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Abstract

This technical note presents proof of the convergence of the Alternating Direction Method of Multipliers (ADMM) for addressing

the sharing problem when applied in conjunction with two algorithms: 1) the stochastic STEP-GP algorithm and 2) its variant

named LGP, which includes adaptive uniform quantization. For the case using LGP, the coordinator can assign different

quantization resolutions at each iteration and we assume that the number of bits that can be assigned is unrestricted and can

go to infinity. This document describes and analyzes the two methods for integrating learning and uniform quantization into

the ADMM to reduce its communication overhead and a general formulation of their communication decision method. The

problems are formulated for a multi-agent setting.
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Abstract

This technical note presents proof of the convergence of the Alternating Direction Method of Multipliers
(ADMM) for addressing the sharing problem when applied in conjunction with two algorithms: 1) the
stochastic STEP-GP algorithm and 2) its variant named LGP, which includes adaptive uniform quantization.
For the case using LGP, the coordinator can assign different quantization resolutions at each iteration and
we assume that the number of bits that can be assigned is unrestricted and can go to infinity. This document
describes and analyzes the two methods for integrating learning and uniform quantization into the ADMM
to reduce its communication overhead and a general formulation of their communication decision method.
The problems are formulated for a multi-agent setting.

1. Introduction

This technical note serves as a complementary discussion for our previous works [1] and [2]. In those
works, the Alternating Direction Method of Multipliers (ADMM) is used to solve the sharing problem in a
multi-agent setting. The main goal in both cases is to reduce the ADMM communication overhead. The work
in [1] extends the work in [3] which proposed an approach called STEP (STructural Estimation of Proximal
operator) that relies on the concept of the Moreau Envelope. The STEP approach estimates the unknown
gradient of the Moreau Envelope by constructing a set of possible gradients based on past inforamtion and
then selecting a gradient that is “most likely” the true gradient. The work presented in [1] improved STEP
by learning the Moreau envelopes corresponding to the local proximal operators with GP, which are updated
online from past query data and used to predict the gradient. The resulting algorithm of this work was
named STEP-GP.

On the other hand, in [2] the work in [1] was extended to consider uniform quantization on the agent’s
reply to the coordinator. Following an analysis of the statistical properties of the uniform quantization noise,
we were able to derive a mechanism to adapt the uniform quantizer relying on the regression’s predicted mean
and covariance. This adaptation is performed so the quantization error can be approximated to follow a
uniform distribution and the correlation of such error with the quantizer’s input can be considered negligible.
However, the inclusion of uniform quantization violates the condition for GP where all the components are
considered Gaussian. For that reason, we derived a new regression scheme constructed upon the concept of a
Linear Minimum Mean Square Estimator (LMMSE). To further ensure the conditions for the uncorrelation
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between quantizer’s input and error, orthogonal transformation and additive dithering were included. The
resulting algorithm was named Linear GP (LGP).

Those works present extensive simulations proving that a significant communication overhead can be
obtained by both algorithms. However, we did no prove the convergence of both algorithms analytically. In
this work, we complement our previous research by presenting convergence analysis for STEP-GP and LGP.

We initiate this note with a summary of key results pertaining to the standard ADMM and the stochastic
inexact ADMM that are important for our derivations. Subsequently, we delve into a brief discussion on
the learning-integrated ADMM, employing adaptive uniform quantization for the sharing problem. Finally,
we conduct convergence analyses for the STEP-GP and LGP algorithms where we prove that the expected
value of the ADMM residual goes to zero as the algorithmic iterations go to infinity and do so at a geometric
rate. As a remark, for the LGP convergence analysis, we assume that the quantization resolution can be
varied by the coordinator which differs from the results in [2] where the quantization resolution was fixed.

2. Preliminary Convergence Results

2.1. Generalized ADMM Convergence Analysis

This subsection summarizes useful results from [4]; however, because the notations used in [4] are different
from those used in our previous papers [1] and [2], they will be adjusted to match with our notations.

The results from [4] are for the generalized ADMM algorithm solving the general problem:

minimizex,y f(x) + h(y)

subject to Ax+By = c

The algorithm is different from the standard ADMM by introducing smoothing terms based on the norms.
Let the augmented Lagrangian be

L(x, y,m) = f(x) + h(y)−m⊤(Ax+By − c) +
1

2ρ
∥Ax+By − c∥22

Choose Q ⪰ 0 and a symmetric matrix P (possibly indefinite). Then each algorithm’s iteration consists of:

yk+1 = argminyL(xk, y,mk) +
1

2
∥y − yk∥2Q

xk+1 = argminxL(x, yk+1,mk) +
1

2
∥x− xk∥2P

mk+1 = mk − ζ

ρ
(Axk+1 +Byk+1 − c).

Note that the standard ADMM is a special case of the generalized ADMM where P = Q = 0 and ζ = 1.
Let s = [x, y,m] with corresponding versions s∗ for the optimal solutions and sk for the algorithm

iterations. Also, define the following matrices:

P̂ = P + (1/ρ)A⊤A, G =

 P̂
Q

ρ
ζ Ip


where p is the dimension of m. For standard ADMM, with P = Q = 0 and ζ = 1, we have

P̂ = βA⊤A, G =

 βA⊤A
0

ρIp

 = (1/ρ)G⊤
0 G0, G0 =

 A
0

ρIp


Also define the norm ∥s∥G =

√
s⊤Gs. Assumptions 1 and 2 in [4] are standard for ADMM convergence.

2



• Assumption 1: There exists a saddle point s∗ = (x∗, y∗,m∗) to the problem, namely, x∗, y∗, and m∗

satisfying the KKT conditions:
A⊤m∗ ∈ ∂f(x∗)
B⊤m∗ ∈ ∂h(y∗)

Ax∗ +By∗ − c = 0.

• Assumption 2: Functions f and h are convex.

Under these assumptions and another technical assumption, Theorem 3.1 in [4] provides a bound on the
convergence rate of generalized ADMM. The theorem is reproduced below.

Theorem 1 (Theorem 3.1 in [4]). Assume Assumptions 1 and 2, ζ = 1, and that sk of the Generalized
ADMM is bounded (see remark below). For all scenarios in Table 1, there exists δ > 0 such that

∥sk − s∗∥2G ⩾ (1 + δ)∥sk+1 − s∗∥2G

Remark 1. On the boundedness of {sk}, Remark 2.2 in [4] provides several conditions. For example, if
the objective functions are coercive then the boundedness is guaranteed. Also, for the standard ADMM, the
boundedness is guaranteed if A and B have full column rank.

We now apply the above results to standard ADMM and more specifically the sharing problem, as defined
in [5, 6] having the form

minimize

n∑
i=1

fi (xi) + h

(
n∑

i=1

xi

)
. (1)

Theorem 2.2 in [4] states the convergence of {sk} to the KKT point. In particular, for the standard ADMM
as a special case of the generalized ADMM, under the same assumptions as above, we have mk → m∗,
Axk → Ax∗, and Byk → By∗. The sharing problem is a special case of the standard ADMM problem with
A = I and B = −I; therefore we have uk → u∗, xki → x∗i , and ȳ

k → ȳ∗ (or yki → y∗i ). Note that here u is
just the scaled version of the dual variables m.

Applying Theorem 1 to the standard ADMM and the sharing problem, we have:

• For standard ADMM: there exists δ > 0 such that∥∥∥∥[ A(xk − x∗)
uk − u∗

]∥∥∥∥2
2

⩾ (1 + δ)

∥∥∥∥[ A(xk+1 − x∗)
uk+1 − u∗

]∥∥∥∥2
2

• For the sharing problem with standard ADMM: there exists δ > 0 such that∥∥∥∥[ xki − x∗i
uk − u∗

]∥∥∥∥2
2

⩾ (1 + δ)

∥∥∥∥[ xk+1
i − x∗i
uk+1 − u∗

]∥∥∥∥2
2

,

for all i stacked vertically.

2.2. Stochastic inexact ADMM (SI-ADMM) Convergence Analysis

This subsection summarizes the stochastic inexact ADMM for the general ADMM problem and its
convergence result in [7]. The paper considers the general stochastic ADMM problem (of which the sharing
problem is a special case):

minimizex,y E[f̃(x, ξ)] + E[h̃(y, ξ)]
subject to Ax+By = c

for some random variable ξ with known distribution. This problem can be solved by the standard ADMM if
f(x) = E[f̃(x, ξ)] and h(y) = E[h̃(y, ξ)] can be calculated analytically and easily. However, this is not true in

3



many cases, and f(x) and g(y) can only be approximated. This means that the steps of the ADMM where the
proximal operators of f and g are evaluated cannot be done exactly. For example, argminxf(x)+

1
2ρ∥x−zk∥

2
2

cannot be solved exactly easily. To overcome this issue, the paper proposes to apply a sampled gradient
descent approach to solve the proximal minimization problems. For instance, given a sequence of Nx

k samples
{ξxk,1, . . . , ξxk,Nx

k
} of ξ, then the above stochastic proximal minimization can be solved approximately by

iterative gradient descent steps: xi+1
k+1 = xik+1 − γ∇x

(
E[f̃(x, ξxk,i)] +

1
2ρ∥x− vk∥22

)
. It can be shown that as

Nx
k increases, the error between x

Nx
k

k+1 and the true solution x⋆k+1 decreases and can be bounded.
Given the above approach, the stochastic ADMM algorithm is modified as follows (simplified version of

Algorithm 2 SI-ADMM in [7]):

yk+1 is such that E[∥yk+1 − y∗k+1∥2] ⩽ ηk+1

xk+1 is such that E[∥xk+1 − x̃∗k+1∥2] ⩽ ηk+1

mk+1 = mk − γρ(Axk+1 +Byk+1 − c)

where y∗k+1 is the unknown true solution of the generalized proximal minimization (with an extra smoothing
term), x̃∗k+1 is the unknown true solution of the generalized proximal minimization that uses yk+1 instead of
y∗k+1 (hence the tilde).

The key theorem of the papers can be stated below (Theorem 2 in [7]).

Theorem 2. Consider the above SI-ADMM algorithm. Under certain technical assumptions (see [7]) and∑∞
k=1

√
ηk <∞, we have that ∥sk − s∗∥G → 0 almost surely as k → ∞.

Here, s = [x, y, u] and G is a matrix derived in the work on generalized ADMM [4].

Lemma 1. Let {vk} be a sequence of nonnegative random variables, where E[v0] < ∞, and let {uk} and
{µk} be deterministic scalar sequences such that:

E[vk+1|v0,...,vk ] ⩽ (1− uk)vk + µk a.s. ∀k ⩾ 0,
0 ⩽ uk ⩽ 1, µk ⩾ 0, ∀k ⩾ 0,

∑∞
k=0 uk = ∞,

∑∞
k=0 µk <∞, limk→∞

µk

uk
= 0.

Then vk → 0 almost surely as k → ∞.

3. Problem Formulation

In the setting of a multi-agent optimization problem where the structure resembles the sharing problem
as defined in (1), each of the n agents has local decision variables xi ∈ Rp and a convex local cost function
fi: Rp 7→ R. Their objective is to minimize the overall system cost, which comprises their local costs and a
convex shared global cost function h: Rp 7→ R. However, due to privacy concerns, each agent only knows its
own cost function and cannot share it with other agents or the coordinator. The problem is solved through
information exchange solely between the coordinator and the agents.

The problem presented in (1) can be solved with the ADMM. By introducing auxiliary variables yi for
each xi, the problem can be reformulated equivalently as

minimize

n∑
i=1

fi (xi) + h

(
n∑

i=1

yi

)
subject to xi − yi = 0, ∀i = 1, . . . , N .

Because the agents must keep their local cost function fi private, each agent i only provides the solution to
the following local proximal minimization problem to the coordinator

prox 1
ρ fi

(zki ) = argmin
xi∈Rp

{
fi(xi) +

ρ

2
∥xi − zki ∥2

}
, (2)
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in response to a value (a query) zki sent to it by the coordinator at iteration k, where ρ > 0 is a penalty
parameter. The ADMM works in a query-response manner as follows. At iteration k, a query point zki is
generated by the coordinator and sent to an agent i. Each agent solves its proximal minimization problem at
its query point zki and replies with the response vector prox 1

ρ fi
(zki ) to the coordinator. The coordinator

then updates the dual variables and generates the query points at the next iteration. Mathematically, each
ADMM iteration k involves the following updates:

1. The coordinator updates the average of yi

ȳk+1 = argmin
ȳ∈Rp

{
h(nȳ) + (nρ/2)∥ȳ − x̄k − uk∥2

}
then sends a query zki = xki − x̄k + ȳk+1 − uk to each agent i.

2. Each agent i updates and sends its response xk+1
i = prox 1

ρ fi

(
zki
)
to the coordinator.

3. The coordinator calculates the average x̄k+1 = (1/n)
∑n

i=1 x
k+1
i and updates the scaled dual vector

uk+1 = uk + x̄k+1 − ȳk+1 .

This process is repeated until convergence is achieved or until a maximum number of iterations is reached.
The concept of the Moreau envelope of a function f underlies the STEP approach [3], which is the

foundation of the STEP-GP algorithm. For brevity, we drop the subscript i and the superscript k in the

subsequent equations. For 1/ρ > 0, the Moreau envelope f
1
ρ of f is defined as

f
1
ρ (z) = min

x∈Rn

{
f(x) +

ρ

2
∥x− z∥2

}
.

When f is a convex function, the Moreau envelope f
1
ρ is convex and differentiable with Lipschitz continuous

gradient with constant ρ. Moreover, the unique solution to the proximal minimization prox 1
ρ f
(z) is [8,

Proposition 5.1.7]

prox 1
ρ f

(z) = z − 1

ρ
∇f

1
ρ (z). (3)

Consequently, the gradient ∇f
1
ρ (z) is all that is required to reconstruct the optimizer of (2) following

from (3).

The STEP approach estimates the unknown gradient ∇f
1
ρ (z) at any query point z by constructing a set

of possible gradients at z based on past queries and then selecting a gradient that is “most likely” the true
gradient. The work presented in [1] improved STEP by learning the Moreau envelopes corresponding to the
local proximal operators with GP, which are updated online from past query data and used to predict the

gradient ∇f
1
ρ (z) for estimating the proximal operators (2) of the agents by (3). This approach is named

STEP-GP.
The STEP and STEP-GP methods only consider reducing the number of agents communicating simul-

taneously but do not consider the payload size of each transmission. Our approach named LGP considers
adding adaptive uniform quantization as explained in our previous work [2]. We assume in this work, that the
adaptation of the quantizer is not only done over the middle point and the window length but also over the
quantization resolution. This means that the coordinator can adjust the bits used for quantization as needed.
The LGP approach considers first defining the communication decision variable for agent i at iteration k as

γki =

{
1, if agent i is queried

0, otherwise.

When γki = 1, the query zki is sent to agent i to get the quantized value of ∇f
1
ρ

i (zki ). On the contrary, when
γki = 0, we use the predicted value µk

i (z
k
i ) given by the LGP regression. We then define an expression βk

i as

βk
i = γki Q(∇f

1
ρ

i (zki )) + (1− γki )µ
k
i (z

k
i ).

5



Contrary to the regular STEP-GP algorithm, we always have a source of inexactness either from the LGP
prediction when there is no query or from the adaptive uniform quantization when a query is made. This is
because the decision mechanism used in [2], where we aim for the overall inexactness to be bounded by ψk.
The value of the threshold ψk determines which agents to be queried This decision mechanism is expressed
in the following optimization problem: However, because of the decision mechanism used expressed in the
optimization problem:

minimize
γk,bk

n∑
i=1

[
(γki )b

k
i

]
subject to bki ∈ N ,

γki ∈ {0, 1},
n∑

i=1

[
γki

θ

22b
k
i

trace(Σk
i (z

k
i )) + (1− γki )trace(Σ

k
i (z

k
i ))

]
< ψk.

(4)

This threshold will decrease at each iteration to keep up with the decrease of trace(Σk
i (z

k
i )). Also, it’s

important to point out that γki
θ

22b
k
i
< (1− γki ) and, depending on the value of bki , the uncertainty coming

from the prediction might be much bigger than the one coming from quantization for a particular agent.
Furthermore, bki is assumed to be unbounded so its value can be as big as necessary to satisfy the constraint.
Thus, the value of this variable can go to infinity making the quantization uncertainty vanish if necessary.

Finally, the sharing ADMM expression considering the communication reduction can be expressed as:

ȳk+1 = argmin
ȳ∈Rp

{
h(nȳ) + (nρ/2)∥ȳ − x̄k − uk∥2

}
xk+1
i = zki − (1/ρ)βk

i

uk+1 = uk + x̄k+1 − ȳk+1. (5)

4. Convergence Analysis of the STEP-GP algorithm

In this section, we present a convergence analysis for the STEP-GP algorithm presented in [1]. This
algorithm will have its ADMM updates similar to (5) when solving the sharing problem. However, it considers
the following problem for its querying decision-making

minimize
γk

∥γk∥1

subject to γki ∈ {0, 1}.
n∑

i=1

[
(1− γki )trace(Σ

k
i (z

k
i ))
]
< ψk,

(6)

Here, we want to minimize the number of communicating agents while keeping the global prediction
uncertainty bounded. The threshold ψk decreases at each iteration, ensuring that the uncertainty given to
the system also reduces over time until it eventually vanishes. However, at the moment the threshold ψk

decreases too much then we will query all agents at each iteration impacting the communication reduction in
the last rounds before reaching convergence.

4.1. Preliminaries

Define sk = [x̄k; ȳk;uk] and that Ik
i collects the query information from each agent i up to iteration

k. The STEP-GP algorithm defines the mapping Γk+1 : sk → sk+1 which gives a mixture of inexact and
exact values depending on the value of the decision variable γki . On the other hand, the exact ADMM
algorithm defines the exact mapping Γk+1

∗ : sk → sk+1
∗ where sk+1

∗ = [x̄k∗; ȳ
k
∗ ;u

k
∗] are the exact values. Note

that ȳ∗
k = ȳk, therefore it is always known exactly.

6



The convergence proof is constructed upon the querying policy in (6) and the mean square error between
the inexact and exact values of xk+1

i and uk+1. Those expressions are given by:

• We know that (xk+1
i − xk+1

∗,i ) = (1/ρ)(βk+1
i − βk+1

∗,i ), and it can be shown that E[||xk+1
i − xk+1

∗,i ||2|γki ] =
trace(Cov(xk+1

i − xk+1
∗,i |γki )) = (1/ρ)2((1− γki )trace(Σ

k
i (z

k
i ))). Thus,

E[||xk+1 − xk+1
∗ ||2|γk] = (1/ρ)2

n∑
i=1

(
(1− γki )trace(Σ

k
i (z

k
i ))
)

• We can express uk+1 = −(1/ρ)β̄k, so

E[||uk+1 − uk+1
∗ ||2|γk] =

(
(1/ρ)

n

)2 n∑
i=1

(
(1− γki )trace(Σ

k
i (z

k
i ))
)

(7)

• Due to the querying policy defined in problem (6), we have that

E[||xk+1 − xk+1
∗ ||2|γk] ≤ (1/ρ)2ψk

4.2. Upper-bound on the expected value of the ADMM residual for STEP-GP

In each iteration, we consider the following variables: sk is the algorithm’s state at the beginning; sk+1 is
the output of the STEP-GP algorithm, which is a random variable; sk+1

∗ is implicitly produced by the exact
ADMM algorithm. Therefore, the STEP-GP algorithm produces a sequence of samples of random variables
{sk}.

Let s∗ be the KKT solution (which the exact ADMM converges to). Note that s∗ is a fixed point of the
mapping Γ∗, that is s∗ = Γ∗(s∗). Define ŝk = [xk;uk], which is part of sk (excluding ȳk). We will consider
the residual ϵk = ||ŝk − ŝ∗||2 = ||sk − s∗||G . Henceforth, we will omit the conditioning on γk for brevity. Let
Ik denote the total collected information, i.e., the total history of the queries, of all agents i up to iteration
k; in other words, Ik =

⋃
i Ik

i .

Theorem 3. Consider the STEP-GP algorithm for the sharing problem. Suppose the 3 assumptions in [7]

hold, and
∑∞

i=1

√
ψk <∞. Then E[ϵk+1|Ik] is bounded by

E[ϵk+1|Ik] ≤ c
√
ψk +

1√
1 + δ

E[ϵk|Ik−1],

where c = (1/ρ)
√

(1 +
(

1
n2

)
).

Proof: This proof follows the proof of Theorem 2 in [7]. We first develop a bound on E[||sk+1 − s∗||G].

E[||sk+1 − sk+1
∗ ||G|Ik] = E

√√√√ n∑
i=1

||xk+1
i − xk+1

∗,i ||22 + ||uk+1 − uk+1
∗ ||22

∣∣∣∣Ik



≤

√√√√ n∑
i=1

E[||xk+1
i − xk+1

∗,i ||22|Ik] + E[||uk+1 − uk+1
∗ ||22|Ik]

=

√
(1/ρ)2ψk + E[||uk+1 − uk+1

∗ ||22|Ik]

where the inequality comes from applying Jensen’s inequality, the concavity of the square root, and the
querying policy condition. For the second term we apply (7) and the constraint in (4), giving that

E[||uk+1 − uk+1
∗ ||22|Ik] ≤

(
(1/ρ)

n

)2

ψk.

7



Therefore,

E[||sk+1 − sk+1
∗ ||G|Ik] ≤

√
(1/ρ)2ψk +

(
(1/ρ)

n

)2

ψk = c
√
ψk,

where c = (1/ρ)
√
(1 +

(
1
n2

)
).

Now, consider the residual ϵk. We have that

E[ϵk+1|Ik] = E[||sk+1 − s∗||G|Ik] = E[||sk+1 − sk+1
∗ + sk+1

∗ − s∗||G|Ik]

≤ E[||sk+1 − sk+1
∗ ||G|Ik] + E[||Γ∗(sk)− Γ∗(s∗)||G|Ik]

≤ c
√
ψk +

1√
1 + δ

E[||sk − s∗||G|Ik]

for some δ > 0, where the last inequality comes from Theorem 3 in [4]. It follows that

E[ϵk+1|Ik] ≤ c
√
ψk +

1√
1 + δ

E[ϵk|Ik−1].

□

4.3. Rate of Convergence and Convergence of the Expected Value of the Residual of STEP-GP

In the following lines, we prove that if ψk decreases geometrically then the expected value of the mean
square error of the residual converges to zero as k → ∞ and does so at a geometric rate. First, we restate
Lemma 4 proven in [9] as:

Lemma 2. Given a function f(z) = zwz where w < 1. Then, for all z ≥ 0, we have that

zwz < Dqz,

where w < q < 1 and D > 1
ln(q/w)e .

This lemma makes the following Theorem to hold:

Theorem 4. Consider the STEP-GP algorithm. Suppose that Theorem 3 holds and
√
ψk = (α)k for some

0 < α < 1 (note that (α)k refers to a constant raised to the power k). Then for every k > 0, we have that

E[εk|Ik−1] ≤ (cD + ε0)(q)k,

where q > r ≜ max( 1√
1+δ

, α) and D is chosen such that D > 1
e ln(q/r) . Furthermore, E[εk|Ik−1] → 0 as

k → ∞.

Proof: Let a = 1√
1+δ

. Since
√
ψk = (α)k where α < 1, we have the following sequence of inequalities based

on the bound E[εk+1|Ik] ⩽ c(α)k + aE[εk|Ik−1].

E[εk+1|Ik] ⩽ aE[εk|Ik−1] + c(α)k ⩽ (a)2E[εk−1|Ik−2] + ac(α)k−1 + c(α)k

⩽ (a)3E[εk−2|Ik−3] + (a)2c(α)k−2 + ac(α)k−1 + c(α)k

...

⩽ (a)k+1ε0 + c

k∑
j=0

(a)k−j(α)j ⩽ (r)kε0 + c

k∑
j=0

(r)k

= (ε0 + c(k + 1))(r)k ⩽ (ε0 + ck)(r)k

⇒ E[εk|Ik−1] ⩽ (ε0 + c(k − 1))(r)k−1.

From Lemma 2, it can be shown that there exist scalars q and D satisfying q ∈ (r, 1) and D > 1/ ln((q/r)e)
such that

E[εk|Ik−1] ⩽ ε0(r)k−1 + c(k − 1)(r)k−1 < ε0(r)k−1 + cD(r)k−1 < (ε0 + cD)(q)k−1.

Finally, since q < 1, it follows that as k → ∞ then E[εk|Ik−1] → 0. □
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5. Convergence Analysis of the LGP algorithm with Unbounded Quantization Resolution

In this section, we present a convergence analysis for the LGP algorithm presented in [2]. However, we
consider the case where the coordinator can vary the quantization resolution at each iteration and it is not
fixed as in our previous study. Moreover, we assume that we can assign an infinitely large quantization
resolution if needed. At the end of this section, we provide a brief discussion on what happens when there is
a maximum number of bits that can be assigned for quantization.

5.1. Preliminaries

The mapping and definitions of s∗, sk∗, and s
k are the same as in Section 4.1.

The convergence proof is constructed upon the querying policy in (4) and the mean square error between
the inexact and exact values of xk+1

i and uk+1. Those expressions are given by:

• We know that (xk+1
i − xk+1

∗,i ) = (1/ρ)(βk+1
i − βk+1

∗,i ), and it can be shown that E[||xk+1
i − xk+1

∗,i ||2|γki ] =
trace(Cov(xk+1

i − xk+1
∗,i |γki )) = (1/ρ)2(γki

θ

22b
k
i
trace(Σk

i (z
k
i )) + (1− γki )trace(Σ

k
i (z

k
i ))). Thus,

E[||xk+1 − xk+1
∗ ||2|γk] = (1/ρ)2

n∑
i=1

(
γki

θ

22b
k
i

trace(Σk
i (z

k
i )) + (1− γki )trace(Σ

k
i (z

k
i ))

)

• We can express uk+1 = −(1/ρ)β̄k, so

E[||uk+1 − uk+1
∗ ||2|γk] =

(
(1/ρ)

n

)2 n∑
i=1

(
γki

θ

22b
k
i

trace(Σk
i (z

k
i )) + (1− γki )trace(Σ

k
i (z

k
i ))

)
(8)

• Due to the querying policy defined in the problem (4), we have that

E[||xk+1 − xk+1
∗ ||2|γk] ≤ (1/ρ)2ψk

5.2. Upper-bound on the expected value of the ADMM residual

In each iteration, we consider the following variables: sk is the algorithm’s state at the beginning; sk+1

is the output of the LGP algorithm, which is a random variable; sk+1
∗ is implicitly produced by the exact

ADMM algorithm. Therefore, the LGP algorithm produces a sequence of samples of random variables {sk}.
Let s∗ be the KKT solution (which the exact ADMM converges to). Note that s∗ is a fixed point of the

mapping Γ∗, that is s∗ = Γ∗(s∗). Define ŝk = [xk;uk], which is part of sk (excluding ȳk). We will consider
the residual ϵk = ||ŝk − ŝ∗||2 = ||sk − s∗||G . Henceforth, we will omit the conditioning on γk for brevity. Let
Ik denote the total collected information, i.e., the total history of the queries, of all agents i up to iteration
k; in other words, Ik =

⋃
i Ik

i .

Theorem 5. Consider the LGP algorithm for the sharing problem. Suppose the 3 assumptions in [7] hold,

and
∑∞

k=1

√
ψk <∞. Then E[ϵk+1|Ik] is bounded by

E[ϵk+1|Ik] ≤ c
√
ψk +

1√
1 + δ

E[ϵk|Ik−1],

where c = (1/ρ)
√

(1 +
(

1
n2

)
).

Proof: This proof follows the proof of Theorem 2 in [7]. We first develop a bound on E[||sk+1 − s∗||G].

E[||sk+1 − sk+1
∗ ||G|Ik] = E

√√√√ n∑
i=1

||xk+1
i − xk+1

∗,i ||22 + ||uk+1 − uk+1
∗ ||22

∣∣∣∣Ik
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≤

√√√√ n∑
i=1

E[||xk+1
i − xk+1

∗,i ||22|Ik] + E[||uk+1 − uk+1
∗ ||22|Ik]

=

√
(1/ρ)2ψk + E[||uk+1 − uk+1

∗ ||22|Ik]

where the inequality comes from applying Jensen’s inequality, the concavity of the square root, and the
querying policy condition. For the second term we apply (8) and the constraint in (4), giving that

E[||uk+1 − uk+1
∗ ||22|Ik] ≤

(
(1/ρ)

n

)2

ψk

. Therefore,

E[||sk+1 − sk+1
∗ ||G|Ik] ≤

√
(1/ρ)2ψk +

(
(1/ρ)

n

)2

ψk = c
√
ψk,

where c = (1/ρ)
√
(1 +

(
1
n2

)
).

Now, consider the residual ϵk. We have that

E[ϵk+1|Ik] = E[||sk+1 − s∗||G|Ik] = E[||sk+1 − sk+1
∗ + sk+1

∗ − s∗||G|Ik]

≤ E[||sk+1 − sk+1
∗ ||G|Ik] + E[||Γ∗(sk)− Γ∗(s∗)||G|Ik]

≤ c
√
ψk +

1√
1 + δ

E[||sk − s∗||G|Ik]

for some δ > 0, where the last inequality comes from Theorem 3 in [4]. It follows that

E[ϵk+1|Ik] ≤ c
√
ψk +

1√
1 + δ

E[ϵk|Ik−1].

□

5.3. Rate of Convergence and Convergence of the Expected Value of the Residual

In the following lines, we prove that if ψk decreases geometrically then the expected value of the mean
square error of the residual converges to zero as k → ∞ and does so at a geometric rate. Considering
Lemma 2, we formulate the following theorem:

Theorem 6. Consider the LGP algorithm. Suppose that E[εk+1|Ik] ⩽ c
√
ψk + 1√

1+δ
E[εk|Ik−1] holds and√

ψk = (α)k for some 0 < α < 1 (note that (α)k refers to a constant raised to the power k). Then for every
k > 0, we have that

E[εk|Ik−1] ≤ (cD + ε0)(q)k,

where q > r ≜ max( 1√
1+δ

, α) and D is chosen such that D > 1
e ln(q/r) . Furthermore, E[εk|Ik−1] → 0 as

k → ∞.

Proof: Let a = 1√
1+δ

. Since
√
ψk = (α)k where α < 1, we have the following sequence of inequalities based

on the bound E[εk+1|Ik] ⩽ c(α)k + aE[εk|Ik−1].

E[εk+1|Ik] ⩽ aE[εk|Ik−1] + c(α)k ⩽ (a)2E[εk−1|Ik−2] + ac(α)k−1 + c(α)k

⩽ (a)3E[εk−2|Ik−3] + (a)2c(α)k−2 + ac(α)k−1 + c(α)k

...

⩽ (a)k+1ε0 + c

k∑
j=0

(a)k−j(α)j ⩽ (r)kε0 + c

k∑
j=0

(r)k

= (ε0 + c(k + 1))(r)k ⩽ (ε0 + ck)(r)k

⇒ E[εk|Ik−1] ⩽ (ε0 + c(k − 1))(r)k−1.
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Figure 1: Upper bound of the expected value of the residual through the iterations for values of α = 0.97, n = 10, ρ = 10.

From Lemma 2, it can be shown that there exist scalars q and D satisfying q ∈ (r, 1) and D > 1/ ln((q/r)e)
such that

E[εk|Ik−1] ⩽ ε0(r)k−1 + c(k − 1)(r)k−1 < ε0(r)k−1 + cD(q)k−1 < (ε0 + cD)(q)k−1.

Finally, since q < 1, it follows that as k → ∞ then E[εk|Ik−1] → 0. □

5.4. Remark on the Bounded Scenario

The convergence analysis in the previous subsections assumes that the quantization resolution can be
infinitely large, eventually making the uncertainty zero if all agents communicate. In real life, having infinite
quantization resolution defies the purpose of using quantization. However, not allowing the quantization
resolution to be infinitely large goes against the condition to conclude convergence that the uncertainty
eventually reaches zero as k goes to infinity.

Let’s define the maximum possible value of bki as bmax. At the limit case, let’s say that iteration k′ is the
last iteration where the constraint is met having the form:

n∑
i=1

(
θ

22bmax
trace(Σk′

i (zk
′

i ))

)
< ψk′

i ,

where we assume the lowest possible uncertainty that is attained when all agents are queried. This is because,
for any given agent, the quantization uncertainty is smaller than the GP prediction uncertainty following the
expression in (4). Iteration k′ is the last one where the constraint is met. Therefore, at iteration k′+1 we are

forced to stop the algorithm because the threshold ψk′+1
i will be smaller than our uncertainty measure that

can’t decrease any further. However, at iteration k′ we still satisfy the condition so the results of Theorem 5
hold leading to

E[ϵk
′+1|Ik′

] ≤ c
√
ψk′ +

1√
1 + δ

E[ϵk
′
|Ik′−1].

Then, we can do the same analysis as in the proof of Theorem 6 leading to the inequality

E[εk
′+1|Ik′

] ≤ (ε0 + ck′)(r)k
′
.
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Figure 1 shows the plot of the bound (ε0 + ck)(r)k where we can see that it increments up to a certain
iteration at first and then starts decreasing indefinitely. The region where the function d(k) decreases is
given by

k ≥ r

(1− r)
− ε0

c
.

The constant r
(1−r) −

ε0

c defines the iteration where d(k) starts to be decreasing.

Unfortunately, having a bound for k′ involves having a bound on trace(Σk′

i (zk
′

i )) which depends on k′.
However, the error bound is not infinitely large even in the worst-case scenario meaning that the uncertainty
is always bounded. Considering that iteration k′ is an extreme case and assuming a well-designed threshold
mechanism, we anticipate that by the time we reach this moment the bound on the residual is not significantly
large as shown in Figure 1, so the solution we have at that moment is not too far away from the true solution.
In the hypothetical case presented in Figure 1, considering that k′ happens at iteration 220 then the bound on
the residual is really small at 0.027. This is mostly because our algorithms make sure the overall uncertainty
keeps decreasing at each iteration.

6. Conclusion

In this document we presented a convergence analysis for the STEP-GP and LGP algorithms. These
analyses had their foundation in the convergence analysis of the generalized ADMM and the SI-ADMM
algorithms. For the case of the LGP algorithm analysis, we assumed that the coordinator can vary the
quantization resolution at each iteration and that it can assign infinitely large bits for quantization. A brief
discussion was presented about the case when the quantization resolution is upper-bounded.
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