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Optimal V2X Operation of EV Fleets with PV-battery Charging Station for
Demand-side Flexibility Provision

Federica Bellizio, Yi Guo, Philipp Heer

Abstract— The increasing number of electric vehicles ex-
pected on the road in the coming years poses new threats to
the reliability of the power system. However, it can also play a
key role as a source of demand-side flexibility to support the
system in managing uncertainty resulting from the integration
of renewable and distributed energy resources. In this paper,
a novel operational tool for vehicle-to-everything operation
of electric vehicle fleets with photovoltaics-battery charging
station for demand-side flexibility provision is proposed. The
tool provides electric vehicle aggregators with a risk-aware
flexibility quantification, robust market bids and real-time con-
trol decisions. The approach was tested on real demonstrators
in Switzerland, highlighting the cost-benefits of demand-side
flexibility provision, which resulted in monthly net revenues
that far surpassed the energy costs of the charging station.

I. INTRODUCTION

The current regulatory policies aimed at promoting the
transition from fossil fuel to low emission transportation have
incentivized significant technological advancements, leading
to reduced electric vehicle (EV) cost, increased EV range
and denser charging infrastructure. Consequently, EVs are
becoming more popular, with the global EV fleet projected
to reach 145 million units by 2030 [1]. On the one hand,
the added energy demand from the growing EV supply
equipment required for charging poses new threats to the
reliability of the power system [2]. On the other hand,
the increasing number of EVs on the road can play a key
role as a source of flexibility for a more reliable system
operation if their charging scheduling is properly optimised.
The additional storage capacity offered by EVs can support
the system to deal with the operational uncertainty resulting
from the integration of renewable and distributed energy
resources. This would allow for an improved utilization of
the existing grid assets and a consequent reduction of the
investment costs to reinforce the network equipment [3], [4].
However, for flexibility provision in new emerging demand-
response (DR) markets, there are participation requirements
on minimum bid sizes that could be challenging to meet for
EV fleets [5].

The onsite coupling between photovoltaics (PVs), battery
energy storage systems (BESS) and EV fleets with vehicle-
to-grid (V2G) technology has shown extremely promis-
ing performance in terms of demand-side flexibility pro-
vision [6]–[8]. In a vehicle-to-everything (V2X) operation,
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EV fleets can be used for site self-consumption maximiza-
tion by storing electricity surplus produced by PVs and
releasing it during peak hours [9], for load peak shifting
in grid congestion occurrences or for voltage and frequency
regulation by consuming or injecting power when the grid
constraints are violated [10]. By aggregating the EV fleet
and BESS capacity, the requirement of minimum bid size
can be easily met, enabling the participation of EVs in DR
markets, and hence the generation of new revenue streams
for aggregators [11]. To avoid overbidding in such markets,
aggregators need new operational tools: i) to quantify the
available flexible energy in advance for accurate flexibility
market bidding and, ii) to operate the charging station cost-
efficiently while reserving flexible energy in case of accepted
bids.

Several approaches have been proposed for demand-
side flexibility quantification, most of them distinguishable
into direct and indirect quantification [12], [13]. Direct
approaches aim to quantify the flexibility directly at the
level of individual technologies in a bottom-up manner.
Conversely, indirect approaches assume a specific market and
control strategy and evaluate the impact of energy flexibility
according to standardized metrics [14], e.g. operational cost
savings, peak power, or carbon emission reductions. In
particular, model predictive control (MPC) has been widely
used to indirectly quantify the flexibility [15], [16]. However,
most studies have observed that uncertainties arising from
generation and load forecasts, EV user behaviors, and the
electricity market can significantly impact the V2X setting
in terms of profitability, comfort and grid constraint viola-
tions [17], [18]. To overcome the challenge of considering
uncertainty when quantifying energy flexibility, sampling-
based approaches or stochastic MPC-based schemes have
been investigated extensively. In [19], a stochastic optimiza-
tion model was used to maximize the expected profits of an
EV aggregator through optimal day-ahead bidding strategies.
Similarly, in [20], [21], mixed-integer linear programming
frameworks were proposed, incorporating Machine Learning
(ML) forecasting algorithms and Monte Carlo (MC) sim-
ulations to cope with the uncertainties, respectively. While
the studies listed above address various challenges, to the
best of the authors’ knowledge, there remains a deficiency
in comprehensive tools for multi-site V2X operation of EV
fleets providing demand-side flexibility while ensuring users’
comfort.



A. Proposed approach
This paper proposes a novel operational tool for EV aggre-

gators with PV-battery charging station aiming at reducing
their energy costs and generating new revenues from the
provision of demand-side flexibility. The flowchart of the
proposed approach is shown in Fig. 1. The first step is the
time-ahead prediction of the available flexibility based on
forecasts of the charging station generation and load, as well
as EV arrival and departure times and energy demand [22].
Subsequently, such forecasts are fed as input to a multi-
site optimizer that provides 15-hour ahead optimal charging/
discharging schedules for an onsite BESS and an EV fleet
moving between different sites during the day, thus being
able to provide flexibility services at different locations. An
example of the EV daily trip is shown in Fig 2. The EV fleet
moves between the charging station and another site for daily
services, which is also equipped with charge points (CPs).
The available flexible energy capacity resulting from the
optimization can then be bid in intraday DR markets. Finally,
in real-time operation, a controller adjusts the BESS and EV
schedules based on real-time measurements and acceptance
of the market bids.

The contribution of this paper is twofold:
• A chance-constrained intraday optimization of the

BESS and EV fleet charging scheduling for indirect
flexibility quantification under uncertainty and robust
flexibility bidding in DR markets;

• A flexibility-aware MPC-based real-time controller to
account for operational uncertainty while reserving the
flexible energy to provide in case of accepted bids.

A case study on the NEST and move demonstrators at
Empa, in Switzerland, was used to investigate the aggre-
gator’s cost-benefits of adopting the proposed tool in real-
time operations [23]. The test system representing the PV-
battery charging station included 168 kWh battery and 110
kWp PV systems, and 4 CPs. A fleet of 4 EVs with V2G
technology moving between the charging station and the
service site was sampled from real charging data provided by
TotalEnergies [22]. The flexibility market framework shown
in Fig. 3 was assumed [24], [25]. In such a framework,
transmission and distribution operators can procure flexibility
in two respective and competitive DR markets, i.e. a local
market for congestion management and a national market for
frequency response services. The flexibility providers partic-
ipate in the most profitable market, i.e. higher availability (or
reservation) prices per MWh of provided energy flexibility.

The rest of the paper is structured as follows. Sections II
and III describe the methodologies for the indirect flexibility
quantification and the implementation of the MPC-based
real-time controller. Subsequently, section IV presents the
case study with the main assumptions related to the test
system and the main results. Section V finally draws the
conclusions.

II. FLEXIBILITY QUANTIFICATION

This section first describes the deterministic intraday
charging schedule optimization with the operating constraints

7

Flexibility prediction Multi-site optimization Real-time controller

15 hour-ahead Real-time

Fig. 1. The proposed operational tool for demand-side flexibility provision.
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Fig. 2. An example of daily EV trip.

related to all the assets available at the charging station and
the EV fleet moving between the station and the service
site. Subsequently, the chance-constrained formulation is
provided to account for forecast errors and quantify the
flexibility in terms of an envelope for robust DR intraday
market bids [26], [27]. The flexibility envelope provides
the aggregators with the maximum, hourly flexible energy
that is available to bid at 9am every morning for the next
15 hours. The aggregators can decide whether to bid the
maximum available flexible energy or less according to their
risk management strategies.

A. Multi-site optimization

In this section, the schedules for a charging station
equipped with a battery, PV generation and a fleet of K EVs
over a finite time horizon with hourly time step is provided.
Let T = {0, . . . , T − 1} where T is the length of the
horizon considered with a time discretization t. The EV k ∈
[1,K] can charge (Ck

t ) and discharge (Dk
t ), acquiring energy

needed for each trip (Ek,tr
t ), as well as providing an upward

service by reducing charging (Ak,c,n
t , Ak,c,l

t for national
and local service, respectively) or increasing discharging
(Ak,d,n

t , Ak,d,l
t for national and local service, respectively)

in the form of availability, whenever it is connected to the
grid, at the charging station (T k,sta

t ) or at the service site
(T k,ser

t ) [28]. The charging/discharging power of the EV
can be regulated between 0 and a maximum power level
allowed by the charger (P k

max). Similarly, the state of charge
(SoC) of each EV at each timestep SoCk

t is limited between
10% − 90% of the maximum EV energy capacity EEV

cap .
The same input and control variables are considered for the
onsite battery. The battery can charge (CB

t ) and discharge
(DB

t ), as well as providing an upward balancing service by
reducing charging (AB,c,n

t , AB,c,l
t for national and local ser-

vice, respectively) or increasing discharging (AB,d,n
t , AB,d,l

t

for national and local service, respectively) in the form of
availability. The charging/discharging power of the battery
can be regulated between 0 and a maximum allowed power
level (PB

max). Finally, the battery SoC at each timestep SoCB
t



Fig. 3. The assumed market framework.

is limited between 10% − 90% of the maximum battery
energy capacity EB

cap. The electricity prices πel
t , the national

and local flexibility service prices for availability, πA,n
t and

πA,l
t , are known ahead of the time horizon. The trips that the

EVs need to take, including the length of the trip in hours
and the energy required, the onsite generation and load of
the station are forecasted for the whole time horizon, thus
they are considered as given in the deterministic formulation.

The objective function maximizes revenues from flexibility
service provision, while meeting the station energy and EV
energy trip requirements and maximizing the station self-
consumption (i.e. minimizing the energy imported from the
grid Eimp

t ), as shown below:

max
∑
t∈T

(
K∑

k=1

(
(Ak,c,n

t +Ak,d,n
t +AB,c,n

t +AB,d,n
t ) · πA,n

t

+ (Ak,c,l
t +Ak,d,l

t +AB,c,l
t +AB,d,l

t ) · πA,l
t

− Ck
t · πel

t · T k,ser
t − ϵp ·Dk

t

)
− Eimp

t · πel
t − ϵp ·DB

t

)
,

(1)

where T k,ser
t , T k,sta

t = 1 if the EV is connected to a CP
at the service site or at the charging station, respectively,
otherwise T k,ser

t , T k,sta
t = 0. ϵp is a penalty factor that

penalizes onsite battery and EV discharging, thus minimizing
battery cycling, while only minimally affecting revenues
from providing availability as a service. A zero feed-in tariff
is assumed, indicating that no revenues are generated for
selling energy Eexp

t back to the grid [29].
The operating models of the station, battery, and EVs

include several constraints [26]. The energy balance of the
entire charging station is given by:

Eexp
t − Eimp

t = El
t − EPV

t −DB
t + CB

t

+
K∑

k=1

(Ck
t −Dk

t ) · T
k,sta
t , ∀t ∈ T ,

(2)

with El
t and EPV

t being the onsite load and generation,
respectively.
The constraint seen in Eq. (3) describes the EV battery’s
energy balance, taking into account the energy needed for
mobility purposes as well as the losses caused by charging
and discharging efficiencies, ηEV

c and ηEV
d .

SoCk
t = SoCk

t−1 + ηEV
c · Ck

t

− Dk
t

ηEV
d

− Ek,tr
t , ∀t ∈ T , k ∈ [1,K].

(3)

When the EVs are not connected to the grid, the charging,
discharging and availability for services are zero:

Ck
t = Dk

t = Ak,c,l
t = Ak,d,l

t = Ak,c,n
t = Ak,d,n

t = 0,

∀t ∈ {T k,sta
t , T k,ser

t = 1}, k ∈ [1,K].
(4)

The constraint seen in Eq. (5) limits the SoC of each EV
between the lower and upper bounds of the battery’s energy
content, which is assumed to be the same for each EV:

0.1 · EEV
cap ≤ SoCk

t ≤ 0.9 · EEV
cap , ∀t ∈ T , k ∈ [1,K]. (5)

Moreover, each EV battery cannot charge and discharge at
the same time:

Ck
t ·Dk

t = 0, ∀t ∈ T , k ∈ [1,K]. (6)
When an EV commits to service availability, the maximum
power allowed by its charger P k

max, as well as whether the
EV is charging or discharging, need to be taken into account
Ak,d,n

t +Ak,d,l
t +Dk

t ≤ P k
max ·∆t

Ak,c,n
t +Ak,c,l

t ≤ Ck
t ∀t ∈ T , k ∈ [1,K],

(Dk
t − Ck

t ) + (Ak,d,n
t +Ak,d,l

t +Ak,c,n
t +Ak,c,l

t ) ≤ P k
max ·∆t

(7)
where ∆t denotes the time interval. Simultaneously, when
the bid is accepted, it is important to ensure that the com-
mitted energy is available for the service to be sustained for
the required time ts:

xk
t + Ck

t · ηEV
c − (Dk

t +Ak,d,n
t +Ak,d,l

t )·ts
ηEV
d

≥ 0.1 · EEV
cap

xk
t ≤ SoCk

t ∀t ∈ T , k ∈ [1,K],

xk
t ≤ SoCk

t−1

(8)
where xk

t is an auxiliary decision variable introduced for
linearisation. The flexibility service provision only consid-
ers availability, rather than utilization, which occurs infre-
quently [30]. Finally, the EV battery’s energy level is at the
required level EEV

req set by aggregator at the end of each day:
SoCk

T−1 = EEV
req . (9)

Similarly, all the constraints in Eqs. (3)-(8) are imposed
for the battery ∀t ∈ T , as follows:

SoCB
t = SoCB

t−1 + ηBc · CB
t − DB

t

ηBd
, (10)

0.1 · EB
cap ≤ SoCB

t ≤ 0.9 · EB
cap, (11)

CB
t ·DB

t = 0, (12)
AB,d,n

t +AB,d,l
t +DB

t ≤ PB
max ·∆t, (13)

AB,c,n
t +AB,c,l

t ≤ CB
t , (14)

(DB
t − CB

t ) + (AB,d,n
t +AB,d,l

t +AB,c,n
t +AB,c,l

t ) ≤ PB
max ·∆t,

(15)

xB
t + CB

t · ηBc − (DB
t +AB,d,n

t +AB,d,l
t ) · ts

ηBd
≥ 0.1 · EB

cap,

(16)
xB
t ≤ SoCB

t , (17)
xB
t ≤ SoCB

t−1, (18)
SoCB

T−1 = EB
req, (19)

where xb
t is the auxiliary decision variable introduced for

linearisation, and ηBc and ηBd are the battery’s charging and
discharging efficiencies, respectively.

B. Accounting for uncertainty

In order to mitigate the effect of uncertainty on the market
bidding strategy, an intraday chance-constrained optimization
is formulated [31]. The uncertainty derives from the forecasts
of onsite load and PV generation, and EV charging sessions
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Initialize:
𝑚 = 1, Ω = Ω = 0

Run deterministic charging 
schedule optimization

Run deterministic charging 
schedule optimization with 

tightened constraints 𝑚

Evaluate  Ω and Ω

Uncertainty

Stop

𝑚𝑎𝑥|Ω − Ω | ≤ 𝜂

𝑚𝑎𝑥 |Ω − Ω | ≤ 𝜂

Yes

No

Fig. 4. The proposed chance-constrained optimization.

(i.e. arrival and departure times, and charging energy de-
mand). Chance-constraints are probabilistic constraints that
ensure that the limits will hold with a pre-described probabil-
ity 1−ϵ, where ϵ is the acceptable violation probability. This
is done by replacing the original constraints with tightened
constraints, where tightenings represent security margins
against uncertainty and are evaluated using MC simulations.
To enforce a chance constraint with 1 − ϵ probability, we
need to ensure that the 1 − ϵ quantile of the distribution
remains within the bounds. Thus, the tightening corresponds
to the difference between the value with zero forecast error
(indicated with superscript 0) and 1 − ϵ quantile value
evaluated based on the empirical distribution resulting from
the MC simulations, e.g. |SoCB,1−ϵ

t | − |SoCB,0
t | for the

battery energy balance constraint.
The optimization is solved using the iterative algorithm

shown in Fig. 4. It alternates between solving a deterministic
optimization with tightened constraints, and evaluating the
following tightenings at each iteration m: If the maximum
changes in the tightenings between two subsequent iterations
are below a certain threshold ηΩ, the algorithm has converged
and a feasible solution has been found. The solution repre-
sents the maximum, hourly flexible energy that is available
to bid while ensuring the station operational constraints and
the user comfort boundaries.

III. REAL-TIME CONTROLLER

A finite horizon MPC-based controller to account for
real-time operational uncertainty while reserving the flexible
energy to provide in case of accepted bids is formulated in

this section. The full formulation is given by:

min
∑
t∈T

(
K∑

k=1

(
Ck

t · πel
t · T k,ser

t + ϵp ·Dk
t

)
+ Eimp

t · πel
t + ϵp ·DB

t

)
subject to (2)-(19).

(20)
The battery energy balance constraints in Eqs. (3) and (10)
are modified to provide flexible energy when the bids are
accepted:

SoCk
t = SoCk

t−1 + ηEV
c · Ck

t − Dk
t

ηEV
d

−Ek,tr
t − Ek,bid

t · T k,bid
t ,

∀t ∈ T , k ∈ [1,K],
(21)

SoCB
t = SoCB

t−1 + ηBc · CB
t − DB

t

ηBd
− EB,bid

t ·TB,bid
t ,

∀t ∈ T ,

(22)

with Ek,bid
t , EB,bid

t representing the flexible energy from
EVs and battery, respectively, bid in the intraday DR markets,
T k,bid
t , TB,bid

t = 1 in case of accepted bids, otherwise
T k,bid
t , TB,bid

t = 0. No revenues are assumed for flexibility
provision in the form of utilization.

At each time step t, the optimization in Eqs. (20)-(22)
takes the real-time measurement and the acceptance of
market bids as inputs, and determines the optimal charg-
ing/discharging schedules for the EV fleet and onsite battery
for the full horizon T = {t, ..., t+T − 1} using the updated
forecasts of onsite load and PV generation, and EV charging
sessions. However, only the optimal schedules at time step t
are applied.

IV. CASE STUDY

This section provides an overview of the performance of
the proposed tool in terms of energy cost reduction and
generation of new revenues from demand-side flexibility
provision. Additional studies were conducted to investigate
the optimal technical and social settings to fully exploit the
demand-side flexibility, leading to higher cost-benefits for
the aggregators.

A. Test system and assumptions

A case study was conducted on the NEST and move
demonstrators at Empa, in Switzerland [23]. This test system
representing the PV-battery charging station included a 168
kWh battery, 110 kWp PV systems, and 4 CPs. Historical
data for PV generation and load for August 2022 were
used to test the proposed tool. Charging data for a fleet
of 4 EVs with V2G technology and 40 kWh battery each,
moving between the charging station and the service site,
was sampled from real data provided by TotalEnergies with
over 2 million charging sessions and 5317 CPs across the
Netherlands [22]. The V2X operation of the EV fleet was
considered exclusively at the charging station, as described
in Eq. (2). A maximum allowed power level P k

max = 15 kW
and PB

max = 80 kW were assumed for the EVs and onsite
battery, respectively. The required battery level set by the
aggregator at the end of each day was EEV

req = 0.9 ·EEV
cap and

EB
req = 0.9 ·EB

cap. Electricity and national flexibility service
prices for availability, πel

t and πA,n
t , were taken from [28]



for August 2022. In such a price modeling, the prices for
national flexibility services reflect the need for inertia of
transmission operators following the integration of renewable
sources. Higher prices are modeled when the hourly share
of renewable integration if higher, thus corresponding to
lower system’s inertia and a higher need for the system
operator [32]. The same price variation of national flexibility
services was assumed for local flexibility services, as the
congestion risk increases when the hourly share of renewable
integration is higher, similar to the inertia need in national
flexibility price modeling. However, for local services, dif-
ferent mean values were considered based on the locations
of the charging station or service site, i.e. higher mean values
for locations with a higher congestion risk. In this work, the
service site, which is located in urban areas, has a higher
congestion risk than the charging station, resulting in higher
local service prices. The assumed prices are shown in Fig. 5
for one week. Dynamic containment [33] and congestion
management [34] were considered as national and local
flexibility services, respectively. A finite time horizon of 15
hours with time step ∆t = 1h was used for both the multi-
site optimization and real-time controller. The electricity and
flexibility prices were assumed to be known ahead of this
horizon, which is in line with the current intraday energy and
balancing service market arrangements. The required time
for the flexibility service to be sustained when called on was
ts = 1h. The multi-site optimization was performed once
every day for the horizon 9am-11pm to calculate the intraday
market bids, with ϵp = 0.05 to minimize battery cycling.
Conversely, the real-time MPC controller was run hourly
with a 15 hour horizon. However, the aggregator becomes
aware of accepted bids only after the intraday market clearing
at 9am every day. The forecasts of onsite load and PV
generation, and EV charging sessions are fed as inputs to
both the multi-site optimization and the real-time controller.
Long short-term memory (LSTM) neural networks with 3
layers and 15 neurons per layer were used for these forecasts.
The input and output rolling windows of the LSTM models
were one week and 15 hours, respectively. In order to capture
the seasonal trend, historical data from June to July 2022 was
used to train and test the LSTM models for onsite load and
PV generation. Synthetic data from January to July 2022
was used for the prediction of EV charging sessions. The
training and testing split was 80%/20%, while the data from
August was used for the validation of all predictive models.
Weather data were used as additional features to improve
the predictive performance. More specifically, for the EV
charging sessions, categorical features such as the day of the
week were also considered, and new features were created to
capture the charging behaviour of each EV in the fleet [22].
Subsequently, a causality-based feature selection approach
was used to select the most relevant features for training, thus
enhancing the performance. As an example, the forecast error
distribution of the charging station load is shown in Fig. 6.
The error distributions of onsite load and PV generation,
charging session duration and energy demand, were used for
the MC simulations to account for uncertainty, enforcing the
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Fig. 5. The assumed prices for electricity, availability for local (charging
station and service site), and national flexibility services over a week.

chance constraints with an ϵ = 5% violation probability.

B. The flexibility envelope

This section focuses on evaluating the flexibility envelope
through which aggregators can make robust flexibility bids
in intraday DR markets according to their risk management
strategies.

The optimal charging schedule resulting from the chance-
constrained, multi-site optimization for a single EV over the
time horizon 9am-11pm is shown in Fig. 7. The EV was at
the charging station (indicated in the grey box area), on a trip
and at the service site (in the red and light blue box area),
respectively. Following the trips, the battery SoC decreased
due to the energy consumed for travelling. When the EV
charges, it gets paid for offering availability to reduce its
charging and increase its discharging. As a result, the EV
charged at the service site when the price for local service
provision was significantly higher. Subsequently, the EV
charged again upon returning to the charging station in the
evening, as constrained by Eq. (9). The optimization resulted
in a similar charging schedule for the onsite battery, which
provided only national service availability, as the prices for
such services were always higher than the local ones at
the charging station. Simultaneously, the chance-constrained
optimization aimed at reducing the overall electricity costs
of the charging station, as shown in Fig. 8. No electricity
was imported from the grid when the PV generation was
sufficient to satisfy the load. Subsequently, when no PV
generation was available in the evening, the battery was
first discharged to meet the load as the electricity price was
high. Finally, when the electricity price decreased, the battery
was charged by importing energy from the grid to fulfil the
constraint in Eq. (19).

The chance-constrained, multi-site optimization resulted
in a net revenue (i.e. revenues net of electricity costs) of
CHF 3′142 for August 2022. The available flexible energy
from EVs and the onsite battery to bid in DR markets is
aggregated and shown in Fig. 9 in the form of a flexibility
envelope for the whole considered month. Here, the envelope
resulting from the proposed chance-constrained optimization,
indicated as approach i), was compared against: ii) the naive
forecast-based approach in which the forecasts are assumed
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7Fig. 7. The optimal charging schedule for a single EV over the time
horizon 9am-11pm.

to be perfectly accurate and considered in the deterministic
optimization, iii) the deterministic approach in which real
measurements are used as inputs to the optimization, pro-
viding the true flexibility potential.

The proposed approach i) resulted in more conservative
estimates of the available flexible energy, preventing over-
bidding in DR markets, thus avoiding penalties. The errors
in the hourly estimates of the available flexible energy for
approaches i)-ii) against the true values provided by approach
iii) are shown in Fig. 10, highlighting the better performance
of the proposed chance-constrained optimization in terms
of estimating the true flexibility potential. In terms of net
revenues, the proposed approach i) decreased the revenues
only by CHF 11 compared to the true revenues resulting
from approach iii). Conversely, approach ii) increased the
revenues by CHF 114, but this increase needs to be offset
by overbidding penalties, resulting in a significantly lower
net revenue.

Additional studies were conducted to investigate the best
technology, i.e. unidirectional smart charging (V1G) and
V2G, to fully exploit the demand-side flexibility and quantify
the cost-benefits of a more interactive involvement of EV
users in flexibility provision schemes. Using the proposed
multi-site, chance-constrained optimization, different settings
were compared in terms of net revenues against the described
baseline approach with V2G technology in Table 10: i) only
V1G was available, ii) the EVs were flexible on arrival and
departure times by 1 hour, iii) EVs were flexible on arrival
and departure times by 2 hours. The results highlighted
that with a small fleet of 4 EVs the net revenues over a
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Fig. 8. The cost-optimization for the charging station over the time horizon
9am-11pm.
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Fig. 9. The flexibility envelope for August 2022 according to three different
approaches.

month could be increased by up-to 14% when considering
V2G technology and by up-to 5% by asking the EV users
in advance if they would be flexible with their parking
times. This resulted in a single user’s revenue increasing by-
up to CHF 40 in a month, significantly incentivizing their
participation in flexibility provision. Such revenue increase
could be interpreted as the minimum discomfort price of EV
users, i.e. the minimum price at which individual EV users
would be willing to reschedule their trips in exchange for
higher revenues.

C. The real-time performance

In this section, the performance of the MPC controller
in responding to real-time measurements and acceptance
of the intraday market bids was analzyed. In Fig. 11, the
changes in the aggregated SoC of the EVs and onsite battery
following the acceptance of the bids are shown over a week.
It was assumed that one bid was accepted per day. It is
worth noting the main discrepancies relate to the provision
of the bid flexible energy and the following recharging of
the batteries. This resulted in an energy cost increase of CHF
516 as no revenues for flexibility utilization were considered.
However, such an increase was significantly lower than the
net revenue resulting from providing availability as a service
in intraday DR markets, highlighting the cost-benefits of
providing flexibility services for the aggregators.
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TABLE I
COMPARISON OF NET REVENUES WITH DIFFERENT TECHNICAL AND

SOCIAL SETTINGS

Settings

Baseline V1G 1h Flex
User

2h Flex
User

Net revenue [CHF]
3′142 2′692 3′207 3′300

− (−14%) (+2%) (+5%)

D. Discussion

The proposed novel operational tool reduced the energy
costs of EV aggregators with PV-battery charging station and
enabled the generation of new revenues from the provision
of demand-side flexibility. The case study showed that such
new revenues offset and exceeded the energy costs of the
charging station, resulting in a net revenue of CHF 3′142
over a specific month. Considering the uncertainty when
quantifying the available flexible energy to bid in markets
slightly reduced the revenues because of the increased ro-
bustness of the approach, but prevented overbidding. The
additional studies on the optimal technical and social settings
to fully exploit the demand-side flexibility showed that the
net revenues could be increased by up to 14% over a month
using V2G technology and by up to 5% with EV users flexi-
ble with their parking times, resulting in an individual user’s
revenue increase of up to CHF 40. While the acceptance
of market bids marginally increased the energy costs of the
charging station, the resulting net revenues from flexibility
provision significantly surpassed such an increase.

The proposed approach still has a few limitations that need
to be considered. The resulting net revenues strictly depend
on the assumed market framework, electricity, and flexibility
service prices. While flexibility markets show promise in
managing local congestion or supporting the transmission
grids, only a few pilot projects currently exist, and it is
challenging to foresee their development in the coming years.
With the integration of more renewable generation sources
into future power systems, leading to higher operational
uncertainty, the prices of ancillary services, and consequently
the revenues from flexibility provision, are likely to rise [32].
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Fig. 11. The aggregated SoC of the EVs and onsite battery over a week
with and without accepted intraday market bids.

Nevertheless, the proposed tool can adapt to various market
frameworks and prices, technical and social settings, con-
sistently leading to reduced energy costs and new revenue
generation. The case study only showed the benefits of using
a fleet of 4 EVs, but the tool can easily scale to larger fleets as
the approach iteratively solves a deterministic optimization
with tightened constraints and the resolution of a determin-
istic optimization generally requires only a few seconds,
specifically less than 60s in this work using a standard
machine with 12 CPU cores and 64GB RAM. A constant
charging power per hour was assumed for both the EVs
and onsite battery. However, in practice, the charging power
is higher initially and gradually decreases as the battery
approaches the maximum SoC. In terms of predictive model
training for onsite load and PV generation, and EV charging
sessions, a single data split was used, but performing more
random splits might better prevent biased models. However,
the models were also tested on different validation sets, such
as different months of the year, showing similar predictive
performance. Similarly, training the models using historical
data from several years may enhance such performance as
allows to capture seasonal or yearly patterns. However, using
larger training datasets can significantly increase the training
time, posing a challenge for real-time applications where the
predictive models would need to be periodically updated to
incorporate newly collected data. There are several solutions
to reduce the training computational times, such as the
feature selection approach we used in this work. Such an
approach can significantly reduce the training computational
times however, it requires a large number of CPU cores
to quickly identify the relevant features. In all our studies,
a zero sell price for energy was assumed. Making energy
arbitrage profitable could further increase the net revenues,
albeit with higher battery cycling. Similarly, the aggregator’s
net revenues could be significantly enhanced if the flexibility
provision in the form of utilization is remunerated. Finally,
the study overlooked the temporal-spatial analysis of flexi-
bility provision, focusing on availability remunerations while
disregarding the potential risk of insufficient flexible capacity
for future time slots. Nonetheless, diversifying the assets
in the bidding pool and implementing a risk management



strategy could help mitigate this risk.

V. CONCLUSION

The electrification of urban mobility can support grid
decarbonization through the provision of demand-side flexi-
bility. However, there is a need for novel operational tools for
EV aggregators to facilitate such provision while reducing
their energy costs. This paper proposes leveraging data-
driven techniques and physics models in a novel tool for
optimal V2X operation of EV fleets with a PV-battery
charging station. The tool is designed to minimize aggre-
gator’s energy costs and maximize new revenues from the
provision of flexibility, by providing risk-aware flexibility
quantification, market bids, and real-time control decisions.
Using a case study on the NEST and move demonstrators
at Empa, in Switzerland, we showed that the revenues
stemming from the provision of flexibility in the form of
availability significantly exceeded the energy costs of the
charging station, even when the market bids were accepted
in real-time operation with no revenues from utilization as
a service. Results also showed that V2G technology and a
more interactive involvement of EV users in the provision
schemes can significantly enhance the overall cost-benefits.
This highlights the need for implementing new incentives for
the installation of V2G chargers and reshaping the regulatory
framework to incentivize active participation of EV users,
either by staying within the boundaries of their comfort or
by appropriately compensating for their discomfort. Future
work will focus on sector coupling by equipping the charging
station with both electrical and thermal resources, enabling a
more comprehensive cost-benefit and feasibility analysis of
V2X operations for demand-side flexibility provision.
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