
P
os
te
d
on

18
O
ct

20
20

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
36
22
7/
te
ch
rx
iv
.2
43
11
95
9
.v
1
—

e-
P
ri
n
ts

p
os
te
d
on

T
ec
h
R
x
iv

ar
e
p
re
li
m
in
ar
y
re
p
or
ts

th
at

ar
e
n
ot

p
ee
r
re
v
ie
w
ed
.
T
h
ey

sh
ou

ld
n
ot

b
..
.

Online Graph Learning Via Proximal Newton Method From

Streaming Data

Zu-Yu Wu 1, Carrson Fung 2, Jun-Yi Chang 1, Hsin Chuang 1, and Yi-Chen Lin 1

1Affiliation not available
2National Yang Ming Chiao Tung University

October 31, 2023

Abstract

Learning graph topology online with dynamic dependencies is a challenging problem. Most existing techniques usually as-

sume the generative model to be a diffusion process instigated by a graph shift operator (GSO) and that a first-order method, such as prox-

imal gradient or least-mean-square (LMS), are used to track the graph topology. However, they are often susceptible to noisy ob-

servations and does not perform well against second-order methods. This work proposed two forward-backward splitting algo-

rithms called the proximal Newton-iterated extended Kalman filter (PN-IEKF) and PN-IEKF-vector autoregressive (PN-IEKF-

VAR) algorithms to track non-causal and causal graph topology with dynamic dependencies, respectively. The proposed meth-

ods directly maximize the posterior probability distribution of the observable graph signal and graph matrix, which make our PN-

IEKF framework to be more robust toward additive white Gaussian noise. The two methods can directly handle stream-

ing data which process them as they become available. Effectiveness of the proposed methods can be further improved by includ-

ing a T-squared detector in the tracking procedure, which helps to inject proper perturbation to the latent dynamic model such that the time-

varying nonstationary graph can be reacquired faster amid abrupt changes in the underlying system. Results on relative er-

ror and normalized mean square error using synthetic data on Erd\fH{o}s-R\’enyi graph establish the efficacy of the pro-

posed approach. Simulation results using data from the Dataset for Emotion Analysis Using EEG, Physiological and Video Sig-

nals (DEAP) and National Oceanic and Atmospheric Administration (NOAA) are encouraging. Computational and time com-

plexity analysis of the proposed algorithm are given and compared with other algorithms.

1

1

Online Graph Learning Via Proximal Newton
Method From Streaming Data

Zu-Yu Wu, Carrson C. Fung, Member, IEEE, Jun-Yi Chang, Hsin Chuang and Yi-Chen Lin∗

Institute of Electronics, National Yang Ming Chiao Tung University, Hsinchu, Taiwan 300
∗National Taiwan University

email: j6yj3m4@gmail.com, c.fung@ieee.org, developing90@gmail.com, hsin.chuang.ee10@nycu.edu.tw,
ryrylin@gmail.com

Abstract—Learning graph topology online with dynamic de-
pendencies is a challenging problem. Most existing techniques
usually assume the generative model to be a diffusion process
instigated by a graph shift operator (GSO) and that a first-
order method, such as proximal gradient or least-mean-square
(LMS), are used to track the graph topology. However, they
are often susceptible to noisy observations and does not per-
form well against second-order methods. This work proposed
two forward-backward splitting algorithms called the proximal
Newton-iterated extended Kalman filter (PN-IEKF) and PN-
IEKF-vector autoregressive (PN-IEKF-VAR) algorithms to track
non-causal and causal graph topology with dynamic depen-
dencies, respectively. The proposed methods directly maximize
the posterior probability distribution of the observable graph
signal and graph matrix, which make our PN-IEKF framework
to be more robust toward additive white Gaussian noise. The
two methods can directly handle streaming data which process
them as they become available. Effectiveness of the proposed
methods can be further improved by including a T -squared
detector in the tracking procedure, which helps to inject proper
perturbation to the latent dynamic model such that the time-
varying nonstationary graph can be reacquired faster amid
abrupt changes in the underlying system. Results on relative
error and normalized mean square error using synthetic data
on Erd´́os-Rényi graph establish the efficacy of the proposed
approach. Simulation results using data from the Dataset for
Emotion Analysis Using EEG, Physiological and Video Signals
(DEAP) and National Oceanic and Atmospheric Administration
(NOAA) are encouraging. Computational and time complexity
analysis of the proposed algorithm are given and compared with
other algorithms.

Index Terms—Online graph learning, graph signal processing,
forward-backward (FB) splitting algorithm, proximal Newton
method, iterated extended Kalman filter

I. INTRODUCTION

Graph is a powerful form of representation that can model
pairwise relationship between non-Euclidean data residing on
irregular structures. Graph signal processing (GSP) extends
traditional signal processing operations such as delay, convolu-
tion and Fourier transform to graph domain, such that analysis
and processing of data on graph can be performed as easily as
in the time or spatial domain. Unlike these traditional domains,

All authors are affiliated with the Institute of Electronics at the National
Yang Ming Chiao Tung University. Yi-Chen Lin is now with the National
Taiwan University.
This work has been partially supported by the Ministry of Science and
Technology Grant 110-2221-E-A49-051 and the Google exploreCSR grant
111Q90004C.

where the data are the only entities that carry information,
graph is a natural data structure to capture interactions amid
signals. In real world applications, the latent graph topology is
not provided in advance, which motivates the development of
graph learning techniques that acquire the graph topology from
observed signals. Approaches stem from statistics, physics and
GSP perspective have been investigated to learn the underlying
graph [1], [2]. To illustrate, local area wireless networks can
be modeled as undirected graphs, where the edge weights are
inversely proportional to the physical distance between the
transmitter and receivers, and the the graph signals could be
signal strength collected at different measurement points in
the area [3]. The interpretability of estimated graph depends
on model selection and applications. For instance, different
choices of parcellation of brain regions or different modalities
of brain signals will result in different brain graphs [4], [5].
In most cases, learning the hidden structure is an ill-posed
problem and requires prior knowledge before the problem can
be solved.

GSP based graph learning methods has garnered growing
attention in the signal processing community. By introducing
the graph shift operator (GSO) that defines traditional shifting
operation in the graph domain, graph signals priors can be
easily included in the formulation of graph learning problem
[6], [7]. Many graph learning problems assume the GSO
is involved in the signal model. [8] introduced the causal
graph process which is based on the matrix polynomial of
a GSO. Other approaches, such as [9], attempts to recover the
GSO that contains information about the relationship between
graph signals from observations generated by the diffusion
process instigated by the GSO. Other studies have focused
on solving the graph learning problem by considering the
graph Laplacian matrix, which is one of the GSOs widely
used to define the graph spectral domain, from which the
notion of signal smoothness on the graph is established [10]–
[12]. [10] directly dealt with the graph adjacency matrix and
applied a logarithmic barrier to node degree to prevent isolated
nodes. [11], [12] revealed the equivalence between imposing
the signal smoothness assumption in graph learning problem
and treating the Laplacian matrix as a class of precision
matrices in a Gaussian-Markov random field (GMRF) [13],
which allows the problem to be addressed in a statistical
viewpoint. The precision matrix of a GMRF has drawn con-

2

siderable attention from researchers in recent decades [14]–
[16] as its nonzero off-diagonal entries encode the pairwise
conditional dependency between two nodes in the GMRF.
[14], [15] formulated the graphical LASSO problem to obtain
a sparse representation of the GMRF. In [16], specialized
learning algorithms for three types of Laplacian matrices,
generalized graph Laplacians (GGLs), diagonally dominant
generalized graph Laplacians (DDGLs), and combinatorial
graph Laplacians (CGLs), which characterize different classes
of GMRF models, were developed.

Using batch learning approaches require data at all time to
be prepared before performing the learning process [17], [18],
which leads to issues such as potential latency, large amount of
computations and storage that can be impractical when nodal
dependencies are dynamic. To circumvent these problems, it
is desirable to develop online graph learning methods whose
performance is comparable to the batch learning approaches
but is more adaptive to a dynamically evolving graph network.
The least-mean-square (LMS) algorithm was used in [19] to
deal with the time-varying graph learning problem, which
utilized the heat diffusion model in [20] to model the evolution
of graph signals. The authors in [21] assumed the input signal
to the generative model to be white and that the output signal is
the result of a diffusion process in the GSO so that it is station-
ary. Then a two-step process is used to first perform a rank-one
update on the covariance matrix of the output after collecting a
number of streaming observations followed by an update of its
eigenvalues using the Newton method [22] and eigenvectors,
which are equal to those of the GSO. Finally the GSO is
updated using the Alternating Direction Method of Multipliers
(ADMM) method, which allows the algorithm to incorporate
a number of a priori knowledge about the GSO. Even though
[23] extended the work in [21] for non-stationary observations,
both works are only applicable to symmetric GSO. In addition,
the requirement of computing the eigendecomposition of the
covariance matrix implies the technique requires samples to be
buffered, thus it cannot handle pure streaming data. Instead
of tracking the eigenvectors shared by the GSO and the
observation covariance matrix, [24] exploited the commutative
property of the GSO and the observation covariance matrix
and track the GSO by the online proximal gradient (PG)
method. Reproducing kernel dictionary was used to model the
nonlinear relationship between vertices in [25], in which the
stochastic group zero-attracting LMS (GZA-LMS) [26] was
applied for online updating of the dictionary. [27] utilized the
smoothness assumption of graph signals in [10] and tackled
the graph learning problem in time-varying scenario by using
the online proximal gradient method, and further performed
signal classification according to the smoothness property on
different graphs by first learning multiple graphs using the
same online PG method [28]. Similarly, extending the work
in [29], the online proximal gradient method was used to
optimize a memory-aware loss function inspired by the vector
autoregressive (VAR) process in [30]. In [31], [32], the PG
method was embedded in a prediction-correction method to
learn the graph topology lying inside a Gaussian graph model
and the structural equation model separately. Recently, [33]

proposed a general framework for online graph learning that
subsume other online graph learning models, such as Gaussian
graphical model, structural equation model and smoothness-
based model, by proposing a algorithmic framework that
makes their method to be model independent. Unfortunately,
the authors did not benchmark their work with others, such
as [14] or [19], and did not contain discussion about tracking
causality graph. In addition to gradient based methods, Kalman
filter has also been used to simultaneously track the graph
signals and learn the graph when the graph signals follow an
autoregressive process. Using Kalman filter, [34] and [35] dealt
with the signal tracking and graph learning problems in two
separate procedures. Specifically, [35] solved the problem in
[8] online. Unfortunately, there were unresolved errors in the
results and missing parameter values prevented resimulation
of the algorithm.

Most of the above mentioned online learning methods are
based on the first-order method, which has advantage in terms
of low computational complexity compared to second-order
methods, such as one proposed herein. However, as will be
shown in the simulation results below, the proposed method
improves upon accuracy of the estimated graph. A novel
proximal Newton-iterated extended Kalman filter (PN-IEKF)
is proposed for online learning of undirected graphs that is
based on the IEKF proposed in [36], [37]. The PN-IEKF can
achieve better estimation accuracy with the same number of
streaming time sample compared to the first-order methods.
The underlying diffusion model is also replaced by the VAR
model to create the PN-IEKF-VAR method that track Granger
causlity in directed graphs. The organization of the paper is
described as follows.

• The detail of the system model inspired by the heat diffu-
sion and the VAR process, together with the assumptions
made in the signal models, are given in Sec. II.

• The proposed PN-IEKF and PN-IEKF-VAR methods are
described in Sec. III.

• The simulation setup and simulation results are shown in
Sec. IV.

• Sec. V gives a summary of this work.
• Appendix A provides the detail derivation of the IEKF

procedures contained in the proposed PN-IEKF and the
PN-IEKF-VAR methods.

The main contributions of this work are

1) A novel second-order online graph learning method using
proximal Newton method is proposed that outperforms
its first-order counterparts for undirected and directed
graphs.

2) To the best of our knowledge, this is the first work that
introduces the scaled proximal operator into the iterated
extended Kalman filter framework.

3) Faster convergence speed is obtained using the second-
order method compared to prior works using first-order
methods.

4) Accuracy of proposed second-order method is less sen-
sitive to additive noise compared to prior works using
first-order approaches.

5) Relative error and normalized mean square error results

3

are shown to show the efficacy of the proposed approach.
6) Computational complexity analysis and time complexity

are also included for the proposed methods.
7) A brief discussion about the convergence of the proposed

algorithms is given.
Notations: Uppercase (lowercase) bold face letters indicate

matrices (column vectors). Superscript T denotes transposi-
tion. A2 is defined as AA. [A]i,j denotes the (i, j)th element
of A. diag(A) creates a column vector using the diagonal
elements of A. Diag(a) creates an N × N diagonal matrix
using the elements of a ∈ RN . |a| denotes the magnitude of a.
E[·] stands for statistical expectation of the entity inside the
square bracket. SM denotes the set of real-value symmetric
matrices. N (µ,C) denotes Gaussian distribution with mean
µ and covariance matrix C. A ⪰ 0N×N designates A as an
N×N symmetric positive semidefinite matrix. IN denotes an
N×N identity matrix. 0N , 1N and IN denote a column vector
with N zeros, N ones and N×N identity matrix, respectively.
tr(·) denotes the trace of the matrix. Tri(A) extracts the upper
triangular portion of A. vec(A) denotes matrix vectorization
where the columns of A are stacked together into a vector. A†

denotes the pseudoinverse of A. ∥A∥1 and ∥·∥2A, respectively,
represent the ℓ1 norm of A and the quadratic norm with

respect to A ≻ 0. Df(x) =

∂f1
∂x1

· · · ∂f1
∂xn

...
. . .

...
∂fm
∂x1

· · · ∂fm
∂xn

 is the

Jacobian of f : Rn → Rm with x ∈ Rn. ∇f(x) ∈ Rn is
the gradient vector of f with respect to x. eA is the matrix
exponential of A. Pr(·) is the probability of an event. All the
definition of symbols associated with the proposed PN-IEKF
algorithm used in Secs. II-A and III-A are given in Table I,
while the definition of symbols associated with the proposed
PN-IEKF-VAR algorithm used in Secs. II-B and III-B are
given in Table II.

Symbol Definition

G Weighted undirected connected
graph without self-loops.

V Vertex set of G.
E Edge set of G.
M Number of nodes.
W Adjacency matrix of G.
D Degree matrix of G.
L Combinatorial graph Laplacian

matrix of G.
s(t) Graph signals from the diffusion

process in continuous time.
u(t) Process noise of the diffusion pro-

cess in continuous time.
T Sampling period.
n Discrete time index.

s[n] Graph signals from the diffusion
process in discrete time.

u[n] Process noise of the diffusion pro-
cess in discrete time.

A Transition matrix of the AR(1)
process.

VL Orthonormal eigenvector matrix of
L.

ΛL Diagonal eigenvalue matrix of L.
sVL The matrix containing eigenvec-

tors in VL associated with positive
eigenvalues.

sΛL The diagonal matrix containing
positive eigenvalues of L.

sΛA The diagonal matrix containing
eigenvalues of A that are greater
than 1, which are also associated
with the eigenvectors of A in sVL.

sA[n] Transition matrix of the AR(1)
process after the centering proce-
dure.

ss[n] Graph signals after removing the
center value of s[n].

su[n] Process noise of the AR(1) process
after removing the center value of
u[n].

σ2
u Variance of each element in u[n].

C
su Covariance matrix of su[n].

x[n] Noisy observation of graph sig-
nals.

w[n] Additive noise in x[n].
Cw Covariance matrix of w[n].

sW [n] State vector of the nonlinear
AR(1) process.

ω[n] Vector that contains the elements
in the upper triangular part of the
adjacency matrix W[n].

P = 1
2M

2 + M
2 Number of elements in the upper

triangular part of W[n], which is
the size of ω[n].

uω[n] Process noise of ω[n].
f(·) Nonlinear function of the dynamic

model of the augmented AR(1)
process.

uW [n] Process noise of sW [n].
CuW

Covariance matrix of uW [n].
H Observation matrix in the observa-

tion model.
ŝW [n] Estimate of sW [n].
xn
0 Set containing all the observation

from 0 to n.
ŝW [n|m] Estimate of sW [n] given xm

0 .
M[n|n− 1] E [(f(ŝW [n− 1|n])− sW [n])

(f(ŝW [n− 1|n])− sW [n])
T
]

M[n− 1|n− 1] E [(ŝW [n− 1|n− 1]− sW [n− 1])

(ŝW [n− 1|n− 1]− sW [n− 1])
T
]
.

ℓ1(sW [n]) Differentiable part of the loss
function for estimating sW [n]
given xn

0 .
β Weighting coefficient of the ℓ1

norm sparsity penalty function.
i Iteration index of the PN-IEKF

iterations.

4

Φ Hessian of ℓ1(sW [n]).

TABLE I: Table of notations for the PN-IEKF algorithm.

Symbol Definition

K Order of the VAR model.
M Number of nodes.
s[n] Graph signal.

W1[n], . . . ,WK [n] Transition matrices of the VAR model.
u[n] Process noise of s[n].
σ2
u Variance of each element in u[n].

M Number of nodes.
w[n] Additive noise to the graph signals.
x[n] Noisy observation of graph signals.
ss[n] Concatenated graph signals with

s[n], . . . , s[n − K + 1] stacked into
one column.

Θ Transition matrix for the concatenated
graph signals ss[n]

uθ[n] Augmented process noise for the con-
catenated graph signals ss[n].

J = M2 Number of elements in each Wk, k =
1, . . . ,K.

sω[n] Vector concatenating
vec(W1[n]), . . . , vec(WK [n]).

sW [n] State vector of the nonlinear AR(1)
process.

uω[n] Process noise of sω[n].
f(·) Nonlinear function of the dynamic

model of the augmented AR(1) pro-
cess.

uW [n] Process noise of sW [n].
σ2
ω Variance of each element in uω[n].

CuW Covariance matrix of uW [n].
x[n] Noisy observation of graph signals.
w[n] Additive noise to the graph signals.
Cw Covariance matrix of w[n].
H Observation matrix in the observation

model.
β Weighting coefficient of the group

sparsity penalty function.
wp,r[n] Vector collecting all the (p, r) ele-

ments from W1[n], . . . ,WK [n].
xn
0 Set containing all the observation from

0 to n.
ℓ1(sW [n]) Differentiable part of the loss function

for estimating sW [n] given xn
0 .

Φ The Hessian of ℓ1(sW [n]).
i Iteration index of the PN-IEKF-VAR

iterations.
ŝW [n|m] Estimate of sW [n] given xm

0 .
M[n|n− 1] E [(f(ŝW [n− 1|n])− sW [n])

(f(ŝW [n− 1|n])− sW [n])T
]

M[n− 1|n− 1] E [(ŝW [n− 1|n− 1]− sW [n− 1])

(ŝW [n− 1|n− 1]− sW [n− 1])T
]
.

TABLE II: Table of notations for the PN-IEKF-VAR algo-
rithm.

II. SYSTEM MODELS

Two different AR processes are discussed in this section.
In Sec. II-A, a weighted undirected connected graph without
self-loops G = (V, E) is considered. The mathematical rep-
resentation of G with |V|= M is a square adjacency matrix
W ∈ SM with nonnegative elements and [W]ij > 0 when

(i, j) ∈ E , which implies [W]ii = 0, i = 1, ...,M . A diagonal
matrix D ∈ RM×M , whose elements are defined as [D]ii ≜∑

i̸=j [W]ij , is the degree matrix, and L ≜ D−W ⪰ 0M×M

is the graph Laplacian.
In Sec. II-B, the K-step VAR model is used to model the

multivariate Granger causality between different nodes and
time.

The following assumptions are also made in the signal
model of both Sec. II-A and Sec. II-B:
Assumption 1. u[n] ∼ N (0M , σ2

uIM), su[n], w[n] ∼
N (0M ,Cw), uω[n], and uW [n] are white Gaussian processes.
In Sec. II-A, su[n] ∼ N (0M ,C

su), uω[n] ∼ N (0P , σ
2
ωIP),

and uW [n] ∼ N (0M+P ,CuW
). In Sec. II-B, uω[n] ∼

N (0KJ , σ
2
ωIKJ) and uW [n] ∼ N (0K(M+J),CuW

)
Assumption 2. sW [−1], uW [n], and w[n] are statistically
independent for all n.
Assumption 3. Pr(sW [n]| ŝW [n − 1|n]) ≈ N (f(ŝW [n −
1|n]),M[n|n−1]), Pr(sW [n− 1]|xn−1

0) ≈ N (ŝW [n−1|n−
1],M[n− 1|n− 1]).

A. AR Process from Diffusion Model

The heat diffusion process describes the phenomenon in
which the influence of hot spots spread over a region. In
geometric model like graphs, the graph diffusion operator can
be used to model the diffusion process evolving at different
nodes. In [20], the heat kernel pagerank is shown as the
pagerank of a graph and also satisfies the heat equation,

s′(t) = −Ls(t) + u(t),

where s(t) ∈ RM is the observed signals on the graph, u(t) ∈
RM is the perturbation noise in continuous time. The solution
is

s(t) = e−tLs(0) +

∫ t

0

e−(t−λ)Lu(λ)dλ,

where e−tL is the diffusion operator, also known as the heat
kernel. Following [19], let t0 be some time instant during the
process, and let T be the sampling period. Define tn ≜ t0 +
nT . The recursive equation for adjacent time samples can be
written as

s(tn) = e−TLs(tn−1) +

∫ tn

tn−T

e−(tn−λ)Lu(λ)dλ.

Also define s[n] ≜ s(t0 + nT) and u[n] ≜∫ tn
tn−T

e−(tn−λ)Lu(λ)dλ so that the recursive equation
in discrete time becomes

s[n] = e−TLs[n− 1] + u[n]

= e−T (D−W)s[n− 1] + u[n]

= As[n− 1] + u[n], (1)

where A ≜ e−TL = e−T (D−W) ∈ SM++ and u[n] is the
driving noise.

The system in (1) is critically stable since the maximum
magnitude of the eigenvalue of A equals 1. According to [19],
to ensure a strictly stable system in which all the eigenvalues of
the transition matrix in the dynamic model have magnitude less
than 1, assume G is a connected graph so that the dimension

5

of the nullspace of L equals 1. This implies (1) is critically
stable with A having only one eigenvalue equals to 1 because
according to its definition

A =e−TL = VLe
−TΛLVT

L

=
[

1√
M
1M

sVL

] [1 0T
M−1

0M−1 e−T sΛL

] [1√
M
1T
M

sVT
L

]
=
[

1√
M
1M

sVL

] [1 0T
M−1

0M−1
sΛA

] [1√
M
1T
M

sVT
L

]
=

1

M
1M1T

M + sVL
sΛA

sVT
L ,

where VLΛLV
T
L is the eigendecomposition of L, sVL contains

orthonormal eigenvectors associated with positive eigenvalues
of L in sΛL, and 0(M−1)×(M−1) ≺ sΛA ≺ IM−1 contains
M−1 eigenvalues of A. Let sA ≜ A− 1

M 1M1T
M ≺ IM , ss[n] ≜(

IM − 1
M 1M1T

M

)
s[n], and su[n] ≜

(
IM − 1

M 1M1T
M

)
u[n]

[19]. After removing the center value of s[n] and applying the
doubly stochastic property of A, the diffusion model becomes

ss[n] = (IM −
1

M
1M1T

M)s[n] (2)

= (IM −
1

M
1M1T

M)(As[n− 1] + u[n])

= A(IM −
1

M
1M1T

M)2s[n− 1] + su[n]

= (A− 1

M
1M1T

M)ss[n− 1] + su[n]

= sAss[n− 1] + su[n],

where su[n] is the process noise. The third equality above is
true because IM− 1

M 1M1T
M is idempotent. In the time-varying

scenario, where the graph changes over time, the AR process
becomes

ss[n] = sA[n]ss[n− 1] + su[n], (3)

and the observed signal is modeled as

x[n] = ss[n] +w[n], (4)

where w[n] denotes the measurement noise that is independent
of ss[n].

B. VAR Model

Redefine the graph signals to be generated from a K-step
AR process

s[n] =

K∑
k=1

Wk[n]s[n− k] + u[n], (5)

where W1[n], ..., WK [n] ∈ RM×M are the transition
matrices, u[n] ∼ N (0M , σ2

uIM) is the white Gaussian process
noise that is independent of s[n− k]. The observation is

x[n] = s[n] +w[n]. (6)

In order to adapt the K-taps VAR process into the form of the
standard extended Kalman filter, which only has state variables
at successive time samples n and n− 1, further define ss[n−
1] ≜

[
s[n− 1]T , s[n− 2]T , . . . , s[n−K]T

]T ∈ RKM , Θ ≜

[
W1[n] · · · WK [n]
I(K−1)M 0(K−1)M×M

]
∈ RKM×KM so that the

AR process is rewritten as

ss[n] = Θss[n− 1] + uθ[n] ∈ RKM , (7)

where uθ[n] ≜
[
uT [n] 0T

(K−1)M

]T
∈ RKM is the

augmented process noise.

III. METHODOLOGY

A. Proposed PN-IEKF Approach

The proposed PN-IEKF approach is designed for the signal
model in Sec. II-A and it tracks the augmented state vector

sW [n] =

[
ss[n]
ω[n]

]
∈ RM+P (8)

that contains both the graph signal ss[n] and the upper triangu-
lar portion of the adjacency matrix ω[n] ≜ vec(Tri(W[n])) ∈
RP . Using (3), the augmented state-space model can be written
as

sW [n] =

[
sA[n]ss[n− 1]
ω[n− 1]

]
+

[
su[n]
uω[n]

]
= f(sW [n− 1]) + uW [n],

(9)

where uω[n] and uW [n] denote the (input) process noise for
ω[n], which accounts for changes in the graph across time, and
the overall process noise for sW [n], respectively. The observed
signal can be written as

x[n] = HsW [n] +w[n] = ss[n] +w[n], (10)

where H =
[
IM 0M×P

]
.

In this work, the goal is to find the optimal ŝW [n] by solving

(ŝW [n]⋆, ŝW [n− 1]⋆)

= argmax
sW [n],sW [n−1]

Pr (sW [n], sW [n− 1]|xn
0) ,

(11)

where xn
0 ≜ {x[0],x[1], . . . ,x[n]} is a sequence of observed

signal from time 0 to n, and ŝW [n]⋆ =
[

ŝs[n]⋆
T

ω̂[n]⋆
T

]T
is the estimate of sW [n]. Similar definitions are applied to
ŝs[n]⋆ and ω̂[n]⋆. Since

Pr (sW [n], sW [n− 1]|xn
0)

=Pr(sW [n], sW [n− 1]|xn−1
0 ,x[n])

=
Pr(sW [n], sW [n− 1],x[n],xn−1

0)

Pr(x[n]|xn−1
0)Pr(xn−1

0)

=
Pr(sW [n],x[n]|sW [n− 1],xn−1

0)Pr(sW [n− 1],xn−1
0)

Pr(x[n]|xn−1
0)Pr(xn−1

0)

=
Pr(x[n]|sW [n], sW [n− 1],xn−1

0)Pr(sW [n]|sW [n− 1],xn−1
0)

Pr(x[n]|xn−1
0)

×

Pr(sW [n− 1],xn−1
0)

Pr(xn−1
0)

=
Pr(x[n]|sW [n])Pr(sW [n]|sW [n− 1])Pr(sW [n− 1]|xn−1

0)

Pr(x[n]|xn−1
0)

∝Pr (x[n]| sW [n])Pr (sW [n]| sW [n− 1])Pr
(
sW [n− 1]|xn−1

0

)
,

6

where the last equality is induced by Assumption 2, (11) is
equivalent to

(ŝW [n]⋆, ŝW [n− 1]⋆)

= argmax
sW [n],sW [n−1]

Pr (x[n]| sW [n])Pr (sW [n]| sW [n− 1])×

Pr
(
sW [n− 1]|xn−1

0

)
,

(12)

which is nonconvex with respect to the two variables. There-
fore, instead of solving problem (12) directly, it is proposed to
optimize the variables alternately. Specifically, the PN-IEKF
method iteratively solves

ŝW [n|n]
= argmax

sW [n]

Pr (x[n]| sW [n])Pr (sW [n]| ŝW [n− 1|n]) (13)

ŝW [n− 1|n]
= argmax

sW [n−1]

Pr (ŝW [n|n]| sW [n− 1])Pr
(
sW [n− 1]|xn−1

0

)
(14)

alternately. ŝW [n|m] is introduced to denote the estimate of
sW [n] based on xm

0 . The assumed pdfs in Assumption 1
and Assumption 3 allow for the derivation of the IEKF. The
logic for assuming the conditional probability distribution in
Assumption 3 to be normal distributed originates from the
dynamic state model in (9). It is possible to perform statistical
sampling to obtain estimate of the distributions in case the
Gaussian assumption is false, which will lead to the particle
filtering algorithm. This, however, is outside the scope of this
work. (13) and (14) can be written as (15) and (16).

The objective in (15) needs to be adjusted so that the
resulting graph maintains a sparse structure with nonnegative
edge weights. As a result, an ℓ1 regularization and an indicator
function are included in (15) to reformulate the objective for
estimating sW [n] so that (15) becomes

min
sW [n]

ℓ1 (sW [n]) + g(sW [n]), (17)

where g(sW [n]) = β∥ω[n]∥1+iRP
+
(ω[n]) is the non-

differentiable part in (17), and iRP
+
(a) =

{
0, a ⪰ 0P

∞, otherwise .

In general, g(sW [n]) contains prior knowledge of the graph.
For applications requiring the graph signals being smooth on
the graph [10], g(sW [n]) can be modified to account for the
global smoothness assumption. As described in the following,
the PN-IEKF method finds the minimizer of (16) and (17)
through the Gauss-Newton method and the proximal Newton
method [38], separately. The latter is a splitting algorithm
consisting of iterating between a forward and backward step.
Since (17) can be viewed as a sum of a differentiable function
and a nonsmooth function, it can be solved using the PN
method. In the proposed PN-IEKF method, the differentiable
term is solved using the IEKF algorithm, which can be
interpreted as a Gauss-Newton algorithm ([39, pp. 349-
351], [40]–[42]) and is viewed as the forward step, resulting
in ŝ

(i+1)′
W [n|n] = ŝ

(i)
W [n|n] − Φ−1∇ℓ1(ŝ(i)W [n|n]), where Φ

is the approximated Hessian matrix of ℓ1(sW [n]) evaluated
at ŝ

(i)
W [n|n], i is the iteration index, and the prime symbol

denotes the intermediate estimate before obtaining ŝ
(i+1)
W [n|n].

ℓ1(sW [n]) is minimized by ŝ
(i+1)′
W [n|n] since it is quadratic in

sW [n]. The backward step deals with the nonsmooth term can
be expressed using the scaled proximal operator as

ŝ
(i+1)
W [n|n]

=proxΦ
g

(
ŝ
(i)
W [n|n]−Φ−1∇f

(
ŝ
(i)
W [n|n]

))
=argmin

sW

1

2

(
sW − ŝ

(i+1) ′
W [n|n]

)T

Φ
(
sW − ŝ

(i+1) ′
W [n|n]

)
+ g (sW)

= argmin
sW

1

2

∥∥∥sW − ŝ
(i+1) ′
W [n|n]

∥∥∥2
Φ
+ g (sW) ,

where Φ ≻ 0(M+P)×(M+P) will be determined in the sequel.
Different from the proximal gradient method [43] that uses
the first-order approximation approach, the proximal Newton
method replaces the ℓ2 norm ∥·∥22 with the quadratic norm
∥·∥2Φ to form the second-order approximation of the differen-
tiable function in the objective, as shown in Fig. 1.

Backward step: Proximal step

• = argmin + ()

Backward step: Scaled proximal step

• = argmin () + ()

Forward step

• Gradient descent

Forward step

• Newton method

Fig. 1: Comparison between proximal method and proximal
Newton method.

Even though (16) is solved inside the PN-IEKF algorithm,
the problem is not convex. Furthermore, the Hessian matri-
ces of ℓ1(sW [n]) and ℓ2(sW [n − 1]) are approximated as
JT
r1Jr1 ⪰ 0(M+P)×(M+P) and JT

r2Jr2 ⪰ 0(M+P)×(M+P)

in the Gauss-Newton method, where Jr1 and Jr2 are the
Jacobians of r1 and r2. As a result, the iterations are not
guaranteed to converge because there is no guarantee the
minimizer found for (16) will monotonically decrease the
objective in (12). Hence, iteration index in the PN-IEKF
algorithm i is limited to not exceed a preset number in
the simulation. Algorithm 1 shows the pseudocode for the
proposed PN-IEKF algorithm, where the derivation is shown
in Appendix A. When evaluating ŝ

(i)
W [n|n − 1], which is the

prediction of sW [n] using the estimate of sW [n − 1], the
nonlinear function f is linearized at ŝ(i)W [n−1|n] and evaluated
at ŝ

(i)
W [n − 1|n]. The scaled proximal step is solved in line

10 using the iterative shrinking thresholding algorithm (ISTA)
[44]. To reduce the computation complexity of computing the
Jacobian of the nonlinear function f(sW [n−1]) on line 3, the
matrix exponential function of L in f(sW [n− 1]) is replaced
by its first-order Taylor series expansion, IM − TL. MaxIter
(line 13 in Algorithm 1) denotes the maximum number of
IEKF iterations being performed.

The process noise of ω[n] in sW [n] is used to model
nonstationarity in the graph so that the PN-IEKF approach can
adapt more quickly to the scenario in which the graph is chang-

7

ŝW [n|n] = argmin
sW [n]

1

2

(
∥x[n]−HsW [n]∥2C−1

w
+ ∥sW [n]− f (ŝW [n− 1|n])∥2M−1[n|n−1]

)
=argmin

sW [n]

1

2

∥∥∥∥ C
−1/2
w (x[n]−HsW [n])

M−1/2[n|n− 1] [f (ŝW [n− 1|n])− sW [n]]

∥∥∥∥2
2

=argmin
sW [n]

1

2
∥r1 (sW [n])∥22 = argmin

sW [n]

ℓ1 (sW [n])

(15)

ŝW [n− 1|n] = argmin
sW [n−1]

1

2

(
∥ŝW [n|n]− f (sW [n− 1])∥2C−1

uW
+ ∥sW [n− 1]− ŝW [n− 1|n− 1]∥2M−1[n−1|n−1]

)
=argmin

sW [n−1]

1

2

∥∥∥∥ C
−1/2
uW (ŝW [n|n]− f (sW [n− 1]))

M−1/2[n− 1|n− 1] (ŝW [n− 1|n− 1]− sW [n− 1])

∥∥∥∥2
2

=argmin
sW [n−1]

1

2
∥r2 (sW [n− 1])∥22 = argmin

sW [n−1]

ℓ2 (sW [n− 1]) .

(16)

ing (abruptly). However, when the graph remains unchanged,
uω[n] is set to zero, and consequently its covariance matrix
as well, in the PN-IEKF algorithm. To determine whether the
graph is changing or not, a change detector is embedded in
the PN-IEKF to identify the transition in the graph and it is
described in greater detail in Sec. III-C.

Algorithm 1: Proposed PN-IEKF based online graph
learning algorithm.
Result: ŝW [n|n], M[n|n]
Initialization: ŝ(0)W [n|n] = ŝW [n|n−1]; ŝ(0)W [n−1|n] =

ŝW [n− 1|n− 1]; i = 0;
1 do
2 previous s = ŝ

(i)
W [n|n];

3 F(i) = ∂f(sW [n−1])
∂sW [n−1]

∣∣∣
sW [n−1]=ŝ

(i)
W [n−1|n]

;

4 M(i)[n|n− 1] = F(i)M[n− 1|n− 1]F(i)T +CuW
;

5 Φ(i) = HTC−1
w H+M(i)[n|n− 1]−1;

6 K(i)[n] =

M(i)[n|n− 1]HT
(
HM(i)[n|n− 1]HT +Cw

)−1
;

7 S(i) = M[n− 1|n− 1]F(i)TM(i)[n|n− 1]−1;
8 ŝ

(i)
W [n|n− 1] = f(ŝ

(i)
W [n− 1|n]) ;

9 ŝ
(i+1) ′
W [n|n] =
ŝ
(i)
W [n|n− 1] +K(i)[n]

(
x[n]− ŝ(i)[n|n− 1]

)
;

10 ŝ
(i+1)
W [n|n] = proxΦ(i)

β∥·∥1+i
RM

+
(·)(ŝ

(i+1) ′
W [n|n]);

11 ŝ
(i+1)
W [n− 1|n] =
ŝW [n−1|n−1]+S(i)

[
ŝ
(i+1)
W [n|n]− ŝ

(i)
W [n|n− 1]

−F(i)
(
ŝW [n− 1|n− 1]− ŝ

(i)
W [n− 1|n]

)]
;

12 i = i+ 1;
13 while (i < MaxIter) or ∥ŝ(i)W [n|n]− previous s∥> ϵ;
14 ŝW [n|n] = ŝ

(i)
W [n|n];

15 M[n|n] =
(
I−K(i−1)[n]HT

)
M(i−1)[n|n− 1];

B. Proposed PN-IEKF-VAR Approach

The PN-IEKF-VAR is designed to identify Granger causal-
ity between different nodes in directed graphs by using the
model in Sec. II-B. Similar to the procedures described in
Sec. III-A, the augmented state vector is

sW [n] =

[
ss[n]
sω[n]

]
∈ RK(M+J), (18)

where sω[n] ≜ (vec({W1[n]})T , . . . vec({WK [n]})T)T ∈
RKJ . The augmented state-space model immediately follows
as

sW [n] =

[
Θ[n]ss[n− 1]

sω[n− 1]

]
+

[
uθ[n]
uω[n]

]
= f(sW [n− 1]) + uW [n],

(19)

where uω[n] and uW [n] are the process noise for sω[n] and
sW [n], respectively. The observation equation becomes

x[n] = HsW [n] +w[n] = s[n] +w[n], (20)

where H =
[
IM 0M×(K−1)M 0M×KJ

]
and w[n] ∼

N (0M ,Cw) is the white Gaussian observation noise that is
independent of s[n].

In the subsequent formulation for estimating sW [n] and
sW [n − 1], the necessary changes that need to be made
compared to the PN-IEKF is g (sW [n]) in the objective
in (17) in order to enforce the same sparsity pattern for
W1[n] to WK [n] in (5) [30]. Specifically, let g(sW [n]) =
β
∑M

p=1

∑M
r=1,r ̸=p ∥wp,r[n]∥2, where wp,r[n] ∈ RK collects

all the (p, r) elements in Wk[n], k = 1, ...,K. The reason for
modifying g(sW [n]) is to enforce the group sparsity structure,
where the existence of an edge from node r to node p is
reflected by the value of wp,r[n] being all zero or not. To
conclude, the PN-IEKF-VAR uses the Gauss-Newton method
and the proximal Newton method to solve (16) and (17) with
g(sW [n]) ≜ β

∑M
p=1

∑M
r=1,r ̸=p ∥wp,r[n]∥2. As a result, when

8

solving (17) through the proximal Newton method, the scaled
proximal step is written as

ŝ
(i+1)
W [n|n]

=proxΦ
g

(
ŝ
(i)
W [n|n]−Φ−1∇f

(
ŝ
(i)
W [n|n]

))
=argmin

sW

1

2

(
sW − ŝ

(i+1) ′
W [n|n]

)T

Φ
(
sW − ŝ

(i+1) ′
W [n|n]

)
+ g (sW)

= argmin
sW

1

2

∥∥∥sW − ŝ
(i+1) ′
W [n|n]

∥∥∥2
Φ
+ β

M∑
p=1

M∑
r=1,r ̸=p

∥wp,r[n]∥2 ,

(21)

which is solved by the alternating direction method of multi-
pliers (ADMM) method, as described in the following.

To solve (21) using the ADMM method, first a new variable
sz is introduced to split the problem. Hence (21) is rewritten
as

ŝ
(i+1)
W [n|n]

= argmin
sW ,sz

1

2

∥∥∥sW − ŝ
(i+1) ′
W [n|n]

∥∥∥2
Φ
+ β

M∑
p=1

M∑
r=1,r ̸=p

∥zp,r∥2

s.t. sω − sz = 0KJ

(22)

where sω ≜
[
vec(W1)

T , . . . , vec(WK)T
]T

= GsW ∈
RKJ with G ≜

[
0KJ×M IKJ

]
used to extract the

part of sW related to the graph adjacency matrix, and sz ≜[
vec(Z1)

T , . . . , vec(ZK)T
]T ∈ RKJ . Similar to the defi-

nition of wp,r, zp,r ∈ RK collects all the (p, r) elements in
Zk, k = 1, ...,K. The augmented Lagrangian function for
(22) can then be written as

Lρ (sW ,sz,y) =
1

2

∥∥∥sW − ŝ
(i+1) ′
W [n|n]

∥∥∥2
Φ
+

ρ

2
∥GsW − sz∥22

+ yT (GsW − sz) + β

M∑
p=1

M∑
r=1,r ̸=p

(
∥zp,r∥2

)
,

(23)
where y is the Lagrangian multiplier. Defining the scaled dual
variable ys ≜ 1

ρy, then (23) can be rewritten in scaled form
ADMM as

Lρ (sW ,sz,ys)

=
1

2

∥∥∥sW − ŝ
(i+1) ′
W [n|n]

∥∥∥2
Φ
+

ρ

2
∥(GsW − sz) + ys∥22

+β

M∑
p=1

M∑
r=1,r ̸=p

∥zp,r∥2 −
ρ

2
∥ys∥22

(24)

To find the saddle point of Lρ, the ADMM iterates to update
sW , sz, ys until convergence. The update equations are derived
as

s
(k+1)
W = argmin

sW

1

2

∥∥∥sW − ŝ
(i+1) ′
W [n]

∥∥∥2
Φ

+
ρ

2
∥GsW − sz(k) + y(k)

s ∥22
(25)

sz(k+1) = argmin
sz

β

M∑
p=1

M∑
r=1,r ̸=p

∥zp,r∥2

+
ρ

2

∥∥∥sz− sω(k+1) + y(k)
s

∥∥∥2
2

(26)

y(k+1)
s = y(k)

s + sω(k+1) − sz(k+1) (27)

The update of sz(k+1) can be split and updated as z
(k+1)
p,r in

parallel, for p ̸= r. The update equation for zp,r becomes

zk+1
p,r = argmin

zp,r

ρ

2
∥zp,r − νp,r∥22+β∥zp,r∥2,

∀p, r = 1, . . . ,M, r ̸= p (28)
= S β

ρ
(νp,r) ,∀p, r = 1, . . . ,M, r ̸= p

where S β
ρ
(·) is the block soft-thresholding operator which is

defined as [43, pp. 187, 189]

S β
ρ
(νp,r) ≜

{ (
1− (βρ)

1
∥νp,r∥2

)
νp,r ∥νp,r∥2≥ β

ρ

0 ∥νp,r∥2< β
ρ

.

Algorithm 2 illustrates the procedure for the PN-IEKF-VAR
algorithm, which calls Algorithm 3 to perform the backward
step to ensure group sparsity is enforced.

Algorithm 2: Proposed PN-IEKF-VAR online graph
learning algorithm.

Result: ŝW [n|n], M[n|n]
Initialization: ŝ(0)W [n|n] = ŝW [n|n−1]; ŝ(0)W [n−1|n] =

ŝW [n− 1|n− 1]; i = 0;
1 do
2 previous s = ŝ

(i)
W [n|n];

3 F(i) = ∂f(sW [n−1])
∂sW [n−1]

∣∣∣
sW [n−1]=ŝ

(i)
W [n−1|n]

;

4 M(i)[n|n− 1] = F(i)M[n− 1|n− 1]F(i)T +CuW
;

5 Φ(i) = HTC−1
w H+M(i)[n|n− 1]−1;

6 K(i)[n] =

M(i)[n|n− 1]HT
(
HM(i)[n|n− 1]HT +Cw

)−1
;

7 S(i) = M[n− 1|n− 1]F(i)TM(i)[n|n− 1]−1;
8 ŝ

(i)
W [n|n− 1] = f(ŝ

(i)
W [n− 1|n]) ;

9 ŝ
(i+1) ′
W [n|n] =
ŝ
(i)
W [n|n− 1] +K(i)[n]

(
x[n]− ŝ(i)[n|n− 1]

)
;

10 ŝ
(i+1)
W [n|n]←− solve (21) with Algorithm 3;

11 ŝ
(i+1)
W [n− 1|n] =
ŝW [n−1|n−1]+S(i)

[
ŝ
(i+1)
W [n|n]− ŝ

(i)
W [n|n− 1]

−F(i)
(
ŝW [n− 1|n− 1]− ŝ

(i)
W [n− 1|n]

)]
;

12 i = i+ 1;
13 while (i < MaxIter) or ∥ŝ(i)W [n|n]− previous s∥> ϵ;
14 ŝW [n|n] = ŝ

(i)
W [n|n];

15 M[n|n] =
(
I−K(i−1)[n]HT

)
M(i−1)[n|n− 1];

9

Algorithm 3: ADMM for solving (21)

Input : ŝ(i+1) ′
W [n|n],Φ(i)

Initialization: k = 0
Output: ŝ(i+1)

W [n|n]
1 do

2 s
(k+1)
W = argminsW

1
2

∥∥∥sW − ŝ
(i+1) ′
W [n]

∥∥∥2
Φ(i)

+ρ
2∥GsW − sz(k) + y

(k)
s ∥22;

3 sz(k+1) = argmin
sz β

∑M
p=1

∑M
r=1,r ̸=p ∥zp,r∥2

+ρ
2

∥∥∥sz− sω(k+1) + y
(k)
s

∥∥∥2
2
;

4 y
(k+1)
s = y

(k)
s + sω(k+1) − sz(k+1);

5 k = k + 1;
6 while convergence criteria not satisfied;
7 ŝ

(i+1)
W [n|n] = s

(k)
W ;

C. Change Detection

Under normal steady state of the Kalman filter that tracks
a state variable modeled in a linear process, the normalized
innovation sequence is defined as

η[n] ≜
(
HM[n|n− 1]HT +Cω

)−1/2
x̃[n], (29)

which is produced by the Kalman filter and follows a standard
normal distribution as indicated in [45], where M[n|n − 1]
is the prediction MSE matrix, x̃[n] ≜ x[n] − ŝ[n|n − 1] is
the (unnormalized) innovation sequence, and ŝ[n|n− 1] is the
estimate of s[n] based on xn−1

0 . When faults or changes occur
in the linear system, the pdf of the innovation sequence will
deviate from the standard normal distribution. The authors in
[45] proposed three different strategies to examine whether
the Kalman filter is operating at a normal condition based
on the distribution of the normalized innovation. Here the T 2

hypothesis test that is in the category of zero-mean test is
introduced.

The null and alternative hypotheses are defined to be

H0 :η[n] ∼ N (0M , IM) (30)
H1 :η[n] ≁ N (0M , IM)

to determine the decision rule of detecting a change or a fault
in the system. Denote the sample mean of η[n] as µ̂η[n]
so that µ̂η[n] ∼ N (0M , 1

N IM), where N is the number of
samples. During the simulation, N number of past time sam-
ples are used for computing the statistic at time n. According
to [46], the T 2-test that utilizes the T 2-statistic defined as
T 2 ≜ N µ̂T

η Ĉ
−1
η µ̂η is the uniformly most powerful test within

the zero-mean tests to detect changes in the system, where
Ĉη is the sample covariance matrix of η[n]. The hypotheses
become

H0 :
N −M

M(N − 1)
T 2[n] ∼ FM,N−M (31)

H1 :
N −M

M(N − 1)
T 2[n] ≁ FM,N−M ,

where FM,N−M denotes the F -distribution with degree of
freedom M and N −M . To determine the decision rule, it

should be noted that under H1, N−M
M(N−1)T

2[n] will deviate
from the F -distribution. Therefore, H1 will be decided when

N −M

M(N − 1)
T 2[n] > γ,

where γ is the threshold to be determined by fixing the false
alarm rate to α so that

α = Pr

(
N −M

M(N − 1)
T 2[n] > γ;H0

)
,

which is the probability of N−M
M(N−1)T

2[n] > γ under H0.
When change in the graph occurs, the graph signals that are

evolving based on the new graph structure will deviate from its
estimate that is predicted based on the previous obtained graph
structure. The transition in the graph perturbs the PN-IEKF
from the steady state, which causes the normalized innovation
sequence to deviate from the white Gaussian distribution. As a
result, the T 2 test is suitable for detecting the graph transition.
After detection is made by the detector, a nonzero driving
noise, uω[n], is injected into the system to make the adaptation
of the PN-IEKF faster to the changes. Thus, the covariance
matrix of uω[n] is set to nonzero. When the PN-IEKF is still
at the transient state, the false alarm of the detector will be
high, keeping σ2

ω nonzero, and the Kalman gain corresponding
to ω[n] will maintain a high value. To prevent the PN-IEKF
from diverging as a consequence of the high Kalman gain,
a cool down time needs to be set for the detector so that
after detecting a change, the next detection cannot be made
until a period of the cool down time is met. During this
cool time period, the driving noise uω[n] associated with the
graph will equal 0P or 0KJ for the PN-IEKF or PN-IEKF-
VAR, respectively, until the next detected event/transition. The
design is effective in the scenario where the graph topology
transition will not occur frequently.

IV. SIMULATION RESULTS

In this section, the simulation results are divided into two
parts according to the two signal models and graph topologies
described in Sec. II-A and Sec. II-B.

A. Simulation Results of the PN-IEKF Using the Diffusion
Model

To test the PN-IEKF algorithm under the diffusion model,
synthetic graph generated using the Erd´́os-Rényi (ER) graph
model and data generated based on the graph are used to
evaluate the proposed method. To construct the data, a time-
varying graph is first generated, and it is substituted into
equation (1) for producing the time-varying graph signals.

In every run of the simulations, two time-varying ER
(TV-ER) graphs are generated independently using the GSP
toolbox [47], each is a connected graph with edge probability
parameter p = 0.4. When the graph undergoes transition at
n0 = 14000 sample, a graph transition will occur. The edge
weight is randomly generated based on a uniform distribution
U [0, 1]. The graph signal s[n] is generated according to the
diffusion process in (1) and is centered according to (2).
All the simulation parameters are summarized in Table III.

10

The parameters are tuned to reach the best RE performance.
Specifically, under the scenario where the graph does not
change, MaxIter and β are alternately tuned iteratively to find
the lowest RE among all the trials. The value of σ2

ω is found
such that when it is set to a nonzero value at the time at
which the graph changes, the convergence of the PN-IEKF is
the fastest. The false alarm probability α is chosen after σ2

ω is
fixed. α is tuned by evaluating the percentage of actual false
alarm and the detection among 520 experiments. The false
alarms occurring before the graph changes is around 30%
among 520 experiments. Due to the definition of sW [n] in
(8) and (18), the error covariance matrix M[−1|−1] can be
divided into four portions: the upper left portion, denoted as
Mupper[−1|−1], which corresponds to ss[n], the upper right
portion, the lower left portion, and the lower right portion,
denoted as Mlower[−1|−1], which corresponds to ω[n] or sω[n]
for the PN-IEKF algorithm or the PN-IEKF-VAR algorithm,
respectively. Based on different sizes of the state vector
in the two algorithms, Mupper[−1|−1] is initialized to be
either aIM (PN-IEKF) or aIKM (PN-IEKF-VAR). Similarly,
Mlower[−1|−1] is initialized to be either bIP or bIKJ .

Simulation Parameters
Number of vertices (M) 10 10 30
SNR 5 dB 20 dB 20 dB
Variance of process noise su[n]
(σ2

u)
1 1 1

Variance of process noise uω[n]
(σ2

ω)
0.045 0.002 0.001

Sampling period (T) 1 1 1
Number of Monte Carlo exper-
iments

100 100 100

Number of time samples for
warm start

90 90 90

Max. number of IEKF iterations
(MaxIter)

3 4 6

Max. number of ISTA iterations 15000 15000 15000
Transition time (n0) 14000 14000 14000
Number of time samples used
in T -squared test (N)

200 200 200

Sparsity regularization factor
(β)

0.18 0.029 0.01

Edge probability parameter (p) 0.4 0.4 0.4
False alarm rate (α) 10−4 10−5 10−5

Cool down time samples 6000 6000 6000
Initial MSE of estimated graph
signals (a)

100 100 100

Initial MSE of estimated graph
(b)

1 1 1

TABLE III: Simulation parameters for PN-IEKF.

The accuracy of the estimate of the graphs is measured using

the relative error RE ≜
∥W[n]−Ŵ[n]∥

F

∥W[n]∥F
and the normalized

mean square deviation NMSD ≜
E

[∥∥∥ sA[n]− ŝA[n]
∥∥∥2

F

]
E
[
∥ sA[n]∥2

F

] . Figs. 2,

3, 4, and 5 show the results for comparing the performance

of the PN-IEKF and the LMS approaches in [19] at 20 dB
SNR with M = 10 and M = 30 respectively; Figs. 6 and
7 show the comparison at 5 dB SNR with M = 10. “LMS
(no proj.),” “LMS (proj. 1)” and “LMS (proj. 2)” correspond
to the vanilla LMS approach and the LMS approach aided
with projection steps detailed in (32) and (33), respectively.
Specifically, “LMS (no proj.)” only performs LMS update on
ŝA; “LMS (proj. 1)” takes the estimate from “LMS (no proj.)”
and sequentially performs the projection steps in (32a), (32b)
and (32c). “LMS (proj. 2)” takes the result from “LMS (proj.
1)” and carries out the projection in (33) by thresholding the
eigenvalue matrix, Λ

sA, of the input matrix sA in (33a), where
the threshold is specified in (33b).[

ProjCele
(sA)

]
i,j

=

{
sAi,j if sAi,j ≥ − 1

M
− 1

M else (32a)

ProjCnull
(sA) = sA− 1

M
sA1M1T

M (32b)

ProjCsym
(sA) =

1

2
(sA+ sAT) (32c)

ProjCspec
(sA) = V

sAΛtV
T
sA, (33a)

[Λt]ii =

 0 if [Λ
sA]ii < 0

[Λ
sA]ii if 0 ≤ [Λ

sA]ii ≤ 1
1 else

. (33b)

The full projection steps in “LMS (proj. 2)” are carried out
q times at the same time sample in “LMS (proj. 2 with q
iter).” “PN-IEKF (no detector)” removes the mechanism of
detecting the graph transition. “PN-IEKF (oracle)” is the case
where the variance of uω[n] is set from zero to the value in
Table III at n0. “PN-IEKF” is the proposed PN-IEKF method
using the T 2 detector, which is turned on at n = 6000 sample.
σ2
ω will subsequently change from zero to the value in Table

III once a graph transition event is detected. The detector will
then be turned off, with σ2

ω returning to zero, until the cool
down time (6000 samples) is reached. The detector will then
be turned back on and the detection process will repeat. When
the driving noise uω[n] is injected to ω[n], the value of σ2

ω is
nonzero only for one time sample and will be set back to zero
in the next sample for both “PN-IEKF (oracle)” and “PN-
IEKF.” Since the PN-IEKF approach is designed to directly
estimate the adjacency matrix W, while the LMS approaches
directly find the transition matrix sA[n] instead, the comparison
of the two algorithms can be done by translating Ŵ[n] to ŝA[n]

through ŝA[n] = e−T L̂[n] − 1
M 1M1T

M and translating ŝA[n] to
Ŵ[n] through L̂[n] = −1

T ln(ŝA[n] + 1
M 1M1T

M) followed by
extracting the off-diagonal elements from L̂[n], where the ln(·)
denotes matrix logarithm. The step size of the LMS methods
is chosen such that the convergent NMSD of the “LMS (proj.
2)” is the same as that of the “PN-IEKF (oracle).” The NMSD
and the RE results in Figs. 2 and 3 show that the convergence
of the proposed PN-IEKF approach is faster than the LMS
approaches before the graph transition. After the transition,
the accuracy of the PN-IEKF method would degenerate due
to the imperfect detection rate, while it can still outperform
the LMS method with full projection steps in terms of RE.

11

The reason is the proposed PN-IEKF method is designed to
directly estimate the graph adjacency matrix W[n], which the
RE is based on, and not the transition matrix sA[n]. Also, the
mapping between Ŵ[n] and ŝA[n] is not isomorphic, i.e. the
ranking of performance in the plot of RE of W[n] is not
necessary consistent with that in the NMSD plot of sA[n].
Furthermore, since the LMS approach does not guarantee the
produced Â[n] matrices satisfy the requirement of the matrix
logarithm [48], [49], which needs to be positive definite, which
explains the fluctuations in the “LMS (proj 2)” case in Fig
5 when M is increased from 10 to 30 and in Fig. 7 when
the SNR is decreased from 20 dB to 5 dB while M = 10.
Interestingly, the NMSD results for both of these cases are
shown in Figs. 4 and 6 where the LMS approaches use a
much higher step size than the one in Figs. 2 and 3, which
resulted in a faster convergence. However, the resulting Ŵ[n]
would be inaccurate, which explains the fluctuations for all
LMS cases in Figs. 5 and 7.

0 0.5 1 1.5 2 2.5 3

10
4

-30

-25

-20

-15

-10

-5

0

5

Fig. 2: Normalized mean square deviation vs. time sample
n comparison between the PN-IEKF oracle, the PN-IEKF
method, three LMS approaches proposed in [19]. M = 10,
SNR = 20 dB. Transition occurs at n0 = 14000 sample.

0 0.5 1 1.5 2 2.5 3

10
4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Fig. 3: Relative error vs. time sample n comparison between
the PN-IEKF oracle, proposed PN-IEKF method, and the LMS
method of the best convergence speed in [19]. M = 10,
SNR = 20 dB. Transition occurs at n0 = 14000 sample.

0 0.5 1 1.5 2 2.5 3

104

-20

-15

-10

-5

0

5

10

Fig. 4: Normalized mean square deviation vs. time sample
n comparison between the PN-IEKF oracle, the PN-IEKF
method, three LMS approaches proposed in [19]. M = 30,
SNR = 20 dB. Transition occurs at n0 = 14000 sample.

0 0.5 1 1.5 2 2.5 3

104

0

0.5

1

1.5

2

2.5

3

3.5

Fig. 5: Relative error vs. time sample n comparison between
the PN-IEKF oracle, proposed PN-IEKF method, and the LMS
method of the best convergence speed in [19]. M = 30,
SNR = 20 dB. Transition occurs at n0 = 14000 sample.

0 0.5 1 1.5 2 2.5 3

10
4

-12

-10

-8

-6

-4

-2

0

2

4

Fig. 6: Normalized mean square deviation vs. time sample
n comparison between the PN-IEKF oracle, the PN-IEKF
method, three LMS approaches proposed in [19]. M = 10,
SNR = 5 dB. Transition occurs at n0 = 14000 sample.

12

0 0.5 1 1.5 2 2.5 3

10
4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Fig. 7: Relative error vs. time sample n comparison between
the PN-IEKF oracle, proposed PN-IEKF method, and the LMS
method of the best convergence speed in [19]. M = 10,
SNR = 5 dB. Transition occurs at n0 = 14000 sample.

The graph tracking results before and after the graph
transition can be visualized using color maps. Specifically,
the estimated graph is obtained at n = 13001 before the
change occurs, right after the change occurs while the change
has not been detected at n = 14001, after the change has
been detected and the new estimate has been reacquired at
n = 15001, and at n = 29001 when the PN-IEKF algorithm
has longer time to acquire a more accurate estimate of the
new graph. Figs. 8, 9, and 10 show color maps of the ground
truth graphs and estimated graphs using the proposed PN-
IEKF algorithm at different times and at different SNRs of
one of the realizations in the experiments. As seen from these
figures, the PN-IEKF algorithm is capable of tracking time
varying graphs and obtaining sparse estimate of the graphs.

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) n < 14000.
1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) n ≥ 14000.

Fig. 8: Color map of ground truth graphs using the proposed
PN-IEKF algorithm before and after the transition time n0 =
14000.

Next, the performance of the PN-IEKF algorithm is evalu-
ated when model mismatch exists. Specifically, the mismatch
lies between the assumed variance and the true variance of the
process noise of graph signal, σ2

u. Figs. 11 and 12 show the
NMSD and RE results, respectively, of increasing the assumed
value of σ2

u while keeping the true value of σ2
u = 1. Since the

values of the hyperparameters are tuned to achieve the best
performance in terms of RE, it can be found from the RE
curves in Fig. 12 that when the gap between the true value

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) n = 13001.
1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) n = 14001.

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) n = 15001.
1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(d) n = 29001.

Fig. 9: Color map of learned graphs using the proposed PN-
IEKF algorithm at different time. SNR = 5 dB.

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) n = 13001.
1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) n = 14001.

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) n = 15001.
1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(d) n = 29001.

Fig. 10: Color map of learned graphs using the proposed PN-
IEKF algorithm at different time. SNR = 20 dB.

and the assumed value of σ2
u becomes larger, the accuracy of

the PN-IEKF will decline, and the RE value will plateau at a
higher level.

B. Simulation Results of the PN-IEKF-VAR Using the VAR
Model

The simulation conditions for the PN-IEKF-VAR is similar
to those of PN-IEKF except the graph signals are generated
using the VAR process. Simulation parameters are summarized
in Table IV. Since the order of the VAR process equals to K =
2, two adjacency matrices are generated, hence the NMSD ≜

13

0 0.5 1 1.5 2 2.5 3

10
4

-30

-25

-20

-15

-10

-5

0

5

Fig. 11: NMSD vs. time sample n comparison between the
PN-IEKF oracle, the PN-IEKF method without mismatch, the
PN-IEKF method with mismatch between the assumed value
of σ2

u and the true value of σ2
u. SNR = 20 dB. Transition

occurs at n0 = 14000 sample.

0 0.5 1 1.5 2 2.5 3

10
4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Fig. 12: RE vs. time sample n comparison between the PN-
IEKF oracle, the PN-IEKF method without mismatch, the PN-
IEKF method with mismatch between the assumed value of
σ2
u and the true value of σ2

u. SNR = 20 dB. Transition occurs
at n0 = 14000 sample.

E

[∥∥∥ Ď̂W[n]−ĎW[n]
∥∥∥2

F

]
E
[
∥ĎW[n]∥2

F

] and RE ≜

∥∥∥ Ď̂W[n]−ĎW[n]
∥∥∥
F

∥∑K
k=1

ĎW[n]∥
F

, where ĎW ≜[
W1 · · ·WK

]
. Similar definition is used for Ď̂W. Figs.

13, 14 show the NMSD and RE results with a 10 vertices
graph at SNR = 20 dB, respectively. Figs. 15 and 16 show the
NMSD and RE results with a 10 vertices graph at SNR = 5 dB,
respectively. Figs. 17 and 18 show the NMSD and RE results
with a 30 vertices graph at SNR = 20 dB, respectively. The
PN-IEKF-VAR method is compared with the TIRSO method
in [30] with 6 different step sizes. Both sets are results show
that our proposed PN-IEKF-VAR method is able to converge to
a lower NMSD and RE value compared to the TIRSO method
with the best step size of αn = 1

L or 1
L
√
n

.
Under the assumption of a VAR model, when order K = 2,

two adjacency matrices can be generated. Therefore, the track-
ing performance can also be understood through visualization

using color maps. Specifically, the estimated graph is obtained
at n = 13001 before the change occurs, right after the change
occurs while the change has not been detected at n = 14001,
after the change has been detected and the new estimate has
been reacquired at n = 15001, and at n = 29001 when the
PN-IEKF-VAR algorithm has longer time to acquire a more
accurate estimate of the new graph. Figs. 19, 20 and 21 show
color maps of the ground truth graphs and estimated graphs
using the proposed PN-IEKF-VAR algorithm at different times
at SNR = 5 dB. Figs. 22 and 23 show the same results at
SNR = 20 dB. Similar to the results for PN-IEKF, at 20 dB,
the color maps for W1 and W2 look similar to those of the
ground truth, especially after the transition at n = 29001 when
the algorithm has sufficient time to converge. The performance
for 20 dB, as expected, is better than that of 5 dB.

Simulation Parameters
Number of ver-
tices (M)

10 10 30

SNR 20 dB 5 dB 20 dB
Variance of pro-
cess noise su[n]
(σ2

u)

0.01 0.01 0.01

Variance of pro-
cess noise uω[n]
(σ2

ω)

5× 10−2 8.75× 10−2 8.5× 10−2

Sampling period
(T)

1 1 1

Number of Monte
Carlo experiments

100 100 100

Number of time
samples for warm
start

90 90 90

Order of the VAR
process (K)

2 2 2

Max. number of
PN-IEKF-VAR it-
erations (MaxIter)

2 2 3

Max. number of
ADMM iterations

300 300 300

Transition time
(n0)

14000 14000 14000

Number of time
samples used in
T -squared test
(N)

500 500 500

Sparsity
regularization
factor (β)

7.5× 10−3 8.65× 10−3 1.35× 10−2

Edge probability
parameter (p)

0.4 0.4 0.4

False alarm rate
(α)

.01 .01 .001

Cool down time
samples

6000 6000 6000

Initial MSE of es-
timated graph sig-
nals (a)

100 100 100

Initial MSE of es-
timated graph (b)

1 1 1

TABLE IV: Simulation parameters for PN-IEKF-VAR.

14

0 0.5 1 1.5 2 2.5 3

n 104

10-3

10-2

10-1

100

101
N

M
S

D

Fig. 13: NMSD vs. time sample n comparison between the
oracle, the PN-IEKF-VAR method, the TIRSO approach with
6 different step sizes proposed in [30]. M = 10, SNR =
20 dB. Transition occurs at n0 = 14000 sample.

0 0.5 1 1.5 2 2.5 3

n 104

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

R
E

Fig. 14: RE vs. time sample n comparison between the ora-
cle, the PN-IEKF-VAR method, the TIRSO approach with 6
different step sizes proposed in [30]. M = 10, SNR = 20 dB.
Transition occurs at n0 = 14000 sample.

0 0.5 1 1.5 2 2.5 3

n 104

10-2

10-1

100

101

N
M

S
D

Fig. 15: NMSD vs. time sample n comparison between the
oracle, the PN-IEKF-VAR method, the TIRSO approach with
6 different step sizes proposed in [30]. M = 10, SNR = 5 dB.
Transition occurs at n0 = 14000 sample.

0 0.5 1 1.5 2 2.5 3

n 104

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

R
E

Fig. 16: RE vs. time sample n comparison between the
oracle, the PN-IEKF-VAR method, the TIRSO approach with
6 different step sizes proposed in [30]. M = 10, SNR = 5 dB.
Transition occurs at n0 = 14000 sample.

Fig. 17: NMSD vs. time sample n comparison between the
oracle, the PN-IEKF-VAR method, the TIRSO approach with
6 different step sizes proposed in [30]. M = 30, SNR =
20 dB. Transition occurs at n0 = 14000 sample.

C. Numerical Results of Actual Dataset Using PN-IEKF

The proposed PN-IEKF method has also been applied to
learn actual brain graph from EEG signals. The DEAP dataset
[50], which contains a set of EEG time series data where M =
32. Note that the dataset contains many subjects, with each
one possibly undergoing changes in his/her emotional state
due to constant external stimuli. Thus, it is believed that the
underlying brain graph should also change its structure as well.
Moreover, it is impossible to determine the exact time when
or how many times the subject undergoes this shift in emotion
in the entire run as the original DEAP experiment did not ask
subjects to report any transient emotional changes. Therefore,
it is currently beyond our capabilities to accurately gauge the
efficacy of the proposed detector on the DEAP dataset.

In the absence of a ground truth graph, the goal is to
show the learned brain graph obtained from EEG signals
using the PN-IEKF algorithm fits a pattern generated using

15

Fig. 18: RE vs. time sample n comparison between the ora-
cle, the PN-IEKF-VAR method, the TIRSO approach with 6
different step sizes proposed in [30]. M = 30, SNR = 20 dB.
Transition occurs at n0 = 14000 sample.

(a) W1, n ≤ 14000. (b) W1, n ≥ 14000.

(c) W2, n ≤ 14000. (d) W2, n ≥ 14000.

Fig. 19: Color map of ground truth graphs using the proposed
PN-IEKF-VAR algorithm before and after the transition time
n0 = 14000.

an existing connectivity measure. In this case, the Pearson
correlation method [51] was chosen. Furthermore, all negative
connectivities are zeroed out, which gives the “ground truth”
adjacency matrix. In our configuration, the sparsity regular-
ization factor is set to β = 0.0005, and the sampling period
T = 1

128 seconds, and the run is assumed to be noise-free,
i.e. w[n] = 0M . The rest of the parameters are the same as
those used in the 30 node configuration above for synthetic
data. In addition, since the dynamic range of the color map
values from the PN-IEKF algorithm is much larger than that
of the ground truth, a polynomial regression model is used
to 1) reduce the dynamic range of the edge weights, and 2)
refine the results of the PN-IEKF method. In actual scenario,
such scaling method will not be feasible, and modification to
the objective function in (17) may be required, which will be

(a) W1, n = 13001. (b) W1, n = 14001.

(c) W2, n = 13001. (d) W2, n = 14001.

Fig. 20: Color map of learned graphs using the proposed PN-
IEKF-VAR algorithm at n = 13001 and 14001. SNR = 5 dB.

(a) W1, n = 15001. (b) W1, n = 29001.

(c) W2, n = 15001. (d) W2, n = 29001.

Fig. 21: Color map of learned graphs using the proposed PN-
IEKF-VAR algorithm at n = 15001 and 29001. SNR = 5 dB.

considered in future works. However, such a method allows the
PN-IEKF to showcase its potential in real-life problem where
the structure of the estimated adjacency matrix is similar to
that of the ground truth.

Figs. 24 and 25 show the adjacency matrix in color map
format of the ground truth, PN-IEKF without using the
polynomial regression model, and using different orders of
polynomial regression model, at time instants n = 8064 and
6000, respectively. Quantitative results are shown in Tables
V and VI, which consist of RE values for β = 0.001
and β = 0.0005. Notice that the RE does not decrease
indefinitely as the model order increases. This may be because
the brain graph changes constantly and the PN-IEKF method
is unable to fully converge to the new adjacency matrix due
to the insufficient number of samples. This offers a possible
explanation as to why later time points (Table V) fail to have

16

(a) W1, n = 13001. (b) W1, n = 14001.

(c) W2, n = 13001. (d) W2, n = 14001.

Fig. 22: Color map of learned graphs using the proposed PN-
IEKF-VAR algorithm at n = 13001 and 14001. SNR = 20 dB.

(a) W1, n = 15001. (b) W1, n = 29001.

(c) W2, n = 15001. (d) W2, n = 29001.

Fig. 23: Color map of learned graphs using the proposed PN-
IEKF-VAR algorithm at n = 15001 and 29001. SNR = 20 dB.

a lower relative error compared to earlier time points (Table
VI).

In addition to brain graphs, the PN-IEKF algorithm was
also tested using daily average temperature data from [52].
Data from 2012 to 2013 were collected from 10 stations
whose locations and names are shown in Fig. 26. Stations
from north to south are labeled in order from node 1 to
node 10, which implies M = 10. Simulation parameters are
identical to those in the synthetic data case with 10 nodes,
SNR = 20 dB, except the value of β needs to vary in Fig.
27 as its x-axis refers to the percentage of nonzero (pnnz)
elements in the adjacency matrix. Upon further testing, β is
set to be {150, 70, 50, 30, 14, 10, 8, 0.05, 0.9}, in this order,
that corresponds to the lowest to highest pnnz value. Notice
that β does not decrease monotonically and yet, using these
values, the pnnz increases. Besides changes in β, the number

5 10 15 20 25 30

5

10

15

20

25

30

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Ground Truth
5 10 15 20 25 30

5

10

15

20

25

30

0

1

2

3

4

5

6

7

8

9

10

(b) PN-IEKF Adja-
cency matrix, unscaled
(β = 0.0005)

5 10 15 20 25 30

5

10

15

20

25

30

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) 1st order poly.
scaled

5 10 15 20 25 30

5

10

15

20

25

30

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(d) 5th order poly.
scaled

5 10 15 20 25 30

5

10

15

20

25

30

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(e) 10th order poly.
scaled

5 10 15 20 25 30

5

10

15

20

25

30

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(f) 13th order poly.
scaled

Fig. 24: Color maps of adjacency matrices from time point
n = 8064, scaled using different order polynomial regression
models. The adjacency matrix shown in Fig. 24b is scaled
using a polynomial regression model to fit that of Fig. 24a,
and the following subfigures show its results.

β = 0.001 β = 0.0005
Unscaled 8.1921 8.7886
1st Order 0.7256 0.6817
2nd Order 0.7185 0.6707
3rd Order 0.7169 0.6671
4th Order 0.7013 0.6475
5th Order 0.7001 0.6446
6th Order 0.6995 0.6446
7th Order 0.6990 0.6442
8th Order 0.6973 0.6435
9th Order 0.6949 0.6426
10th Order 0.6940 0.6411
11th Order 0.6943 0.6430
12th Order 0.7098 0.6542
13th Order 0.7400 0.6885

TABLE V: Relative error of adjacency matrix at time n =
8064 using different order polynomials.

β = 0.001 β = 0.0005
Unscaled 8.1921 8.7886
1st Order 0.6991 0.6496
2nd Order 0.6782 0.6290
3rd Order 0.6779 0.6280
4th Order 0.6729 0.6187
5th Order 0.6651 0.6150
6th Order 0.6628 0.6146
7th Order 0.6626 0.6146
8th Order 0.6624 0.6127
9th Order 0.6574 0.6088
10th Order 0.6573 0.6037
11th Order 0.6581 0.6050
12th Order 0.6603 0.6098
13th Order 0.7706 0.6266

TABLE VI: Relative error of adjacency matrix at time n =
6000 using different order polynomials.

of time samples for warm start is changed to 30 from 90 due
to the shorter duration of the total number of samples (see

17

5 10 15 20 25 30

5

10

15

20

25

30

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Ground Truth
5 10 15 20 25 30

5

10

15

20

25

30

0

1

2

3

4

5

6

7

8

9

10

(b) PN-IEKF Adja-
cency matrix, unscaled
(β = 0.0005)

5 10 15 20 25 30

5

10

15

20

25

30

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) 1st order poly.
scaled

5 10 15 20 25 30

5

10

15

20

25

30

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(d) 5th order poly.
scaled

5 10 15 20 25 30

5

10

15

20

25

30

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(e) 10th order poly.
scaled

5 10 15 20 25 30

5

10

15

20

25

30

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(f) 13th order poly.
scaled

Fig. 25: Color maps of adjacency matrices from time point
n = 6000, scaled using different order polynomial regression
models. The method used is the same as that of n = 8064.

below) compared to the synthetic data case, and w[n] = 0.
In addition, the detector is turned off since the changes in the
underlying graph is more gradual.

Fig. 26: Map view of selected stations from [52]. Stations are
labeled as node 1 to node 10 from north to south.

Figs. 27 and 28 show the MSE vs. pnnz (percentage
of nonzero entries in the graph) and the squared error SE
of the estimated observed signal vs. time n. Both figures
contain results from the proposed PN-IEKF (no detector)
and different variants of the LMS algorithm in [19]. The
mean-squared error in Fig. 27 is defined as MSE ≜

1

M × nest

ntotal∑
i=ntotal−nest+1

∥x[i]− x̂[i]∥2, where ntotal = 731

is the total number of time samples and nest is the number
of samples to be estimated. For PN-IEKF, nest = 701 which
exclude the warm start samples and x̂[i] correspond to ŝs[n|n],
the estimation of the graph signal part of the state vector
sW [n]. For LMS methods, nest = 730 and x̂[i] is obtained
by x̂[i] = Â[i−1]x[i−1]. The reason why only graph signals
were evaluated is because the ground truth adjacency matrices
are not available. MSE is evaluated as a function of nonzero
proportion of the graph pnnz ≜ Mnnz

M(M−1) = Mnnz

90 , where

Mnnz is the number of nonzero edges in Ŵ [8]. Hence,
pnnz is used to represent the sparsity of the graph. The LMS
based methods can achieve different pnnz by thresholding the
edges. For Fig. 28, the squared error SE ≜ ∥x[i]− x̂[i]∥2 is
calculated at each time sample. β is set to be 0.05 for PN-
IEKF and no thresholding has been done for LMS methods.

Fig. 27: MSE vs. pnnz comparison between PN-IEKF with
no detector and the three variants of LMS method in [19].

MSE ≜
1

M × nest

ntotal∑
i=ntotal−nest+1

∥x[i]− x̂[i]∥2 calculates

the mean-squared error of the graph signals. ntotal = 731,
nest = 701 for PN-IEKF and nest = 730 for LMS methods.
pnnz ≜ Mnnz

M(M−1) =
Mnnz

90 represents the sparsity of the graph
[8]. Experiments are done by using two years of data (2012
to 2013) from 10 stations.

Fig. 28: SE vs. time sample n comparison between PN-
IEKF with no detector, three LMS approaches and EKF.
SE ≜ ∥x[i]− x̂[i]∥2 calculates the squared-error of the graph
signals. β = 0.05 for PN-IEKF (no detector). Experiments
are done by using two years of data (2012 to 2013) from 10
stations.

It is clear that the PN-IEKF performs better than the LMS
methods in terms of both MSE and SE. In fact, the MSE
performance of the PN-IEKF is better than that of the LMS
methods by almost three orders magnitude. The color maps
of the resulting adjacency matrices Ŵ at time n = 180,

18

360, 545 and 725 for PN-IEKF, the three LMS variants and
EKF are shown in Fig. 29. Similar to Fig. 28, β is again
equal to 0.05 for PN-IEKF and no thresholding has to been
done for LMS methods. According to the color maps, higher
edge weight values can be observed around the main diagonal
using the PN-IEKF compare to the LMS methods. Since it
is more reasonable for stations that are in the same vicinity
geographically to measure similar temperature, this suggests
the PN-IEKF performs better than the three LMS variants.
Recall in Fig. 28 that the EKF outperforms both the PK-IEKF
and LMS based methods in terms of SE. However, the SE
only evaluate the performance of estimated graph signals x[i],
and not the estimated adjacency matrix Ŵ, hence, in terms of
graph tracking, the PN-IEKF is still the best by observing the
color maps results in Fig. 30, which directly compares the PN-
IEKF and the EKF. In fact, without proper regularization, the
EKF can render negative values in the estimated adjacency
matrix, therefore, its nodal relationships cannot be clearly
attained compare to those of the PN-IEKF.

D. Convergence and Computational Complexity Analysis of
PN-IEKF and PN-IEKF-VAR

The convergence of the IEKF method depends on the initial
point of the iterations. On one hand, since the method can be
viewed as the Gauss-Newton method, whose convergence is
highly related to the convexity of the objective. Specifically,
the problem for solving sW [n − 1|n] in (16) is nonconvex,
ŝW [n− 1|n] found by the PN-IEKF method is not necessary
the global minimizer of the problem. As a result, there is no
guarantee that the IEKF method will always converge. On the
other hand, it is found from our experiments that the warm
start using the EKF method often finds a proper starting point
for the PN-IEKF method, which reduces the chance for the
algorithm to diverge and improves the tracking performance
of the state vector given more number of time samples. During
the experiment, few cases of divergence occurred.

The bottleneck lies in the relatively high computational
complexity of the proposed PN-IEKF method can be attributed
to matrix inversion and matrix-matrix multiplications. On lines
4 and 11 of Algorithms 1, the number of multiplications is
in the order of O(P 3). When solving the scaled proximal
step using ISTA iterations on line 10 of Algorithm 1, each
iteration incurs O(P 2) number of operations due to evaluation
of the gradient and the exact line search. When M = 10,
the amount of operations required for the PN-IEKF in each
iteration is approximately 1, 431, 375 flops, while “LMS (no
proj.),” “LMS (proj. 1)” and “LMS (proj. 2)” require 410,
1910, and 4110 flops, respectively.

The computational complexity of PN-IEKF-VAR is higher
compared to that of the PN-IEKF. This can be attributed to
the increased complexity of the signal model as it uses K
number of adjacency matrices to model the graph signal. In
Algorithms 2 and 3, the number of multiplication operations
from line 4th to the 11th is on the order of O(K3J3). When
using the ADMM iterations to solve the 10th line of Algorithm
2, each iteration update results in approximately O(K2J2)
operations. When M = 10, K = 2, PN-IEKF-VAR requires

approximately 54,460,000 flops per iteration while the TIRSO
algorithm requires approximately 848,000 (for any step sizes)
flops per iteration.

Fig. 31 shows the comparison of time complexity in seconds
between the PN-IEKF method and the LMS (proj 2) method,
and between the PN-IEFK-VAR and the TIRSO. The time
cost of each IEKF/LMS iteration is the average result of 200
Monte Carlo experiments. Due to its high time complexity,
the multiplications involved in predicted MSE, corrected MSE,
Kalman gain, correction step, and the smoothing step in the
PN-IEKF and PN-IEKF-VAR have been executed in parallel
by dividing the matrix operands into smaller block matrices
of the same size so each block matrix multiplication can be
executed in parallel. The time complexity of the parallelized
PN-IEKF and parallelized PN-IEKF-VAR are also included in
Fig. 31 and as expected, the time complexity of the parallelized
methods is much lower than that of their unparallelized
counterparts. The parallelization is carried out using 5 PCs,
4 of which has Intel® Core™ i9-11900K, one of them Intel®

Core™ i7-9700K. A closer look at the results also reveals that
the time complexity of the PN-IEKF is lower than that of the
PN-IEKF-VAR, which supports the computational complexity
analysis above. In addition, notice in all the graphs that as M
increases, the rate of increases in time complexity is higher
for PN-IEKF than parallelized PN-IEKF. This behavior also
holds true between PN-IEKF-VAR and parallelized PN-IEKF-
VAR. This implies it is indeed advantageous to use parallel
computing as the number of nodes grows.

V. CONCLUSION

A novel online graph learning algorithm using proximal
Newton-IEKF is proposed for tracking time-varying nonsta-
tionary undirected and directed graphs. Results based on
NMSD and RE are presented for synthetic and actual data,
which prove the efficacy of the proposed technique. This is
achieved by incorporating the prior knowledge of the state-
space model and the probability distribution of the additive
noise into the algorithm. When the second-order statistic of
the additive noise is not given, it can be obtained through esti-
mation techniques before carrying out the proposed algorithm.
Although the computational and time complexity are relatively
higher than those of first-order methods, the proposed methods
perform better in terms of RE, which directly relates to the
accuracy of the estimated graph adjacency matrix. In addition,
a change detector is incorporated into the algorithm to enable
the PN-IEKF and PN-IEKF-VAR methods to recover new
estimate of the graph faster after abrupt graph transition.

APPENDIX A: DERIVATION OF THE IEKF

The following proof shows the IEKF procedure in Algo-
rithms 1 and 2 can be regarded as the Gauss-Newton iterates
[39, pp. 349-351], [40]–[42]. To solve (15) using the Gauss-
Newton method, let i denote the previous iteration index and
ŝ
(i)
W [n−1|n] is the estimate of sW [n−1] at ith iteration given

19

(a) PN-IEKF (no detector), n =
180

(b) PN-IEKF (no detector), n =
360

(c) PN-IEKF (no detector), n =
545

(d) PN-IEKF (no detector), n =
725

(e) LMS (no proj) n = 180 (f) LMS (no proj) n = 360 (g) LMS (no proj) n = 545 (h) LMS (no proj) n = 725

(i) LMS (proj 1) n = 180 (j) LMS (proj 1) n = 360 (k) LMS (proj 1) n = 545 (l) LMS (proj 1) n = 725

(m) LMS (proj 2) n = 180 (n) LMS (proj 2) n = 360 (o) LMS (proj 2) n = 545 (p) LMS (proj 2) n = 725

Fig. 29: Color maps of resulting adjacency matrices of PN-IEKF (no detector) and LMS methods at time point n = 180, 360,
545 and 725. β = 0.05 for PN-IEKF (no detector). Experiments are done by using two years of data (2012 to 2013) from 10
stations.

n time samples. This replaces ŝW [n− 1|n] in (15). Thus, the
objective is written as

ŝW [n|n] =

argmin
sW [n]

1

2

∥∥∥∥∥ C
−1/2
w (x[n]−HsW [n])

M−1/2[n|n− 1]
[
f
(
ŝ
(i)
W [n− 1|n]

)
− sW [n]

] ∥∥∥∥∥
2

2

.

(34)

The Gauss-Newton method finds the solution of (34) using
the search direction, p1 = −∇2ℓ1(sW [n])−1∇ℓ1(sW [n]),
where ∇2ℓ1(sW [n]) ≈ Dr1(sW [n])TDr1(sW [n]) = JT

r1Jr1

and ∇ℓ1(sW [n]) = Dr1(sW [n])T∇ℓ1(r1) = JT
r1r1, where

Jr1 ≜ Dr1(sW [n]). Hence,

Jr1

=−
[

C
−1/2
w H

M−1/2[n|n− 1]

]
and

∇ℓ1(sW [n])

=−
[
HTC

−1/2
w M−1/2[n|n− 1]

]
×[

C−1
w (x[n]−HsW [n])

M−1/2[n|n− 1]
[
f
(
ŝ
(i)
W [n− 1|n]

)
− sW [n]

]]
=−HTC−1

w (x[n]−HsW [n])−

M−1[n|n− 1]
[
f
(
ŝ
(i)
W [n− 1|n]

)
− sW [n]

]

20

(a) PN-IEKF (no detector),
n = 180

(b) PN-IEKF (no detector),
n = 360

(c) EKF n = 180 (d) EKF n = 360

Fig. 30: Color maps of resulting adjacency matrices of PN-
IEKF (no detector) and EKF method at time point n = 180
and 360. β = 0.05 for PN-IEKF (no detector). Experiments
are done by using two years of data (2012 to 2013) from 10
stations.

(a) PN-IEKF vs. LMS (proj 2). M =
8− 12.

(b) PN-IEKF vs. LMS (proj 2).
M = 28− 32.

(c) PN-IEKF-VAR vs. TIRSO. M =
8− 12.

(d) PN-IEKF-VAR vs. TIRSO. M =
28− 32.

Fig. 31: (a) Time complexity (sec) vs. number of nodes
comparison between the PN-IEKF method, parallelized PN-
IEKF and the LMS (proj 2) with M = 8 − 12. (b) Similar
comparison between the PN-IEKF method, parallelized PN-
IEKF and the LMS (proj 2) with M = 28 − 32. (c) Similar
comparison between PN-IEKF-VAR, parallelized PN-IEKF-
VAR, and TIRSO with step size equals αn = 1/L and
M = 8−12. (d) Similar comparison between PN-IEKF-VAR,
parallelized PN-IEKF-VAR, and TIRSO with step size equals
αn = 1/L and M = 28− 32. SNR = 20 dB.

The search direction p1 is evaluated at the estimate of sW [n]

at previous iteration, denoted as ŝ
(i)
W [n|n]. Hence,

p1

=−
(
JT
r1Jr1

)−1
JT
r1r1

=
(
HTC−1

w H+M−1[n|n− 1]
)−1×(

HTC−1
w

(
x[n]−Hŝ

(i)
W [n|n]

)
+

M−1[n|n− 1]
[
f
(
ŝ
(i)
W [n− 1|n]

)
− ŝ

(i)
W [n|n]

])
.

The update for ŝ
(i)
W [n|n] using the Gauss-Newton method is

derived as

ŝ
(i+1)
W [n|n]

=ŝ
(i)
W [n|n] + p1

=ŝ
(i)
W [n|n] +

(
HTC−1

w H+M−1[n|n− 1]
)−1×(

HTC−1
w

(
x[n]−Hŝ

(i)
W [n|n]

)
+

M−1[n|n− 1]
[
f
(
ŝ
(i)
W [n− 1|n]

)
− ŝ

(i)
W [n|n]

])
=f

(
ŝ
(i)
W [n− 1|n]

)
−
(
f
(
ŝ
(i)
W [n− 1|n]

)
− ŝ

(i)
W [n|n]

)
+(

HTC−1
w H+M−1[n|n− 1]

)−1×(
HTC−1

w

(
x[n]−Hŝ

(i)
W [n|n]

)
+

M−1[n|n− 1]
[
f
(
ŝ
(i)
W [n− 1|n]

)
− ŝ

(i)
W [n|n]

])
=f

(
ŝ
(i)
W [n− 1|n]

)
+
(
HTC−1

w H+M−1[n|n− 1]
)−1×[

HTC−1
w

(
x[n]−Hŝ

(i)
W [n|n]

)
−(

HTC−1
w H+M−1[n|n− 1]

) (
f
(
ŝ
(i)
W [n− 1|n]

)
− ŝ

(i)
W [n|n]

)
+M−1[n|n− 1]

(
f
(
ŝ
(i)
W [n− 1|n]

)
− ŝ

(i)
W [n|n]

)]
=f

(
ŝ
(i)
W [n− 1|n]

)
+

(
HTC−1

w H+M−1[n|n− 1]
)−1×[

HTC−1
w

(
x[n]−Hŝ

(i)
W [n|n]

)
−

HTC−1
w H

(
f
(
ŝ
(i)
W [n− 1|n]

)
− ŝ

(i)
W [n|n]

)]
=f

(
ŝ
(i)
W [n− 1|n]

)
+

(
HTC−1

w H+M−1[n|n− 1]
)−1

HTC−1
w ×[

x[n]−Hŝ
(i)
W [n|n]−H

(
f
(
ŝ
(i)
W [n− 1|n]

)
− ŝ

(i)
W [n|n]

)]
.

Define

K(i)[n] ≜
(
HTC−1

w H+M−1[n|n− 1]
)−1

HTC−1
w .

The size of matrix inversion involved in K(i)[n] can be
reduced from (M + P) × (M + P) to M × M using the
matrix inversion lemma. Thus,

K(i)[n]

=
(
M[n|n− 1]−M[n|n− 1]HT×(

Cw +HM[n|n− 1]HT
)−1

HM[n|n− 1]
)
HTC−1

w

=M[n|n− 1]HTC−1
w −M[n|n− 1]HT×(

Cw +HM[n|n− 1]HT
)−1

HM[n|n− 1]HTC−1
w

21

=M[n|n− 1]HT
(
C−1

w −(
Cw +HM[n|n− 1]HT

)−1
HM[n|n− 1]HTC−1

w

)
=M[n|n− 1]HT

(
Cw +HM[n|n− 1]HT

)−1×[(
Cw +HM[n|n− 1]HT

)
C−1

w −HM[n|n− 1]HTC−1
w

]
=M[n|n− 1]HT

(
Cw +HM[n|n− 1]HT

)−1
. (35)

Hence, ŝ(i)W [n|n] is updated as

ŝ
(i+1)
W [n|n]

=f
(
ŝ
(i)
W [n− 1|n]

)
+

K(i)[n]
[
x[n]−Hŝ

(i)
W [n|n]−H

(
f
(
ŝ
(i)
W [n− 1|n]

)
− ŝ

(i)
W [n|n]

)]
=f

(
ŝ
(i)
W [n− 1|n]

)
+K(i)[n]

[
x[n]−H

(
f
(
ŝ
(i)
W [n− 1|n]

))]
,

(36)

which contains both the prediction and the correc-
tion steps in the IEKF procedure in Algorithm 1,
where H

(
f
(
ŝ
(i)
W [n− 1|n]

))
extracts the signal part in

f
(
ŝ
(i)
W [n− 1|n]

)
, and K(i)[n] is obtained using (35).

Similarly, (16) can be solved using the Gauss-Newton
method. By substituting ŝ

(i+1)
W [n|n] obtained from Eq. (36)

for ŝ[n|n], the objective in (16) is written as

ŝW [n− 1|n] =

argmin
sW [n−1]

1

2

∥∥∥∥∥ C
−1/2
uW

(
ŝ
(i+1)
W [n|n]− f(sW [n− 1])

)
M−1/2[n− 1|n− 1] (ŝW [n− 1|n− 1]− sW [n− 1])

∥∥∥∥∥
2

2

.

(37)

The Gauss-Newton method finds the solution
of (37) using the search direction, p2 =
−∇2ℓ2 (sW [n− 1])

−1∇ℓ1 (sW [n− 1]), where
∇2ℓ2 (sW [n− 1]) ≈ Dr2 (sW [n− 1])

T
Dr2 (sW [n− 1]) =

JT
r2Jr2 and ∇ℓ2 (sW [n− 1]) = Dr2 (sW [n− 1])

T ∇ℓ2(r2) =
JT
r2r2, where Jr2 ≜ Dr2 (sW [n− 1]) . Hence,

Jr2

=−
[

C
−1/2
uW F

M−1/2[n− 1|n− 1]

]
and

∇ℓ2 (sW [n− 1])

=−
[
FTC

−1/2
uW M−1/2[n− 1|n− 1]

]
×[

C
−1/2
uW

(
ŝ
(i+1)
W [n|n]− f (sW [n− 1])

)
M−1/2[n− 1|n− 1] (ŝW [n− 1|n− 1]− sW [n− 1])

]
= −FTC−1

uW

(
ŝ
(i+1)
W [n|n]− f (sW [n− 1])

)
−M−1[n− 1|n− 1] (ŝW [n− 1|n− 1]− sW [n− 1]) ,

where F denotes the Jacobian matrix of f(sW [n − 1]). The
search direction p2 is evaluated at the estimate of previous

iteration, ŝ(i)W [n−1|n], and F(i) is the Jacobian of f(sW [n−1])
evaluated at ŝ(i)W [n− 1|n]. Hence,

p2

=−
(
JT
r2Jr2

)−1
JT
r2r2

=
(
F(i)TC−1

uW
F(i) +M−1[n− 1|n− 1]

)−1

×(
F(i)TC−1

uW

(
ŝ
(i+1)
W [n|n]− f

(
ŝ
(i)
W [n− 1|n]

))
+

M−1[n− 1|n− 1]
(
ŝW [n− 1|n− 1]− ŝ

(i)
W [n− 1|n]

))
.

Thus, ŝ(i)W [n− 1|n] is updated as

ŝ
(i+1)
W [n− 1|n] = ŝ

(i)
W [n− 1|n] + p2

= ŝ
(i)
W [n− 1|n] +

(
F(i)TC−1

uW
F(i) +M−1[n− 1|n− 1]

)−1

×(
F(i)TC−1

uW

(
ŝ
(i+1)
W [n|n]− f

(
ŝ
(i)
W [n− 1|n]

))
+

M−1[n− 1|n− 1]
(
ŝW [n− 1|n− 1]− ŝ

(i)
W [n− 1|n]

))
= ŝW [n− 1|n− 1]−

(
ŝW [n− 1|n− 1]− ŝ

(i)
W [n− 1|n]

)
+(

F(i)TC−1
uW

F(i) +M−1[n− 1|n− 1]
)−1

×(
F(i)TC−1

uW

(
ŝ
(i+1)
W [n|n]− f

(
ŝ
(i)
W [n− 1|n]

))
+

M−1[n− 1|n− 1]
(
ŝW [n− 1|n− 1]− ŝ

(i)
W [n− 1|n]

))
= ŝW [n− 1|n− 1] +

(
F(i)TC−1

uW
F(i) +M−1[n− 1|n− 1]

)−1

×[
F(i)TC−1

uW

(
ŝ
(i+1)
W [n|n]− f

(
ŝ
(i)
W [n− 1|n]

))
−(

F(i)TC−1
uW

F(i) +M−1[n− 1|n− 1]
)
×(

ŝW [n− 1|n− 1]− ŝ
(i)
W [n− 1|n]

)
+M−1[n− 1|n− 1]

(
ŝW [n− 1|n− 1]− ŝ

(i)
W [n− 1|n]

)]
= ŝW [n− 1|n− 1] +

(
F(i)TC−1

uW
F(i) +M−1[n− 1|n− 1]

)−1

×[
F(i)TC−1

uW

(
ŝ
(i+1)
W [n|n]− f

(
ŝ
(i)
W [n− 1|n]

))
−(

F(i)C−1
uW

F(i)
)(

sW [n− 1|n− 1]− ŝ
(i)
W [n− 1|n]

)]
= ŝW [n− 1|n− 1] +

(
F(i)TC−1

uW
F(i) +M−1[n− 1|n− 1]

)−1

×

F(i)TC−1
uW

[
ŝ
(i+1)
W [n|n]− f

(
ŝ
(i)
W [n− 1|n]

)
−

F(i)
(
ŝW [n− 1|n− 1]− ŝ

(i)
W [n− 1|n]

)]
.

Define

S(i) =
(
F(i)TC−1

uW
F(i) +M−1[n− 1|n− 1]

)−1

F(i)TC−1
uW

.

Using the matrix inversion lemma,

S(i)

=
[
M[n− 1|n− 1]−M[n− 1|n− 1]F(i)T×(

CuW
+ F(i)M[n− 1|n− 1]F(i)T

)−1

F(i)M[n− 1|n− 1]

]
× F(i)TC−1

uW

22

=M[n− 1|n− 1]F(i)T×[
C−1

uW
−(

CuW
+ F(i)M[n− 1|n− 1]F(i)T

)−1

F(i)M[n− 1|n− 1]

(38)

×F(i)TC−1
uW

]
=M[n− 1|n− 1]F(i)T

(
CuW

+ F(i)M[n− 1|n− 1]F(i)T
)−1

×[(
CuW

+ F(i)M[n− 1|n− 1]F(i)T
)
C−1

uW
−

F(i)M[n− 1|n− 1]F(i)TC−1
uW

]
=M[n− 1|n− 1]F(i)T

(
CuW

+ F(i)M[n− 1|n− 1]F(i)T
)−1

.

(39)

ŝ
(i)
W [n− 1|n] is updated as

ŝ
(i+1)
W [n− 1|n]

=ŝW [n− 1|n− 1] + S(i)×[
ŝ
(i+1)
W [n|n]− f

(
ŝ
(i)
W [n− 1|n]

)
−

F(i)
(
ŝW [n− 1|n− 1]− ŝ

(i)
W [n− 1|n]

)]
, (40)

which is line 11 in Algorithm 1, where S(i) is evaluated using
(39).

REFERENCES

[1] D.I. Shuman et al., “The emerging field of signal processing on graphs,”
IEEE Signal Processing Magazine, vol. 30(3), pp. 83-98, May 2013.

[2] X. Dong, D. Thanou, M. Rabbat, and P. Frossard, “Learning graphs
from data: A signal representation perspective,” IEEE Signal Processing
Magazine, vol. 36(3), pp. 44-63, May 2019.

[3] H.-M. Chiu, C.C. Fung, and A. Ortega, “Graph Learning and Aug-
mentation Based Interpolation of Signal Strength for Location-Aware
Communications,” Proc. of the European Signal Processing Conference,
Amsterdam, The Netherlands, Jan. 2021.

[4] J. Richiardi, S. Achard, H. Bunke, and D.V.D. Ville, “Machine learning
with brain graphs: Predictive modeling approaches for functional imag-
ing in systems neuroscience,” IEEE Signal Processing Magazine, vol.
30(3), pp. 58-70, May 2013.

[5] S.M. Plis, M.P. Weisend, E. Damaraju, T. Eichele, A. Mayer, V.P. Clark,
T. Lane and V.D. Calhoun, “Effective connectivity analysis of fMRI and
MEG data collected under identical paradigms,” Computers in Biology
and Medicine, vol. 41(12), pp. 1156-1165, 2011.

[6] A. Sandryhaila and J.M.F. Moura, “Discrete signal processing on
graphs,” IEEE Trans. on Signal Processing, vol. 61(7), pp. 1644-1656,
Apr. 2013.

[7] A. Ortega, P. Frossard, J. Kova?evi?, J.M.F. Moura and P. Vandergheynst,
“Graph Signal Processing: Overview, Challenges, and Applications,”
Proceedings of the IEEE, vol. 106, no. 5, pp. 808-828, May 2018, doi:
10.1109/JPROC.2018.2820126.

[8] J. Mei and J.M.F. Moura, “Signal processing on graphs: Causal modeling
of unstructured data,” IEEE Trans. on Signal Processing, vol. 65(8), pp.
2077-2092, 2017.

[9] S. Segarra, A.G. Marques, G. Mateos, and A. Ribeiro, “Network
topology inference from spectral templates,” IEEE Trans. on Signal
and Information Processing over Networks, vol. 3(3), pp. 467-483, Sep.
2017.

[10] V. Kalofolias, “How to learn a graph from smooth signals,” AISTATS,
2016.

[11] X. Dong, D. Thanou, P. Frossard and P. Vandergheynst, “Laplacian
matrix learning for smooth graph signal representation,” in 2015 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 3736-3740, 2015, doi: 10.1109/ICASSP.2015.7178669.

[12] X. Dong, D. Thanou, P. Frossard and P. Vandergheynst, “Learning
Laplacian Matrix in Smooth Graph Signal Representations,” in IEEE
Transactions on Signal Processing, vol. 64, no. 23, pp. 6160-6173, 2016,
doi: 10.1109/TSP.2016.2602809.

[13] H. Rue and L. Held, “Gaussian Markov Random Fields: The-
ory and Applications (1st ed.).” Chapman and Hall/CRC, 2005,
https://doi.org/10.1201/9780203492024

[14] J. Friedman, T. Hastie, and R. Tibshirani, “Sparse inverse covariance
estimation with the graphical lasso,” Biostatistics, vol. 9(3), pp. 432-
441, 2008.

[15] O. Banerjee and L. El Ghaoui, “Model selection through sparse max-
imum likelihood estimation for multivariate Gaussian or binary data,”
Journal of Machine Learning Research, vol. 9, pp. 485-516, Mar. 2008.

[16] H.E. Egilmez, E. Pavez, and A. Ortega, “Graph learning from data under
Laplacian and structural constraints,” IEEE. Journal on Selected Topics
on Signal Processing, vol. 11(6), pp. 825-841, Sep. 2017.

[17] K. Yamada, Y. Tanaka, and A. Ortega, “Time-varying graph learning
based on sparseness of temporal variation,” Proc. of the Intl. Conf. on
Acoustics, Speech and Signal Processing, Brighton, UK, May 2019.

[18] V. Kalofolias, A. Loukas, D. thanou, and P. Frossard, “Learning time
varying graphs,” Proc. of the IEEE Intl. on Acoustics, Speech and Signal
Processing, pp. 2826-2830, 2017.

[19] S. Vlaski et al., “Online graph learning from sequential data,” Proc. of
the Data Science Workshop, Lausanne, Switzerland, Jun. 2018.

[20] F. Chung, “The heat kernel as the pagerank of a graph,” Proceedings
of the National Academy of Sciences, vol. 104(50), pp. 19735-19740,
2007.

[21] R. Shafipour and G. Mateos, “Online topology inference from streaming
stationary graph signals,” Proc. of the IEEE Data Science Workshop,
Minneapolis, MN, USA, Jul. 2019.

[22] M. Gu and S.C. Eisenstat, “A stable and efficient algorithm for the
rank-one modification of the symmetric eigenproblem,” SIAM Journal
on Matrix Analysis and Applications, vol. 15(4), pp. 1266-1276, 1994.

[23] R. Shafipour, S. Segarra, A.G. Marques, G. Mateos, “Identifying the
topology of undirected networks from diffused non-stationary graph
signals,” IEEE Open Journal of Signal Processing, vol. 2, Mar. 2021.

[24] R. Shafipour and G. Mateos, “Online proximal gradient for learning
graphs from streaming signals,” 2020 28th European Signal Processing
Conference (EUSIPCO), 2021, pp. 865-869.

[25] M. Moscu, R. Borsoi, and C. Richard, “Online graph topology inference
with kernels for brain connectivity estimation,” Proc. of the IEEE Intl.
Conf. on Acoustics, Speech and Signal Processing, Barcelona, Spain,
May 2020.

[26] D. Jin, J. Chen, C. Richard and J. Chen, “Adaptive Param-
eters Adjustment for Group Reweighted Zero-Attracting LMS,”
Proc. of the 2018 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 4294-4298, 2018, doi:
10.1109/ICASSP.2018.8462004.

[27] S.S. Saboksayr, G. Mateos, and M. Cetin, “Online graph learning under
smoothness priors,” arXiv:2103.03762v1, Mar. 2021.

[28] S.S. Saboksayr, G. Mateos, and M. Cetin, “Online discriminative
graph learning from multi-class smooth signals,” arXiv preprint
arXiv:2101.00184, 2021.

[29] B. Zaman, L.M. Lopez-Ramos, D. Romero, and B. Beferull-Lozano,
“Online topology estimation for vector autogressive processes in data
networks,” 2017 IEEE 7th Intl. Workshop on Computational Advances
in Multi-Sensor Adaptive Processing (CAMSAP), Curacao, Dec. 2017.

[30] B. Zaman, L.M.L. Ramos, D. Romero, and B. Beferull-Lozano, “Online
topology identification from vector autoregressive time series,” IEEE
Trans. on Signal Processing, vol. 69, pp. 210-225, 2021.

[31] A. Natali, M. Coutino, E. Isufi and G. Leus, “Online Time-Varying
Topology Identification Via Prediction-Correction Algorithms,” Proc.
of the 2021 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pp. 5400-5404, 2021.

[32] A. Natali, E. Isufi, M. Coutino and G. Leus, “Online Graph Learning
From Time-Varying Structural Equation Models,” 2021 55th Asilomar
Conference on Signals, Systems, and Computers, pp. 1579-1585, 2021.

[33] A. Natali, E. Isufi, M. Coutino and G. Leus, “Learning time-varying
graphs from online data,” IEEE Open Journal of Signal Processing, vol.
3, pp. 212-228, May. 2022.

[34] M. Ramezani-Mayiami, “Joint graph learning and signal recovery via
kalman filter for multivariate auto-regressive process,” Proc. of the 26th
European Signal Processing Conference, Rome, Italy, Sep. 2018.

[35] M. Ramezani-Mayiami, “Joint topology learning and graph signal re-
covery via kalman filter in causal data processes,” Proc. of the IEEE
Intl. Workshop on Machine Learning for Signal Processing, Aalborg,
Denmark, Sep. 2018.

23

[36] R.P. Wishner, J.A. Tabaczynski and M. Athans, “On the estimation of
the state of noisy nonlinear multivariable systems,” Proc. of the IFAC
Sym. on Multivariable Control Systems, Dusseldorf, West Germany, Oct.
1968.

[37] R.P. Wishner, J.A. Tabaczynski and M. Athans, “A comparison of three
non-linear filters,” Automatica, vol. 5, pp. 487-496, 1969.

[38] J.D. Lee, Y. Sun and M.A. Saunders, “Proximal Newton-type methods
for minimizing composite functions,” SIAM Journal on Optimization,
vol. 24(3), pp. 1420-1443, 2014.

[39] A.J. Jazwinski, Stochastic Processes and Filtering Theory, Academic
Press, 1970.

[40] B.M. Bell and F.W. Cathey, “The iterated Kalman filter update as a
Gauss-Newton method,” IEEE Trans. on Automatic Control, vol. 38(2),
pp. 294-297, Feb. 1993.

[41] B.M. Bell, “The iterated Kalman smoother as a Gauss-Newton method,”
SIAM Journal on Optimization, vol. 4(3), pp. 626-636, Aug. 1994.

[42] M.A. Skoglund, G. Hendeby and D. Axehill, “Extended kalman filter
modifications based on an optimization view point,” 18th Intl. Conf. on
Information Fusion, pp. 1856-1861, 2015.

[43] N. Parikh and S. Boyd, “Proximal algorithms,” Foundations and Trends
in Optimization, vol. 1(3), pp. 123-231, 2013.

[44] I. Daubechies, M. Defrise and C.D. Mol, “An iterative thresholding
algorithm for linear inverse problems with a sparsity constraint,” Com-
munications on Pure and Applied Mathematics, pp. 1413-1457, 2004.

[45] R.K. Mehra and J. Perchon, “An innovative approach to fault diagnosis
in dynamic system,” Automatica, vol. 7, pp. 637-640, 1971.

[46] T. W. Anderson, An Introduction to Multivariate Statistical Analysis,
John Wiley, New York, 1958

[47] P. Nathanaël, J. Paratte, D. Shuman, L. Martin, V. Kalofolias, P.
Vandergheynst and D.K. Hammond, “GSPBOX: A toolbox for signal
processing on graphs.” Arxiv e-print arXiv:1408.5781v2, 2014.

[48] A. H. Al-Mohy and N.J. Higham, “Improved inverse scaling and squar-
ing algorithms for the matrix logarithm,” SIAM Journal on Scientific
Computing, 34(4), pp. C153?C169, 2012

[49] A. H. Al-Mohy, N.J. Higham and S.D. Relton, “Computing the Frechet
derivative of the matrix logarithm and estimating the condition number,”
SIAM Journal on Scientific Computing, 35(4), pp. C394?C410, 2013

[50] DEAP, “A dataset for emotion analysis using physiological signals,”
https://www.eecs.qmul.ac.uk/mmv/datasets/deap/ .

[51] L.E. Ismail and W. Karwowski, “A graph theory-based modeling of
functional brain connectivity based on EEG: A systematic review in the
context of neuroergonomics,” IEEE Access, vol. 8, pp. 155103-155135,
Aug. 2020.

[52] National Centers for Environmental Information. [Online]. Available:
https://www.ncei.noaa.gov/access/search/data-search/global-summary-
of-the-day

https://www.eecs.qmul.ac.uk/mmv/datasets/deap/
https://www.ncei.noaa.gov/access/search/data-search/global-summary-of-the-day
https://www.ncei.noaa.gov/access/search/data-search/global-summary-of-the-day

	Introduction
	System Models
	AR Process from Diffusion Model
	VAR Model

	Methodology
	Proposed PN-IEKF Approach
	Proposed PN-IEKF-VAR Approach
	Change Detection

	Simulation Results
	Simulation Results of the PN-IEKF Using the Diffusion Model
	Simulation Results of the PN-IEKF-VAR Using the VAR Model
	Numerical Results of Actual Dataset Using PN-IEKF
	Convergence and Computational Complexity Analysis of PN-IEKF and PN-IEKF-VAR

	Conclusion
	Appendix A: Derivation of the IEKF
	References

