · σ̂(s, ã), (2)

where β represents a weight that ranges from 0 to 1. ĉ(·)
and σ̂(·) denote the cost function and epistemic uncertainty
estimated via the world model, respectively. From Eq. (2),
the higher estimated cost and uncertainty will arouse a
more intense fear in the agent. f and f̄ denote the lower
and upper bounds of the fear, respectively. In our setting,
we utilize the probability of safety violations as the cost
function, i.e., ĉ(·) ∈ [0, 1]. Moreover, the minimum of σ̂(·)
is equal to zero. We constrain the maximum of σ̂(·) as 1.
Consequently, we can draw the following conclusion: f = 0
and f̄ = 1, namely, f(·) ∈ [0, 1].

The world model aims to provide an internal representa-
tion of the contingencies of the real environment. Here, we
leverage an ensemble of diagonal Gaussian world models to
effectively acquire both aleatoric and epistemic uncertainties
[45], [51]. This ensemble can be denoted as {T̂φk

}Kk=1, where
T̂φk

(s′, c|s, a) = N
(
µφk

(s, a), σ2
φk

(s, a)
)
. s′ and K are the

next state and the number of the world models, respectively.
Moreover, µφk

(·) and σφk
(·) represent the mean and stan-

dard deviation of the Gaussian distribution N (·) parame-
terized by φk, respectively. In contrast to the majority of

existing environmental models, our world model predicts a
cost c rather than a reward r. For the kth world model, it can
be trained by minimizing the following objective function
based on negative log-likelihood:

Jw(φk) = − E
(s,a,c,s′)∼M

[logT̂φk
(s′, c|s, a)], (3)

where M denotes an experience replay memory. Random
differences in initialization and mini-batch paradigm during
training give rise to distinct models. The model ensemble is
able to be employed to produce predictions incorporating
uncertainties. By combining the ensemble with the mixed
policy, the set-valued cost and uncertainty can be obtained:

(ŝ′, ĉ) ∼ 1

K

K∑
k=1

T̂φk
(s, ã), σ̂ =

1

K

K∑
k=1

σφk
(s, ã), (4)

where ŝ and ŝ′ represent the state and next state estimated
by the world model, respectively. With a short prediction
horizon m, the fear of the agent can be denoted as:

f(ŝm, ãm) = β · ĉ(ŝm, ãm) + (1− β) · σ̂(ŝm, ãm), (5)

where ŝm and ãm represent the state and action obtained
afterm steps of forward planning based on the world model
and mixed policy, respectively. We collect the generated
virtual transitions into a virtual experience replay memory
M̂, enhancing the performance of the agent. Additionally,
the adversary model can be learned by maximizing the
following objective function:

Jā(θ̄) = E
s∼M

[f(ŝm, ãm)]. (6)

3.2 Fear-Constrained Actor-Critic
In this section, the proposed FC-AC algorithm is introduced
to optimize the driving policies of our agent while keeping
its fear within preset bounds.

A CMDP is an augmentation of a Markov Decision
Process (MDP) by incorporating a cost function, which can
be represented by a 6-tuple 〈S,A, p, r, c, γ〉. S is the set of
states called the state space. A is the set of actions called
the action space. p is the transition probability distribu-
tion. r : S × A → R denotes the reward function, and
c : S × A → R represents the cost function. γ ∈ (0, 1) is
the discount factor.

According to CMDP, FC-AC seeks to solve the following
constrained optimization problem:

max
π

E

[ ∞∑
t=0

γtr(st, at)

]
, s.t. E [f(ŝm, ãm)] ≤ f0, (7)

where t is the time step, and f0 is a prescribed threshold.
A policy iteration algorithm, named fear-constrained

policy iteration (FC-PI), is developed to approximate the
optimal policies. The FC-PI method comprises two learning
processes: policy evaluation and policy improvement. These
two processes are updated alternately until the policy con-
verges. FC-PI can provably converge to the optimal policy
(see the supplementary). Moreover, the Lagrangian of the
constrained optimization problem can be written as:

L(π, λ) = E
[ ∞∑
t=0

γtr(st, at) + λ
(
f0 − f(ŝm, ãm)

)]
, (8)

where λ denotes the dual variable, and λ ≥ 0.



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 5

3.2.1 Fear-Constrained Policy Evaluation
The action-value function Qπ(s, a) can be iteratively com-
puted under the fixed policies of the agent via a Bellman
backup operator T :

T Qπ(s, a) ≡ r(s, a) + γ E
s′∼p

[V π(s′)], (9)

where V π(·) denotes a value function, and it is designed as:

V π(s) = E
a∼π(·|s)

[Qπ(s, a)− λf(ŝm, ãm)]. (10)

The FC-AC algorithm employs two parameterized
action-value functions with network parameters φz , z ∈
{1, 2} to speed up the model training process [52]. The
parameters of the action-value function can be learned by
minimizing the following loss function of the critic network:

Jc(φ
z) = E

(s,a,r,s′)∼M

[
‖y −Qπ(s, a;φz)‖22

]
, (11)

where y denotes a target value. According to the results in
[53] and our empirical findings, the training of the action-
value function network requires relatively high data quality.
Therefore, we only employ real interaction data to train the
action-value function network, reducing the reliance on the
accuracy of the world model.

To ensure safety, it is imperative to guarantee that the Q-
values of actions causing unsafe states are lower than the Q-
values of safe actions. We follow the assumption regarding
the existence of a special horizon H in [45]. According
to this assumption, after the agent completes H steps of
safe interaction with the environment, it will inevitably
transition into an unsafe state (i.e., with a safety violation).
Then, the agent can no longer recover to the safe state (i.e.,
without a safety violation).

In theory, we can devise a specific cost c∗ as a penalty
of the agent for safety violations to avoid the occurrence of
the hazardous situation described in the above assumption.
Under the given assumption, the maximum of the infinite-
horizon discounted return with the agent’s fear is as follows:

H−1∑
t=0

γtr̄ +
∞∑
t=H

γt(−c∗)− λf =
r̄(1− γH)− c∗γH

1− γ
− λf,

(12)

where r̄ is the upper bound of the reward r, and c∗ denotes
the lower bound of the cost c∗. In contrast, in the absence of
any safety violations, the minimum of the infinite-horizon
discounted return considering the fear is as follows:

∞∑
t=0

γtr − λf̄ =
r

1− γ
− λf̄ , (13)

where r represents the the lower bound of the reward r.
To ensure a reasonable evaluation of the safety of deci-

sions, it is desirable for the following inequality to hold:

r̄(1− γH)− c∗γH

1− γ
− λf < r

1− γ
− λf̄ . (14)

With Eq. (14), we can derive the following conclusion:

c∗ >
r̄ − r + λ(1− γ)(f̄ − f)

γH
− r̄. (15)

Since f̄ and f are bounded, and to satisfy the above
inequality, we can design the cost c∗ as:

c∗ =
r̄ − r

γH(1− γ)
+

λ

γH
− r̄

1− γ
. (16)

To prevent overestimation in the action-value function,
the minimum estimation among the two target parameter-
ized action-value functions is leveraged to train the critic
network. Hence, y can be devised as:

y =

{
r + γQ̃π(s′, a′), without a safety violation,
−c∗, with a safety violation,

(17)

where Q̂π(·) represents a target action-value function,
Q̃π(s, a) = min

z∈{1,2}
Q̂π(s, a; φ̄z) − λf(ŝm, ãm), φ̄z denotes

the network parameter of the target action-value function,
z ∈ {1, 2}, and a′ ∼ π(·|s′).

The network parameters φ̄z of the target action-value
function can be updated by Polyak averaging: φ̄z ← ρφ̄z +
(1− ρ)φz , where ρ is a scale coefficient between 0 and 1.

3.2.2 Fear-Constrained Policy Improvement

In FC-PI, the policy improvement aims to maximize the
expected return while adhering to the fear constraint.

According to Lagrange duality theory and Eq. (8), the
Lagrange dual problem associated with the constrained
optimization problem in Eq. (7) can be derived as:

min
λ

max
π

L(π, λ) = min
λ

max
π

E
[ ∞∑
t=0

γtr(st, at) (18)

+ λ
(
f0 − f(ŝm, ãm)

)]
.

In order to effectively tackle unseen safety-critical sce-
narios and enhance the policy diversity, we optimize the
policy of the agent using data from both virtual and real
experience replay memories. Hence, the optimal policy of
the agent can be approximated by maximizing the following
objective function for the actor network:

Ja(θ) = E
s∼M∪M̂,a∼π(·|s;θ)

[Qπ(s, a)− λf(ŝm, ãm)]. (19)

Additionally, the dual variable λ can be updated by
minimizing the following objective function:

Jd(λ) = E
s∼M∪M̂

[
λ
(
f0 − f(ŝm, ãm)

)]
. (20)

In our setting, the cost ĉ returned by the world model
represents the probability of a safety violation. Hence, dur-
ing the model testing phase, to further diminish the risk, the
agent can assess the safety of decisions using the learned
world model. For instance, in Fig. 1, if the agent’s action
is evaluated by the world model as having a high collision
risk, then a Gaussian noise ε will be added to this action.

4 RESULTS

To benchmark FNI-RL, we set up experimental comparisons
with state-of-the-art AI agents and certified human drivers
in complex and critical traffic scenes.
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Fig. 2. Experimental traffic environments. (a) Unprotected left turn at an unsignalized intersection with oncoming traffic. (b) Right turn at an
unsignalized intersection with crossing traffic. (c) Unprotected left turn at an unsignalized intersection with mixed traffic flows. (d) Crossing
negotiation at an unsignalized intersection with mixed traffic flows. (e) Long-term goal-driven navigation with mixed traffic flows.

4.1 Baselines
Rule-based driver: An intelligent driver model (IDM) in
SUMO is leveraged as a rule-based baseline.

Vanilla RL: We employ proximal policy optimization
(PPO) [54] and soft actor-critic (SAC) [55] as two vanilla RL
baselines, representing on-policy and off-policy methods.

SMFRL: Constraint policy optimization (CPO) [36] and
SAC-Lagrangian (SAC-Lag) [38] are adopted as two SMFRL
baselines.

SMBRL: We utilize safe model-based policy optimiza-
tion (SMBPO) [45] and safe model-based PPO (SMBPPO)
[48] as two SMBRL baselines.

IL: Generative adversarial imitation learning (GAIL) [56]
and RL coach (Roach) [31] are employed as two IL baselines.
We utilize the next generation simulation (NGSIM) dataset
[57] along with the behavior cloning (BC) technique to train
a policy model as the initial model for the two IL baselines.
This ensures that the IL agents possess basic driving skills
right from the start of the training phase. Furthermore,
during the training process, the GAIL agent learn expert
behaviors by leveraging the demonstration data from IDM.

Human driver: We recruit 30 human participants for the
experiments, all of whom hold valid driving licenses.

4.2 Metrics
To assess the overall driving quality, we introduce a driving
score (DS) defined as follows:

DS = η · SR + (1− η) · v

vmax
, (21)

where SR is a success rate, v and vmax denote the agent’s
speed and the permissible maximum speed. The weight η
is set to 0.8. Successful driving here refers to the vehicle’s
ability to reach the target lane without any safety violations

including collisions and running a red light. Obviously, DS
∈ [0, 1]. In the scenarios (a)-(d) depicted in Fig. 2, a safety
violation rate (SVR) denotes a collision rate (CR). In the
scenario (e), SVR includes not only CR but also a red-light
violation rate (RVR). Furthermore, the training-time safety
is measured by the total number of safety violations (TNSV)
in the training.

In the human-in-the-loop experiment, apart from SR, a
time-to-collision (TTC) metric is utilized to evaluate po-
tential collision risks or driving safety. The acceleration of
the ego vehicle is utilized as a metric to measure driving
smoothness and comfort. Additionally, the acceleration of
the following vehicle is leveraged to analyze the influence
of the ego vehicle’s driving behaviors on surrounding traffic.

4.3 General Settings

All agents are trained for 2000 episodes in SUMO using
five different random seeds. Except for the navigation task,
where each episode includes a maximum of 300 time steps,
all other tasks have episodes with a maximum of 30 time
steps. For a comprehensive evaluation, we set up three
traffic flows with different densities, namely flow-0, flow-1,
and flow-2. In the flow-0, flow-1 and flow-2, the probabilities
of emitting a vehicle each second are set to 0.5, 0.3 and 0.7,
respectively. All agents are trained in the flow-0, while the
flow-1 and flow-2 are solely leveraged for testing. During
the model testing phase, we evaluate the final policy models
trained with all the algorithms and different random seeds.
All the methods utilize the same policy network config-
uration. For further details such as reward function and
hyperparameters, please refer to the supplementary.
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TABLE 1
Statistical results of different autonomous driving agents in the traffic scenarios (a)-(d), including the mean and standard deviation (in brackets).

Method Metric Scenario (a) Scenario (b) Scenario (c) Scenario (d) Summary
Flow-1 Flow-2 Flow-1 Flow-2 Flow-1 Flow-2 Flow-1 Flow-2

IDM
DS 0.99 (0.00) 0.98 (0.05) 0.98 (0.00) 0.98 (0.00) 0.88 (0.17) 0.86 (0.20) 0.99 (0.04) 0.98 (0.04) 0.96 (0.05)
SR 1.00 (0.00) 0.99 (0.06) 1.00 (0.00) 1.00 (0.00) 0.87 (0.20) 0.85 (0.25) 0.99 (0.04) 0.98 (0.05) 0.96 (0.06)
CR 0.00 (0.00) 0.01 (0.06) 0.00 (0.00) 0.00 (0.00) 0.13 (0.20) 0.15 (0.25) 0.01 (0.04) 0.02 (0.05) 0.04 (0.06)

PPO
DS 0.86 (0.07) 0.85 (0.06) 0.70 (0.16) 0.61 (0.19) 0.56 (0.20) 0.40 (0.30) 0.94 (0.10) 0.70 (0.31) 0.70 (0.17)
SR 0.97 (0.09) 0.97 (0.08) 0.68 (0.20) 0.57 (0.23) 0.55 (0.23) 0.35 (0.32) 0.93 (0.12) 0.68 (0.34) 0.71 (0.21)
CR 0.03 (0.09) 0.03 (0.08) 0.32 (0.20) 0.43 (0.23) 0.10 (0.10) 0.27 (0.19) 0.07 (0.12) 0.10 (0.13) 0.17 (0.14)

SAC
DS 0.85 (0.05) 0.84 (0.06) 0.94 (0.04) 0.93 (0.04) 0.92 (0.06) 0.91 (0.06) 0.75 (0.08) 0.73 (0.09) 0.86 (0.08)
SR 0.97 (0.06) 0.96 (0.07) 0.98 (0.05) 0.98 (0.05) 0.96 (0.07) 0.95 (0.08) 0.89 (0.10) 0.87 (0.11) 0.95 (0.04)
CR 0.00 (0.00) 0.01 (0.03) 0.01 (0.04) 0.01 (0.03) 0.03 (0.05) 0.04 (0.07) 0.08 (0.08) 0.09 (0.10) 0.03 (0.03)

CPO
DS 0.99 (0.03) 0.98 (0.04) 0.83 (0.12) 0.81 (0.10) 0.83 (0.10) 0.75 (0.10) 0.94 (0.06) 0.92 (0.07) 0.88 (0.08)
SR 0.99 (0.04) 0.97 (0.04) 0.81 (0.15) 0.79 (0.12) 0.79 (0.13) 0.75 (0.12) 0.94 (0.07) 0.90 (0.09) 0.87 (0.09)
CR 0.01 (0.04) 0.03 (0.04) 0.19 (0.15) 0.21 (0.12) 0.21 (0.13) 0.25 (0.12) 0.06 (0.07) 0.10 (0.09) 0.13 (0.09)

SAC-Lag
DS 0.95 (0.03) 0.92 (0.05) 0.94 (0.03) 0.93 (0.04) 0.89 (0.07) 0.88 (0.08) 0.85 (0.08) 0.85 (0.09) 0.90 (0.04)
SR 0.99 (0.04) 0.96 (0.06) 0.99 (0.03) 0.97 (0.05) 0.93 (0.08) 0.91 (0.10) 0.88 (0.10) 0.88 (0.11) 0.94 (0.04)
CR 0.00 (0.02) 0.01 (0.02) 0.00 (0.02) 0.02 (0.04) 0.04 (0.07) 0.05 (0.07) 0.07 (0.08) 0.07 (0.08) 0.03 (0.03)

SMBPO
DS 0.98 (0.03) 0.98 (0.03) 0.71 (0.18) 0.65 (0.19) 0.96 (0.04) 0.95 (0.05) 0.97 (0.10) 0.94 (0.06) 0.89 (0.12)
SR 0.99 (0.03) 0.98 (0.04) 0.72 (0.18) 0.66 (0.19) 0.98 (0.05) 0.96 (0.06) 0.97 (0.10) 0.94 (0.07) 0.90 (0.12)
CR 0.01 (0.02) 0.01 (0.03) 0.01 (0.04) 0.03 (0.06) 0.02 (0.05) 0.04 (0.06) 0.02 (0.04) 0.05 (0.07) 0.02 (0.01)

SMBPPO
DS 0.98 (0.03) 0.98 (0.04) 0.92 (0.09) 0.83 (0.08) 0.94 (0.12) 0.78 (0.12) 0.95 (0.05) 0.92 (0.08) 0.91 (0.07)
SR 0.98 (0.04) 0.98 (0.05) 0.94 (0.12) 0.88 (0.10) 0.81 (0.12) 0.76 (0.15) 0.95 (0.06) 0.91 (0.09) 0.90 (0.08)
CR 0.02 (0.04) 0.02 (0.05) 0.06 (0.12) 0.11 (0.10) 0.19 (0.12) 0.24 (0.14) 0.05 (0.06) 0.09 (0.09) 0.10 (0.08)

GAIL
DS 0.92 (0.06) 0.91 (0.09) 0.75 (0.15) 0.51 (0.13) 0.70 (0.11) 0.66 (0.15) 0.83 (0.09) 0.56 (0.15) 0.73 (0.14)
SR 0.96 (0.07) 0.95 (0.10) 0.73 (0.19) 0.48 (0.17) 0.72 (0.13) 0.67 (0.17) 0.85 (0.11) 0.55 (0.18) 0.74 (0.16)
CR 0.01 (0.02) 0.01 (0.02) 0.25 (0.18) 0.38 (0.16) 0.09 (0.10) 0.07 (0.07) 0.10 (0.09) 0.13 (0.11) 0.13 (0.12)

Roach
DS 0.98 (0.03) 0.96 (0.04) 0.94 (0.03) 0.80 (0.11) 0.89 (0.07) 0.84 (0.09) 0.42 (0.17) 0.15 (0.08) 0.75 (0.28)
SR 0.99 (0.03) 0.98 (0.05) 0.98 (0.04) 0.83 (0.14) 0.90 (0.09) 0.88 (0.11) 0.40 (0.21) 0.10 (0.09) 0.76 (0.31)
CR 0.01 (0.03) 0.01 (0.04) 0.02 (0.04) 0.16 (0.13) 0.09 (0.09) 0.07 (0.08) 0.07 (0.08) 0.02 (0.03) 0.06 (0.05)

FNI-RL
DS 1.00 (0.00) 0.99 (0.01) 0.98 (0.00) 0.97 (0.01) 0.97 (0.00) 0.97 (0.00) 1.00 (0.00) 0.99 (0.02) 0.98 (0.01)
SR 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.02) 1.00 (0.00)
CR 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.02) 0.00 (0.00)

4.4 Traffic Negotiation at Unsignalized Intersections

Task. In the scenario (a) depicted in Fig. 2, the ego vehicle
(i.e., the red-colored vehicle) is executing an unprotected left
turn at an unsignalized intersection while interacting with
an oncoming dynamic traffic flow. In the scenario (b), the
ego vehicle is carrying out a right turn at an unsignalized
intersection while interacting with a crossing dynamic traffic
flow. In the scenario (c), the ego vehicle is performing an
unprotected left turn at an unsignalized intersection while
interacting with an oncoming dynamic traffic flow and two
crossing dynamic traffic flows. In the scenario (d), the ego
vehicle is required to negotiate with an oncoming dynamic
traffic flow and two crossing dynamic traffic flows in order
to cross an unsignalized intersection.

State and action. We adopt the information from the
6 nearest vehicles within a 200-meter distance from the
ego vehicle, encompassing the relative distance, orientation,
speed, and velocity direction of the front, back, left-front,
left-back, right-front, and right-back vehicles. Moreover, we
incorporate the speed and velocity direction of the ego
vehicle, resulting in a state representation of the agent
with a total of 26 dimensions. Here, the action of agents
is continuous longitudinal acceleration or deceleration.

Evaluation. Here, we assess and compare the perfor-
mance of FNI-RL against 9 baselines. We test each agent

on each situation for 500 episodes and report the average
metrics in Table 1. Overall, FNI-RL performs consistently
across all tasks, surpassing the rule-based, vanilla RL, SM-
FRL, SMBRL, and IL baselines in terms of comprehensive
performance and safety in the majority of test cases. For in-
stance, compared with the IDM, PPO, SAC, CPO, SAC-Lag,
SMBPO, SMBPPO, GAIL and Roach agents, FNI-RL gains
approximately 1.55%, 16.57%, 18.64%, 1.94%, 7.98%, 1.55%,
1.78%, 9.33% and 3.24% improvements with respect to DS
in the scenario (a) with flow-2, respectively. In the scenario
(b), FNI-RL performs comparably to IDM and outperforms
all other baselines with a large margin, in terms of DS,
SR and CR. In scenario (c) with flow-2, FNI-RL surpasses
the IDM, PPO, SAC, CPO, SAC-Lag, SMBPO, SMBPPO,
GAIL, and Roach agents, exhibiting DS improvements of ap-
proximately 12.74%, 144.59%, 6.39%, 29.50%, 10.71%, 2.33%,
24.55%, 46.45% and 15.41% respectively, along with SR
enhancements of approximately 18.20%, 182.49%, 4.82%,
32.63%, 9.41%, 3.95%, 31.93%, 48.81% and 13.90%. Moreover,
in the scenario (d) with flow-1, compared with IDM, PPO,
SAC, CPO, SAC-Lag, SMBPO, SMBPPO, GAIL and Roach,
the SR metric of FNI-RL is enhanced by approximately
1.22%, 7.76%, 12.87%, 6.84%, 13.90%, 3.31%, 5.49% 17.37%,
and 152.53%, respectively. Agents generally perform better
in flow-1 than in flow-2. While certain baselines, such as
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Fig. 3. The training performance of the different autonomous driving agents on the long-term goal-driven navigation task based on the stochastic
dynamic traffic flows. (a) Success rate. (b) Collision rate. (c) Red-light violation rate.

TABLE 2
Assessment results of the rule-based and learning-based autonomous driving agents in the long-term goal-driven navigation benchmark.

Metric IDM PPO SAC CPO SAC-Lag SMBPO SMBPPO GAIL Roach FNI-RL

DS 0.47 (0.13) 0.17 (0.11) 0.51 (0.13) 0.18 (0.08) 0.60 (0.17) 0.73 (0.13) 0.19 (0.08) 0.26 (0.11) 0.25 (0.08) 0.84 (0.08)
SR 0.46 (0.16) 0.06 (0.10) 0.49 (0.16) 0.11 (0.10) 0.60 (0.21) 0.81 (0.16) 0.13 (0.10) 0.18 (0.14) 0.09 (0.10) 0.90 (0.10)
CR 0.54 (0.16) 0.88 (0.11) 0.29 (0.15) 0.43 (0.16) 0.27 (0.15) 0.15 (0.11) 0.51 (0.14) 0.61 (0.28) 0.91 (0.10) 0.06 (0.08)

RVR 0.00 (0.00) 0.07 (0.10) 0.23 (0.13) 0.45 (0.16) 0.14 (0.15) 0.02 (0.06) 0.37 (0.14) 0.10 (0.12) 0.00 (0.00) 0.04 (0.06)
TNSV (×102) N/A 19.09 (0.85) 13.51 (0.52) 17.58 (0.32) 11.11 (3.38) 5.33 (1.51) 17.65 (0.76) 15.33 (2.02) 17.80 (0.48) 3.57 (0.14)

IDM, SAC, SAC-Lag, SMBPO, and SMBPPO, may exhibit
comparable performance to FNI-RL in several situations,
they do not achieve an equivalent level of safety. This dis-
tinction underscores the primary contribution of this work.

Additionally, in Table 1, we present summary statistics
that assess the average performance of each method across
all testing conditions. For instance, according to the average
DS metric in the last column of Table 1, in contrast to
the IDM, PPO, SAC, CPO, SAC-Lag, SMBPO, SMBPPO,
GAIL and Roach agents, FNI-RL gains approximately 2.08%,
40.00%, 13.95%, 11.36%, 8.89%, 10.11%, 7.69%, 34.25% and
30.67% improvements with respect to DS, respectively. We
find that the rule-based IDM agent exhibits strong competi-
tiveness. Specifically, FNI-RL performs comparably to IDM
on the easier tasks and surpasses IDM on the more challeng-
ing tasks in terms of the overall driving performance.

4.5 Long-Term Goal-Driven Navigation
Task. In the scenario (e) of Fig. 2, the ego vehicle first
executes an unprotected left turn at an unsignalized inter-
section while interacting with an oncoming dynamic traffic
flow and two crossing dynamic traffic flows. Then, the ego
vehicle performs a right turn at an unsignalized intersection
while navigating a crossing dynamic traffic flow. Following
that, the ego vehicle is required to sequentially traverse an
unsignalized intersection and a signalized intersection while
interacting with dynamic traffic flows. Afterward, the ego
vehicle merges into moving highway traffic from a highway
on-ramp and engages in a high-speed cruising task with
dynamic traffic flows. Finally, the ego vehicle is tasked
with exiting the highway at an off-ramp. Here successful
driving refers to the vehicle arriving at the off-ramp from the
starting point without any collisions or running red lights.
The total length of the task is 2400m (700m + 1700m) in the
east-west direction and 600m in the north-south direction.

State and action. In this task, apart from utilizing the
26-dimensional state in the scenarios (a)-(d), the agent incor-
porates three additional states: the distance from the traffic
light, the status of the traffic light, and the distance from
the navigation target. Consequently, the agent’s state en-
compasses a total of 29 dimensions. Furthermore, the action
of the agent includes continuous longitudinal acceleration
(or deceleration) as well as lane change direction.

Evaluation. Here, we assess and compare the perfor-
mance of FNI-RL against the nine baseline approaches. Fig.
3 illustrates the training performance of the nine learning-
based autonomous driving agents on the long-term goal-
driven navigation task under the flow-0 condition. Quan-
titatively, we provide the average metrics of the last 100
training episodes for each learning-based method under
different random seeds, as shown in Table 2. Correspond-
ingly, we assess the rule-based IDM baseline using the test
results from 500 episodes. Fig. 3 and Table 2 demonstrate
that, overall, FNI-RL surpasses the baselines with a large
margin, in terms of the DS, SR, CR, and TNSV metrics,
while performing comparably to the competitive baseline
methods in terms of RVR. Specifically, in comparison with
the IDM, SAC, SAC-Lag and SMBPO agents, the DS metric
of FNI-RL is improved by approximately 78.72%, 64.19%,
39.20% and 14.49%, respectively. Compared with the IDM,
SAC, SAC-Lag and SMBPO agents, FNI-RL gains approx-
imately 95.65%, 83.16%, 50.97% and 10.67% improvements
with respect to the SR metric, respectively. It is evident that
on this challenging long-term goal-driven navigation task,
autonomous driving agents trained using baseline methods
struggle to effectively avoid collision incidents compared
to FNI-RL. In contrast to the PPO, SAC, CPO, SAC-Lag,
SMBPO, SMBPPO, GAIL, and Roach agents, the TNSV met-
ric of FNI-RL is approximately reduced by 81.30%, 73.58%,
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79.69%, 67.87%, 32.96%, 79.77%, 76.71% and 79.94% in 2000
training episodes, respectively.

We observe that the majority of the autonomous driving
agents excel at avoiding running red lights rather than
avoiding collisions in the random and dynamic traffic en-
vironment. For instance, the rule-based IDM and learning-
based Roach methods can ensure complete compliance with
red light instructions; however, they prove less effective
in enabling autonomous driving agents to avoid collisions
effectively. Additionally, we find that the three on-policy
RL baselines (i.e., PPO, CPO and SMBPPO) fail to make
distinct progress in terms of DS and SR. Unlike off-policy
RL methods, which store experiences in a replay buffer for
learning, on-policy RL approaches directly update their pol-
icy based on the experiences collected during each episode
or trajectory. This distinction may be a disadvantage for
solving the challenging long-term goal-driven navigation
task. In addition, since both GAIL and Roach are based
on on-policy RL and the IDM-based demonstration data
is of insufficient quality, they similarly fail to achieve the
competitive outcomes on this complicated task.

4.6 Human-in-the-Loop Experiment

Task. In Fig. 4(a), we construct three cut-in scenarios (scene-
0, scene-1 and scene-2) with different levels of aggressive-
ness (normal, aggressive and extremely aggressive) to assess
the performance of our FNI-RL agent in safety-critical situ-
ations compared to 30 certified human drivers. The aggres-
siveness of the cut-in vehicle is manifested differently in the
hesitation time and the longitudinal distance to the maneu-
ver endpoint. The hesitation time is defined as maintaining
the original velocity and not initiating any lane changes,
and the maneuver endpoint is the longitudinal position at
which the cut-in vehicle completes its lane change. The ego
vehicle is in the leftmost lane. For the formal experiment,
each scenario is repeated five times to assess the average
performance of the human and FNI-RL drivers. Finally, we
analyze and assess the data derived from the human drivers
and the FNI-RL agents, with each participant conducting
5 repeated trials. Since it would be extremely dangerous
to perform emergency collision avoidance tasks in a real
vehicle, the experiment is conducted in safety-critical situ-
ations with the human-in-the-loop platform with the high-
fidelity CARLA simulator. The detailed description of the
experiment can be found in the supplementary.

State and action. To demonstrate the advantages of
our method, for the cut-in scene we constructed, the FNI-
RL agent only adopts the information from the 3 nearest
vehicles within a 200-meter distance from the ego vehicle,
consisting of 7 dimensions, including the ego vehicle’s
speed, the speed and relative distance of the nearest front
and rear vehicles, and the speed and relative distance of the
nearest right-side vehicle. Instead, the human drivers can
observe relevant information such as the distance and speed
of almost all surrounding vehicles in the traffic environment
through the screens on the platform. Here, the action of
our autonomous driving agent is a continuous control of
longitudinal acceleration or deceleration.

Evaluation. The experimental results obtained from
three distinct scenarios are evaluated using four different

Fig. 4. Human-in-the-loop experiment. (a) Cut-in scenarios with three
levels of aggressiveness. The ego vehicle (i.e., the golden-colored ve-
hicle in the leftmost lane) performs a high-speed cruising task while
a nearby vehicle suddenly cuts into its lane. The ego vehicle should
stay in its lane and avoid collisions to the greatest extent possible.
(b) Experimental platform. The human drivers manipulate the steering
wheel and pedals to control the ego vehicle. A computing platform and
three heads-up displays provide a real-time, high-fidelity in-vehicle view.

metrics. In Fig. 5(a), the success rate is computed by the
ratio of successful runs to total runs. A successful run is
defined as a trial where the ego vehicle avoids collision
with any of the surrounding social vehicles throughout the
course of the run. The human drivers recorded success rates
of 81.3%, 76.0%, and 70.0% for each scenario respectively.
Surprisingly, our FNI-RL agent consistently outperforms the
human drivers in all scenarios, achieving a success rate of
100% in each case. Statistical analysis, employing a paired t-
test, confirms the superior performance of the FNI-RL agent,
where p < 1e-4 for all cases. Fig. 5(b) illustrates the average
reciprocal TTC of the ego vehicle with respect to the cut-
in vehicle; a higher value suggests a higher risk. The FNI-
RL agent consistently exhibits greater safety than human
drivers, as evidenced by lower reciprocal TTC values across
all scenarios. Statistical significance of this superiority is
validated with p < 1e-4 for all cases. In Fig. 5(c), the FNI-
RL agent showcases smoother driving across all scenarios,
as supported by its lower average acceleration values in
comparison to human drivers. Statistical tests confirm the
significance of this difference, with p < 1e-2 for scene-0 and
p < 1e-4 for scenes-1 and scenes-2. In Fig. 5(d), compared
to human drivers, the FNI-RL agent maintains a smaller
and more stable effect on the rear vehicle, consequently
enhancing overall traffic performance. This improvement is
substantiated through t-tests, as depicted in Fig. 5(d).

4.7 Ablation Study
We implement 8 ablation schemes by removing different
components and setting various hyperparameters, on the
traffic environment (c) shown in Fig. 2. In Table 3, “−π̄(·)”,
“−f(·)” and “−M̂” correspond to removing the adversary
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(a) (b) (c) (d)
p<1e-4 p<1e-4p<1e-4 p<1e-4 p<1e-4 p<1e-4 p<1e-2 p<1e-4 p<1e-4 p<1e-2

Fig. 5. Statistical results produced by the human drivers (blue bars) and the FNI-RL agents (orange bars). (a) Bar plot of the success rates of the
human drivers and the FNI-RL agent. (b) Boxplot of the reciprocal of the time-to-collision values produced by the human drivers and the FNI-RL
agent, where the time-to-collision is calculated based on the moment at which the cut-in vehicle reaches the ego lane, and a small but nonzero
constant (0.1s) is leveraged as the time-to-collision value for the unsuccessful trials. (c) Boxplot of the mean absolute value of the acceleration of
the ego vehicle, where the counting range is 2s from the time at which the cut-in behavior occurs. (d) Boxplot of the mean absolute value of the
acceleration of the rear vehicle, where the counting range is 2s from the time at which the cut-in behavior occurs.

TABLE 3
Final performance of different autonomous driving agents in training.

Method DS SR CR TNSV

FNI-RL 0.97 (0.00) 1.00 (0.00) 0.00 (0.00) 90.00 (8.00)
−M̂ 0.90 (0.05) 0.97 (0.05) 0.03 (0.05) 121.00 (13.00)
−π̄(·) 0.93 (0.03) 0.95 (0.05) 0.05 (0.05) 114.00 (4.00)
−f(·) 0.89 (0.06) 1.00 (0.00) 0.00 (0.00) 160.00 (20.00)

−π̄(·)− f(·) 0.73 (0.13) 0.80 (0.10) 0.10 (0.10) 169.00 (8.00)
α = 0.5 0.97 (0.00) 1.00 (0.00) 0.00 (0.00) 93.00 (5.00)
β = 0.8 0.98 (0.00) 1.00 (0.00) 0.00 (0.00) 97.00 (6.00)
f0 = 0.1 0.94 (0.04) 0.95 (0.05) 0.05 (0.05) 103.00 (3.00)
m = 10 0.98 (0.01) 1.00 (0.00) 0.00 (0.00) 102.00 (2.00)

policy, the fear model and the virtual experience replay
memory from FNI-RL, respectively. “−π̄(·) − f(·)” repre-
sents the baseline that excludes the adversary policy and
fear model components from FNI-RL. To analyze the effect
of several key hyperparameters, “α = 0.8”, “β = 0.9”,
“f0 = 0.5” and “m = 5” in FNI-RL are set as “α = 0.5”,
“β = 0.8”, “f0 = 0.1” and “m = 10”, respectively. For the
“−π̄(·)” and “α = 1.0” baselines, these two are equivalent.

Overall, FNI-RL performs comparably to the baselines of
changing hyperparameters and outperforms the baselines
of removing critical components, in terms of the final DS,
SR and CR. Most notably, FNI-RL exhibits significant ad-
vantages in terms of safety, especially in terms of training-
time safety. Specifically, compared with the “−M̂”, “−π̄(·)”,
“−f(·)” and “−π̄(·) − f(·)” baselines, the TNSV metric
of FNI-RL is approximately reduced by 25.62%, 21.05%,
43.75%, and 46.75% in 2000 training episodes, respectively.
From the results in Table 3, we can see that the component
regarding the fear model has a significant impact on the
performance of FNI-RL, especially in safety. In addition,
by comparing the “α = 0.5”, “β = 0.8”, “f0 = 0.1” and
“m = 10” baselines, we can find that hyperparameters
have a certain impact on the performance of FNI-RL, but in
general FNI-RL is not very sensitive to changes in hyperpa-
rameters. Consequently, the results of the ablation analysis
demonstrate that the components or setting in FNI-RL are
critical. More results can be found in the supplementary.

5 DISCUSSION AND CONCLUSION

Performance. Inspired by the amygdala, which arouses the
fear and defensive behaviors of organisms in response to
the recognition of dangers or contingencies, we propose the
FNI-RL framework to realize safe autonomous driving.

The results demonstrate the effectiveness of FNI-RL via
simulations and experiments. In the scenarios (a)-(e), FNI-
RL achieves superior performance to that of the competitive
AI agents, especially in terms of safety. In the human-in-
the-loop experiment, one obstacle to evaluating our agent
is the “transfer gap”: the performance of the well-trained
agent in the SUMO-based simulation can be easily degraded
in the experiment. One major reason for this problem may
be the differences in the vehicle models between the two
environments. Surprisingly, the experimental results indi-
cate that FNI-RL can achieve the performance of the 30
certified human drivers in three safety-critical scenarios.
Additionally, the ablation studies show that the components
in FNI-RL to simulate the amygdala mechanism are critical.

Diving deeper into the results. We find four possible
explanations for the above results. (1) Threats and contin-
gencies can be recognized or estimated with the fear model.
FNI-RL selects the action that minimizes fear during inter-
actions with the real environment. (2) While prediction error
is unavoidable, by combining the adversarial agent with the
world model, the adversarial imagination technique is able
to simulate the worst-case situations in the imagination,
enabling the agent to tackle unseen critical situations and
improve its policy robustness against the “transfer gap” or
uncertainties. (3) The FC-AC algorithm enables the agent to
learn defensive driving behaviors that ensure safety or per-
formance during emergencies. (4) Compared with human
drivers, autonomous driving systems have faster reaction
times and are fatigue-proof in terms of their functioning.

Broader impact. RL has been an impressive component
of modern AI and is still under vigorous development.
Nonetheless, unlike supervised learning, which has found
extensive application in various commercial and industrial
domains, RL has not gained widespread acceptance and
deployment in real-world tasks. One important aspect is
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the trustworthiness, where safety plays a critical role. Com-
pared to AI, especially RL, human intelligence is considered
safer and more trustworthy. Our framework inspired by the
brain fear circuit contributes to the foundation for realizing
safe AI, potentially bringing RL closer to safety-critical real-
world applications. Moreover, this work establishes linkages
between AI, neuroscience and psychology, which may be
beneficial for interpreting the RL process in the brain.

Limitations and future work. Our algorithm implemen-
tation has several simplifications (e.g., its network structure
and limited states) for the convenience of simulation and
experimentation. We believe that neural networks consider-
ing temporal sequences, e.g., transformer [1], could improve
the performance of FNI-RL, and this topic will be studied in
the future. Additionally, the amygdala enables organisms to
learn at fast rates and track rapid changes in environments,
while the striatum is more robust to noise [14]. However,
since the internal structure and mechanism of the amygdala
and striatum remain unclear, FNI-RL has not lived up to
its full potential. An additional investigation is required to
elucidate the fundamental principles of the amygdala and
striatum, fostering the development of RL-based computa-
tional models and high-level autonomous driving.
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control with constrained model-based policy optimization,” in
2021 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, 2021, pp. 3512–3519.

[47] Y. As, I. Usmanova, S. Curi, and A. Krause, “Constrained
policy optimization via bayesian world models,” in International
Conference on Learning Representations, 2022. [Online]. Available:
https://openreview.net/forum?id=PRZoSmCinhf

[48] A. K. Jayant and S. Bhatnagar, “Model-based safe deep reinforce-
ment learning via a constrained proximal policy optimization al-

gorithm,” Advances in Neural Information Processing Systems, vol. 35,
pp. 24 432–24 445, 2022.

[49] L. E. Williams, J. A. Oler, A. S. Fox et al., “Fear of the unknown:
uncertain anticipation reveals amygdala alterations in childhood
anxiety disorders,” Neuropsychopharmacology, vol. 40, no. 6, pp.
1428–1435, 2015.

[50] R. N. Carleton, “Fear of the unknown: One fear to rule them all?”
Journal of Anxiety Disorders, vol. 41, pp. 5–21, 2016, fearing the
Unknown.

[51] K. Chua, R. Calandra, R. McAllister, and S. Levine, “Deep rein-
forcement learning in a handful of trials using probabilistic dy-
namics models,” Advances in neural information processing systems,
vol. 31, 2018.

[52] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learn-
ing with double q-learning,” in Proceedings of the AAAI conference
on artificial intelligence, vol. 30, no. 1, 2016.

[53] M. Janner, J. Fu, M. Zhang, and S. Levine, “When to trust your
model: Model-based policy optimization,” Advances in neural in-
formation processing systems, vol. 32, 2019.

[54] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv preprint
arXiv:1707.06347, 2017.

[55] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic:
Off-policy maximum entropy deep reinforcement learning with
a stochastic actor,” in International conference on machine learning.
PMLR, 2018, pp. 1861–1870.

[56] J. Ho and S. Ermon, “Generative adversarial imitation learning,”
Advances in neural information processing systems, vol. 29, 2016.

[57] U. D. of Transportation Federal Highway Administration, “Next
generation simulation (ngsim) vehicle trajectories and supporting
data,” 2016. [Online]. Available: http://doi.org/10.21949/1504477

Xiangkun He (Member, IEEE) received his PhD
degree in 2019 from the School of Vehicle
and Mobility, Tsinghua University, Beijing, China.
From 2019 to 2021, he served as a Senior Re-
searcher at Huawei Noah’s Ark Lab. He is cur-
rently a Research Fellow at Nanyang Techno-
logical University, Singapore. His research inter-
ests include autonomous driving, reinforcement
learning, trustworthy AI, decision and control.
He received many awards or honors, selectively
including the Tsinghua University Outstanding

Doctoral Thesis Award in 2019, Best Paper Finalist at 2020 IEEE ICMA,
1st Class Outstanding Paper of China Journal of Highway and Transport
in 2021, Huawei Major Technological Breakthrough Award in 2021, Best
Paper Runner-Up Award at 2022 6th CAA International Conference on
Vehicular Control and Intelligence, and Runner-Up at Intelligent Algo-
rithm Final of 2022 Alibaba Global Future Vehicle Challenge.

Wu Jingda (Graduate Student Member, IEEE)
received his B.S. (2016) and M.S. (2019) in
mechanical engineering from Beijing Institute of
Technology, China. He is currently working on
his Ph.D. degree with the School of Mechanical
and Aerospace Engineering, Nanyang Techno-
logical University, Singapore. His research inter-
ests include human guidance-based reinforce-
ment learning algorithms, human-artificial intel-
ligence (AI) collaborated driving strategy design,
and decision-making of autonomous vehicles.

Zhiyu Huang (Graduate Student Member,
IEEE) received his B.E. degree from the School
of Automobile Engineering, Chongqing Univer-
sity, Chongqing, China, in 2019. He is currently
pursuing his Ph.D. degree with the School of Me-
chanical and Aerospace Engineering, Nanyang
Technological University, Singapore. His current
research focuses on machine learning-based
methods for decision-making in autonomous
driving, including reinforcement learning, behav-
ior prediction, and data-driven motion planning.

https://openreview.net/forum?id=0cgU-BZp2ky
https://openreview.net/forum?id=PRZoSmCinhf
http://doi.org/10.21949/1504477


IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 13

Zhongxu Hu (Member, IEEE) received a
mechatronic Ph.D. degree from the Huazhong
University of Science and Technology of China,
in 2018. He was a senior engineer at Huawei.
He is currently a Research Fellow at Nanyang
Technological University, Singapore. His current
research interests include human-machine col-
laboration, computer vision, and deep learning
applied to autonomous vehicles. Dr. Hu serves
as a Lead Guest Editor for Computational In-
telligence and Neuroscience, an Academic Ed-

itor/Editorial Board for Automotive Innovation, Journal of Electrical and
Electronic Engineering, Advances in Multimedia.

Jun Wang is Chair Professor, Computer Sci-
ence, University College London, and Founding
Director of MSc Web Science and Big Data An-
alytics. He is also Co-founder and Chief Scien-
tist in MediaGamma Ltd, a UCL start-up com-
pany focusing on AI for intelligent audience de-
cision making. Prof. Jun Wang’s main research
interests are in the areas of AI and intelligent
systems, including (multiagent) reinforcement
learning, deep generative models, and their di-
verse applications on information retrieval, rec-

ommender systems and personalization, data mining, smart cities, bot
planning, computational advertising etc. His team won the first global
real-time bidding algorithm contest with 80+ participants worldwide. Jun
has published over 100 research papers and is a winner of multiple “Best
Paper” awards. He was a recipient of the Beyond Search – Semantic
Computing and Internet Economics award by Microsoft Research and
also received Yahoo! FREP Faculty award. He has served as an Area
Chair in ACM CIKM and ACM SIGIR. His recent service includes co-
chair of Artificial Intelligence, Semantics, and Dialog in ACM SIGIR
2018. MediaGamma has received the UCLB One-to-Watch award 2016.

Alberto Sangiovanni-Vincentelli (Life Fellow,
IEEE) is the Edgar L. and Harold H. Buttner
Chair with EECS Department, UC Berkeley,
Berkeley, CA, USA. He co-founded Cadence and
Synopsys, the two leading EDA companies. He
is on the Board of Directors of Cadence, KPIT,
Expert Systems, Cy4Gate, Exein, Quantum Mo-
tion, Phononic Vibes and Phoelex. He is a Mem-
ber of the advisory board of Walden International
and Xseed, of the Scientific Advisory Board of
the Italian Institute of Technology and the Chair

of the International Advisory Board for the Milano Innovation District.
He is a Member of the Advisory Board of the Politecnico di Milano and
honorary Professor at Politecnico di Torino. He was the President of
the Comitato Nazionale dei Garanti della Ricerca and of the Strategy
Committee of Fondo Strategico Italiano. He consulted for companies
such as Intel, HP, Bell Labs, IBM, Lendlease, Samsung, UTC, Lutron,
Camozzi Group, Kawasaki Steel, Fujitsu, Telecom Italia, Pirelli, GM,
BMW, Mercedes, Magneti Marelli, ST Microelectronics, and ELT. He
has authored 1,120 papers, 19 books, and two patents. He is Fellow
of the ACM and a Member of the National Academy of Engineering. He
earned the IEEE/RSE Maxwell Award for groundbreaking contributions
that have had an exceptional impact on the development of electronics
and electrical engineering or related fields, the Kaufmann Award, the
EDAA lifetime Achievement Award, the IEEE/ACM R. Newton Impact
Award, the UC Distinguished Teaching Award, the IEEE TC-CPS Techni-
cal Achievement Award, the IEEE Leon Kirchmayer Graduate Teaching
Award, and the ISPD Lifetime Achievement Award.

Chen Lv (Senior Member, IEEE) is a Nanyang
Assistant Professor at School of Mechanical and
Aerospace Engineering, and the Cluster Director
in Future Mobility Solutions, Nanyang Techno-
logical University, Singapore. He received his
PhD degree at Department of Automotive Engi-
neering, Tsinghua University, China in Jan 2016.
He was a joint PhD researcher at UC Berkeley,
USA during 2014-2015, and worked as a Re-
search Fellow at Cranfield University, UK dur-
ing 2016-2018. He joined NTU and founded the

Automated Driving and Human-Machine System (AutoMan) Research
Lab since June 2018. His research focuses on intelligent vehicles,
automated driving, and human-machine systems, where he has con-
tributed 2 books, over 100 papers, and obtained 12 granted patents.
He serves as Associate Editor for IEEE T-ITS, IEEE TVT, and IEEE
T-IV. He received many awards and honors, selectively including the
Highly Commended Paper Award of IMechE UK in 2012, Japan NSK
Outstanding Mechanical Engineering Paper Award in 2014, Tsinghua
University Outstanding Doctoral Thesis Award in 2016, IEEE IV Best
Workshop/Special Session Paper Award in 2018, Automotive Innovation
Best Paper Award in 2020, the winner of Waymo Open Dataset Chal-
lenges at CVPR 2021, Machines Young Investigator Award in 2022, and
Best Paper Runner Up Award at CVCI 2022.



Fear-Neuro-Inspired Reinforcement Learning for Safe
Autonomous Driving

Xiangkun He1, Jingda Wu1, Zhiyu Huang1, Zhongxu Hu1, Jun Wang2, Alberto Sangiovanni-Vincentelli3, Chen Lv1,∗

1School of Mechanical and Aerospace Engineering, Nanyang Technological University
2Department of Computer Science, University College London

3Department of Electrical Engineering and Computer Sciences, University of California, Berkeley
∗Corresponding author. E-mail: lyuchen@ntu.edu.sg

Supplementary materials

Supplementary Notes
Supplementary Note 1-Implementation of Reward and Cost Functions

Algorithm 1 Reward and cost functions for the scenarios (a)-(d) and the cut-in scenarios
Input: State and action of the RL agent.

1: r(s, a) = v0/10. . Encourage agent to be more efficient
2: if Collision then
3: c(s, a) = 1.00. . Penalize collisions
4: else
5: c(s, a) = 0.00.
6: end if

Output: r(s, a) = r(s, a)− c(s, a), c(s, a).

In Algorithms 1, v0 represents the speed of the ego vehicle.

In Algorithms 2, c1 and c2 correspond to the cost functions associated with collisions and

running a red light, respectively. Moreover, ∆d and ∆dmax denote the distance from the target

off-ramp and the maximum distance from the target off-ramp, respectively.

1



Algorithm 2 Reward and cost functions for the long-term goal-driven navigation task
Input: State and action of the RL agent.

1: r(s, a) = v0/5. . Encourage agent to be more efficient
2: if Collision then
3: c1(s, a) = 1.00. . Penalize collisions
4: else
5: c1(s, a) = 0.00.
6: end if
7: if Running a red light then
8: c2(s, a) = 1.00. . Penalize red-light violations
9: else

10: c2(s, a) = 0.00.
11: end if
12: if Arriving at the off-ramp then
13: r(s, a) = r(s, a) + 100.00. . Encourage agent arriving at the off-ramp
14: else
15: r(s, a) = r(s, a)− log(1.00 + ∆d/∆dmax)-1.00. . Lead to the off-ramp
16: end if
Output: r(s, a) = r(s, a)− c1(s, a)− c2(s, a), c1(s, a), c2(s, a).
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Supplementary Note 2-Proof of Convergence of Fear-Constrained Policy Iteration

We provide the following proof to show that the fear-constrained policy iteration (FC-PI) can

converge to the optimal policy.

Lemma 1 (Fear-Constrained Policy Evaluation). Consider the bellman backup operator T in

Eq. (9) and a state-action function Qπ
0 : S × A → R with |R| < ∞, and define Qπ

i+1 = T Qπ
i .

Then, the sequence Qπ
i can converge to a unique fixed the Q-value of π as i→∞.

Proof: We can rewrite the update rule as via Eq. (9):

T Qπ(s, a) ≡ r(s, a) + γ E
s′∼p,a′∼π(·|s′)

E[Qπ(s, a)− λfπ]

= rπ(s, a) + γ E
s′∼p,a′∼π(·|s′)

[Qπ(s′, a′)], (1)

where rπ(s, a) = r(s, a)− γλ E
s′∼p,a′∼π(·|s′)

[fπ], rπ(s, a) represents a fear augmented reward, fπ

denotes an on-policy fear model.

Thus for any Qπ(s, a), Qπ
i (s, a) : S ×A → R,

‖T Qπ(s, a)− T Qπ
i (s, a)‖∞ = sup |T Qπ(s, a)− T Qπ

i (s, a)|

= γ sup

∣∣∣∣ E
s′∼p,a′∼π(·|s′)

[
Qπ(s′, a′)−Qπ

i (s′, a′)
]∣∣∣∣

≤ γ sup E
s′∼p,a′∼π(·|s′)

[
|Qπ(s′, a′)−Qπ

i (s′, a′)|
]

≤ γ sup |Qπ(s′, a′)−Qπ
i (s′, a′)|

= γ‖Qπ(s′, a′)−Qπ
i (s′, a′)‖∞. (2)

Hence T is indeed a γ-contraction in ∞-norm. In other words, T has a unique fixed point

which can be obtained by iteration.

Lemma 2 (Fear-Constrained Policy Improvement) Let πnew be the optimal solution of the max-

imization problem defined in Eq. (7). Then Qπnew(s, a) ≥ Qπold(s, a) for ∀(s, a) ∈ S ×A.
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Proof: Let πnew be defined as:

πnew(·|s) = arg max
π

E
a∼π

[Qπold(s, a)− λfπ], ∀s ∈ S. (3)

Since we can always choose πnew = πold, then it is obvious that:

E
a∼πnew

[Qπold(s, a)− λfπnew ] ≥ E
a∼πold

[Qπold(s, a)− λfπold ], ∀s ∈ S. (4)

Next, with Eq. (9), it follows that:

Qπold(s, a)

= r(s, a) + γ E
s′∼p,a′∼πold

[Qπold(s′, a′)− λfπold ]

≤ r(s, a) + γ E
s′∼p,a′∼πnew

[Qπold(s′, a′)− λfπnew ]

...

≤ Qπnew(s, a), ∀(s, a) ∈ S ×A,

where we have repeatedly expandedQπold on the right-hand side by applying the Bellman equa-

tion.

Theorem 1 (Fear-Constrained Policy Iteration). The fear-constrained policy iteration, which

alternates between the fear-constrained policy evaluation and the fear-constrained policy im-

provement, can converge to a policy π∗ such that Qπ∗(s, a) ≥ Qπ(s, a) for ∀π and ∀(s, a) ∈

S ×A, assuming that |A| <∞ and reward is bounded.

Proof: Let πk denote the policy at iteration k. For ∀πk, we can always find its associated

Qπk via the fear-constrained policy evaluation process follows from Lemma 1. With Lemma 2,

the sequence Qπk(s, a) is monotonically increasing for ∀(s, a) ∈ S × A. Since Qπ is bounded

everywhere for ∀π (both the reward and fear model are bounded), the policy sequence πk con-

verges to some π† as k →∞. At convergence, it must follow that:

E
a′∼π†

[Qπ†(s, a)− λfπ† ] ≥ E
a′∼π

[Qπ†(s, a)− λfπ], ∀π,∀s ∈ S. (5)
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With the same iterative argument as in Lemma 2, the following inequality can be derived:

Qπ†(s, a) ≥ Qπ(s, a), ∀π,∀(s, a) ∈ S ×A.

That is, the value of any other policy is lower than that of the converged policy π†. Conse-

quently, π† is optimal, namely, π† = π∗.

Supplementary Note 3-Implementation of Fear-Neuro-Inspired Reinforcement Learning

Our code is available at https://github.com/TMIS-Turbo/FNI-RL.
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Algorithm 3 Fear-neuro-inspired reinforcement learning
1: Initialize wold model network parameters φk.
2: Initialize adversarial policy network parameters θ̄, policy network parameters θ, action-value net-

work parameters φ1 and φ2, target action-value network parameters φ̄1 ← φ1, and φ̄2 ← φ2.
3: Initialize an empty replay memoryM and an empty virtual replay memory M̂, a dual variable λ.
4: for episode ne = 1, 2, . . .Ne do
5: Reset state s0.
6: for time step in the environment t = 1, 2, . . . T do
7: Observe state st and sample action:

at ∼ π(·|st).
8: Sample a transition from the environment:

st+1, rt, ct, dt ∼ p(·|st, at).
9: Store the transition in the experience replay memoryM:

M←M∪ {(st, at, rt, ct, st+1, dt)}.
10: end for
11: for gradient step of the world model gw = 1, 2, . . .Gw do
12: Sample mini-batch of transitions from the experience replay memoryM.
13: Update the ensemble of diagonal Gaussian world models network parameters via Eq. (3):
14: for the kth world model k = 1, 2, . . .K do
15: φk ← ∇φkJw(φk).
16: end for
17: end for
18: for gradient step of the agent ga = 1, 2, . . .Ga do
19: Sample mini-batch of states s from the real experience replay memoriesM.
20: for rollout horizon in the world model h = 1, 2, . . .H do
21: Sample mixed actions using Eq. (1):

ã ∼ πmix(·|s).
22: Sample virtual transitions from the world model T̂ :

ŝ′, ĉ ∼ T̂ (·|s, ã).
23: Store the transitions in the virtual experience replay memory M̂:

M̂ ← M̂ ∪ {(s, ã, ŝ′, ĉ)}.
24: end for
25: Sample mini-batch of transitions from the real experience replay memoriesM.
26: Update the action-value network parameters using Eq. (11):

φ1 ← ∇φ1Jc(φ1), φ2 ← ∇φ2Jc(φ2).
27: Sample mini-batch of transitions from the real and virtual replay memoriesM∪M̂.
28: Update the policy and adversarial policy network parameters using Eq. (19) and Eq. (6):

θ ← ∇θJa(θ), θ̄ ← ∇θ̄Jā(θ̄).
29: Update the dual variables using Eq. (20):

λ← ∇λJd(λ).
30: Update the target action-value network parameters using polyak averaging:

φ̄1 ← ρφ̄1 + (1− ρ)φ1, φ̄2 ← ρφ̄2 + (1− ρ)φ2.
31: end for
32: end for
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Supplementary Note 4-Implementation of the Baseline Algorithms

The PPO, SAC, CPO, SAC-Lag, SMBPO, SMBPPO, GAIL and Roach baseline methods are

implemented based on the following codebases:

https://github.com/DLR-RM/stable-baselines3,

https://github.com/rail-berkeley/softlearning,

https://github.com/jachiam/cpo,

https://github.com/liuzuxin/FSRL,

https://github.com/gwthomas/Safe-MBPO,

https://github.com/akjayant/mbppol,

https://github.com/openai/imitation,

https://github.com/zhejz/carla-roach).

We are very grateful to the relevant researchers for their contributions.

For the NGSIM-based initial policy models of the two IL methods, we process the raw data

from the US 101 highway dataset to obtain the training dataset for highway scenario. The raw

trajectory data contains a lot of noises due to sensory and processing errors, and thus smoothing

the trajectories at first is necessary. The trajectory smoothing is done with two steps: first

smoothing the x and y values using the Savitzky-Golay Filter and then recomputing velocities

and accelerations with respect to the smoothed x and y values. Note that we have converted the

unit in the dataset from feet to meters.

Additionally, we select the vehicles running on the mainline lanes (lane 1 to lane 5) and

treat them as ego vehicles. For each ego vehicle, we select 20 timesteps evenly from its whole

trajectory in the section. We adopt information from the 6 nearest vehicles within a 200-meter

distance from the ego vehicle, encompassing the relative distance, orientation, speed, and ve-

locity direction of the front, back, left-front, left-back, right-front, and right-back vehicles.

Moreover, we incorporate the speed and velocity direction of the ego vehicle, resulting in a
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state representation of the agent with a total of 26 dimensions. The ego vehicle’s instantaneous

acceleration is used as the human driver’s action as we do not consider the lane change behav-

ior. All the features will be normalized to [0, 1] by dividing their respective maximum values.

To balance the training data, we down-sample the data points with an acceleration between -1.0

and 1.0 m/s2 and up-sample the data points with an acceleration lower than -3 m/s2, in order

to enable the policy to learn emergency brake. The amount of training data for the highway

driving scenario is eventually 65623.

The NGSIM-driver builds a mapping from the feature vector to action, aiming to reproduce

the human driver’s actions under given states. The policy should address uncertainties, includ-

ing the uncertainty of human behaviors and the uncertainty of model outputs. Therefore, we

use the deep ensemble method to learn the human policy, which consists of an ensemble of

M neural networks with the same structure but different random initializations. Each neural

network is a two-layer MLP with 256 hidden neurons and ReLU non-linearity. The output of

the neural network is the parameters of a Gaussian distribution, i.e., the mean µ̂ and variance

σ̂2. The Gaussian distribution is utilized here to capture the uncertainty of human actions. On

the other hand, to capture the model uncertainty (out-of-distribution uncertainty), we take all

networks of the ensemble and combine their results into a Gaussian mixture distribution with

mean µπ(s) the variance σ2
π(s), shown as:

µπ(s) =
1

M

M∑
i=1

µ̂i(s),

σ2
π(s) =

1

M

M∑
i=1

σ̂2
i (s) +

[
1

M

M∑
i=1

µ̂2
i (s)− µ2

π(s)

]
,

(S1)

where µ̂i and σ̂2
i are the mean and variance of the i-th network in the ensemble. In this paper,

we choose the number of networks M = 5. During the testing phase, we only take the mean

value of the Gaussian mixture distribution as the action instead of sampling from it.

Essentially, we use imitation learning to train the human-like driving policy, which is to
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minimize the discrepancy between human actions and policy output actions. To achieve uncer-

tainty estimation, instead of mean squared error or mean absolute error, we use the negative log-

likelihood to train the neural networks in the ensemble individually. The negative log-likelihood

loss (NLL) for Gaussian distribution is defined as:

LNLL(s, a) =
log σ̂2

θ(s)

2
+

(a− µ̂θ(s))2

2σ̂2
θ(s)

, (S2)

where s, a are the state feature vector and ground-truth human action, respectively; θ is the

parameter of the neural network.

In practice, for multiple samples from a mini-batch, we average over the log-likelihood of

all samples to get the mean negative log-likelihood loss (MNLL):

LMNLL =
1

N

N∑
i=1

LNLL(si, ai). (S3)

We use PyTorch to implement the neural networks and train them with the mean negative

log-likelihood loss using the Adam optimizer. We initialize the parameters of networks in the

ensemble with different random seeds, and the data is also randomly shuffled for training each

network.
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Supplementary Note 5-Neural Network and Simulation Details

The policy and adversary networks in this study are designed via two fully connected hidden

layers, and the sizes of the both hidden layers are 256. Additionally, all activation functions in

the hidden layers are rectified linear unit (ReLU) functions. Similar to the policy network, the

critic networks also consist of two hidden layers with a width of 256. The world model leverages

a branched architecture based on multi-layer perceptrons (MLPs) with ReLU activation and 200

hidden width. Moreover, we use 5 different initialized world models to construct the ensemble

world model.

Simulation-based training and testing processes are implemented with the SUMO platform

to test the performance of the proposed decision making method for autonomous vehicles.

SUMO is leveraged to create three stochastic mixed traffic flows with different densities in

the scenarios (a)-(e) and the three cut-in scenarios. The speed control and lane changing poli-

cies of the social vehicles are determined via the intelligent driving model (IDM) of SUMO. In

the scenarios (a)-(d), the maximum traffic speed is 15 m/s. Moreover, in the scenarios (e) and

the cut-in scenarios, the maximum traffic speed is set to 30 m/s. The longitudinal acceleration

of the vehicle is limited between -7.6 m/s2 and 7.6 m/s2.

All model training and testing are performed on a single computer with a 2.90-GHz 12 core

Intel i9-8950HK CPU.
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Supplementary Note 6-Human-in-the-Loop Experimental Details

The experiment is conducted on a human-in-the-loop platform, as shown in Fig. 4(b) of the ar-

ticle. By using CARLA simulation software, the platform can specify sensor suites in a flexible

way, model the environment with high fidelity, and freely control the autonomous driving mod-

ules. The hardware platform includes a workstation with an NVIDIA RTX 3080 GPU, three

heads-up displays, a Logitech G29 steering wheel, a pedal, and a driver seat. With this system,

human drivers can observe the in-vehicle view in real time, simulating real driving situations.

This experiment mainly aims to compare the performance of AI agents with that of hu-

man drivers. Additionally we attempt to examine whether the component used to simulate the

amygdala in the proposed framework is important for achieving good performance.

These scenarios are categorized into three levels of aggression: normal (scene-0), aggressive

(scene-1), and extremely aggressive (scene-2). The right cut-in vehicle always spawns from the

rear and has a greater cruising velocity than the ego vehicle (by 20km/h). As long as the cut-

in vehicle surpasses the ego vehicle by 2m (that is, its rear end exceeds the front end of the

ego vehicle), a cut-in intention will be generated. The aggressiveness of the cut-in vehicle

is manifested differently in its hesitation times and its longitudinal distances to the maneuver

endpoint. The hesitation time is defined as maintaining the original velocity and not initiating

any lane changes, and the maneuver endpoint is the longitudinal position at which the cut-in

vehicle completes its lane change. Specifically, in the normal cut-in scenario (i.e., scene-0),

the cut-in vehicle hesitates for 1s after the intention occurs, providing the ego vehicle with

ample time to identify the intention. The maneuver endpoint is 9 meters ahead of the vehicle’s

present longitudinal position, which allows for a relatively smooth trajectory. Then, in the

aggressive cut-in scenario (i.e., scene-1), the hesitation time after the cut-in intention occurs is

decreased to 0.8s, and the longitudinal distance to the maneuver endpoint is 8m. This cut-in

situation is highly challenging for the ego vehicle. In the extremely aggressive cut-in scenario
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(i.e., scene-2), the hesitation time is further reduced to 0.6s, and the longitudinal distance to

the maneuver endpoint is 5m, which leads to an extremely reckless cut-in trajectory and is

extremely hazardous to the ego vehicle.

The study protocol and consent form were approved by the Nanyang Technological Uni-

versity Institutional Review Board, protocol number IRB-2018-11-025. All research was per-

formed per relevant guidelines/regulations. Informed consent was obtained from all partici-

pants.
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Supplementary Figures

Figure S1: States adopted by the autonomous driving agent in the scenarios (a)-(b).

We adopt information from the 6 nearest vehicles within a 200-meter distance from the

ego vehicle, encompassing the relative distance, orientation, speed, and velocity direction of

the front, back, left-front, left-back, right-front, and right-back vehicles. Vehicle-1, vehicle-2,

vehicle-3, vehicle-4, vehicle-5 and vehicle-6 denote the right-front, front, left-front, left-back,

back and right-back vehicles, respectively. di, φi, vi and θi represent the relative distance from

the ego vehicle, orientation, speed and velocity direction of vehicle-i, respectively. Moreover,

we incorporate the speed (v0) and velocity direction (θ0) of the ego vehicle, resulting in a state

representation of the agent with a total of 26 dimensions.

Figure S2: Training curves of different autonomous driving agents in the scenario (a). (a)
Driving score; (b) Success rate; (c) Collision rate.
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Figure S3: Training curves of different autonomous driving agents in the scenario (b). (a)
Driving score; (b) Success rate; (c) Collision rate.

Figure S4: Training curves of different autonomous driving agents in the scenario (c). (a)
Driving score; (b) Success rate; (c) Collision rate.

Figure S5: Training curves of different autonomous driving agents in the scenario (d). (a)
Driving score; (b) Success rate; (c) Collision rate.
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Figure S6: The training performance of the different autonomous driving agents on the long-
term goal-driven navigation task based on the stochastic dynamic traffic flows.

Figure S7: Training curves of different autonomous driving agents in the ablation study. (a)
Driving score; (b) Success rate; (c) Collision rate.
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Supplementary Tables

Table S1: Experimental configuration of the human-in-the-loop platform.

Hardware configuration

Simulation software CARLA

Steering wheel suit Logitech G29

CPU of the host computer Intel i9-11900k

GPU of the host computer NVIDIA RTX 3080

Monitoring device Joint heads-up monitors × 3

Other equipment Driver seat suit

Software configuration

Control sample frequency 20Hz

Render frequency 40Hz

Spawned vehicle type CARLA electric sedan

Programming script Python
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Table S2: FNI-RL hyperparameters.

World model learning rate lw 0.001

Adversary learning rate lā 0.001

Dual learning rate ld 0.0001

Actor learning rate la 0.0003

Critic learning rate lc 0.0003

Scale coefficient ρ 0.995

Discount factor γ 0.99

Constraint threshold f0 0.5

Mixed policy’s weight α 0.80

Fear model’s weight β 0.90

Planning horizon m 5

Planning batch size 32

Actor-critic batch size 64

World model batch size 128
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