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Abstract—Cardiovascular disease (CVD) poses a serious threat
to individual health, highlighting the importance of early detec-
tion and proactive mitigation. With advancements in consumer
electronics such as wearables and IoT, there exists an opportunity
for enhanced CVD prediction for users. Machine Learning (ML)
has been widely used to predict CVD risk (high/low) based on
various factors and is a critical area of healthcare research.
However, sharing data needed to predict CVD with machine
learning models is challenging due to privacy concerns. Federated
Learning (FL) enables distributed training of ML models without
sharing raw data. However, it requires all training features to
be available to all clients. To address this problem, we propose
a Vertical Federated Learning (VFL) based method designed for
use with consumer electronics platforms. The proposed method
trains Neural Network (NN) model in a distributed manner
where different data features are held by different parties. In this
work, each party maintains a portion of separate data features,
performs calculations on them locally, and then transfers only the
necessary information to jointly train an NN model. We employ
the proposed method for different use cases where the dataset
features are distributed between: i) the patient and the hospital
(2-splits); ii) the patient, the doctor, and the laboratory (3-splits);
and iii) the patient, the doctor, the Electrocardiogram (ECG)
center, and the laboratory (4-splits). Using a realistic dataset
publicly available, we test the proposed methodology.

Index Terms—Vertical Federated Learning (VFL), Machine
Learning (ML), Internet of Things (IoT), Cardiovascular Disease
(CVD), Privacy-preservation.

I. INTRODUCTION

In recent years, cardiovascular disease (CVD) has been
ranked as the leading cause of death worldwide, accounting for
almost one-third of all deaths [1]. There is a pressing need to
develop solutions for the early detection and diagnosis of the
disease. In the realm of healthcare, the integration of the Inter-
net of Things (IoT) has brought about transformative changes,
particularly by interconnecting medical professionals, patients,
and diagnostic laboratories. This integration aims to improve
patient care, diagnostic procedures, and treatment outcomes.
Furthermore, the advancement of consumer electronics, such
as wearable devices and interconnected devices, has promised
to enhance the early detection of CVD risk through techniques
like Artificial Intelligence (AI) [2].

Research has been conducted on the use of AI to pre-
dict cardiovascular disease (CVD) [3]. To achieve the goal
of automatic CVD risk prediction, Machine Learning (ML)
algorithms are used to meticulously analyze extensive datasets,
often collected from devices such as wearable sensors and hos-
pitals, to identify patterns that may not be obvious to humans.
However, one of the concerns with using ML algorithms is
that they require a large amount of data for training, which is
often inaccessible due to user privacy concerns, especially in
healthcare applications.

Federated Learning (FL), occasionally known as distributed
collaborative learning, is a popular ML methodology. By
strategically utilizing algorithms, FL employs multiple distinct
and autonomous clients, each with its unique collection of
related datasets. FL differs from traditional centralized ML
methods, which typically condense localized data into a single
training session. Furthermore, FL contrasts with algorithms
that rely solely on datasets with identical distributions. FL en-
ables many entities to collaboratively construct an impervious
ML model while negating the need to disclose sensitive data.
Consequently, this approach successfully mitigates the press-
ing predicaments related to data privacy, security, and access
rights, as well as enabling unfettered access to heterogeneous
datasets [4].

However, a drawback of traditional FL methods is their
assumption that every client contains the necessary features
and information for training an ML model. This assumption
often fails, as different clients may have dissimilar features
from the same dataset required for ML algorithm training. In
this scenario, a Vertical Federated Learning (VFL) approach
involves training a model using sample features stored at
disparate locations [5]. This unique approach enables multiple
entities to collaborate without collecting disparate sample
features at a centralized location. Each entity retains a partial
feature set of the data, processes it independently, and shares
gradients to build an AI model.

This paper introduces novel techniques for Vertical Feder-
ated Learning (VFL) tailored specifically for healthcare-based
Internet of Things (IoT) devices. The goal is to train AI
models across a network of heterogeneous devices and servers



to predict the risk (high/low) of CVD automatically. Unlike
traditional FL methods, where all devices have access to the
same data features and labels, in our approach, each device
holds distinct features and is unaware of the target labels.
The clients in our system, which are healthcare IoT devices,
exhibit diversity in the information (features) they possess.
For instance, one client could be a hospital managing patient
records based on diagnoses from IoT medical instruments,
while another might be a laboratory conducting tests like ECG
using IoT devices. As a result, these clients maintain different
sets of features about the same patients. Our proposed method
stands out by addressing this feature disparity among clients.
Additionally, our approach assumes that clients lack access
to the target labels, unlike in traditional FL setups where
clients possess such labels for training the model. The major
contributions of this work are as follows:

• We present a novel VFL framework for predicting the
risk of CVD (high/low) using machine learning (ML).
Our framework prioritizes strict user privacy and ac-
knowledges the diversity of IoT devices (clients), con-
sidering the varying features they possess. Additionally,
it functions under the realistic assumption that clients lack
access to the labels required for training the ML model.

• This paper presents a novel algorithm for training an ML
model using VFL, where clients and servers coordinate
with each other while simultaneously holding disparate
feature sets to maintain confidentiality as well as feature
set separation.

• We implement and assess the proposed VFL framework
for various realistic case studies on sample feature distri-
bution.

• Finally, we test the proposed framework on a real-world
dataset and assess its performance compared to the state-
of-the-art.

To the best of our knowledge, this article represents the
first attempt to address user privacy, feature separation, and
the absence of training labels for clients in predicting CVD
risk using ML. The remainder of the paper is organized as
follows: In Section II, we discuss recent works pertaining
to the utilization of IoT, ML, and FL for CVD risk predic-
tion. Section III elucidates our proposed system model and
presents the problem statement. Section IV presents the pro-
posed algorithms for CVD risk prediction. Section V analyzes
implementation details, describes datasets, examines various
case studies, and presents a comparison with state-of-the-art
methods. Finally, in Section VI, we conclude our work and
highlight future research directions.

II. LITERATURE REVIEW

CVD remains a significant threat to public health, con-
tributing significantly to global mortality rates. Scholars are
increasingly turning to technologies such as Machine Learning
(ML) and the Internet of Things (IoT) to develop strategies
for mitigating and predicting CVD as technological capabili-
ties expand. This section offers an in-depth literature review

on CVD diseases and their prediction using ML, IoT-based
frameworks, and Federated Learning (FL) to safeguard privacy.

A. Cardiovascular Disease

CVD is defined as a complex and multifaceted array of
destructive disorders that impact the intricately sophisticated
cardiovascular system, which comprises an interwoven net-
work of cardiac muscles, arteries, and veins [6], [7]. This
encompasses various conditions, including coronary artery
diseases, cerebrovascular diseases, congenital heart diseases,
rheumatic heart diseases, peripheral arterial diseases, deep vein
thrombosis (DVT), and pulmonary embolism, contributing to
its numerous and intricate characteristics, posing formidable
challenges for modern medical sciences to address [7]. Among
these ailments, CVD affects masses with alarming frequency
due to its high incidence rate.

B. CVD Prediction Using Machine Learning

Recent studies have explored ML techniques for predicting
CVD. Anuar et al. [8] conducted a study to predict CVD from
Electrocardiogram (ECG) data using ML. Their research in-
volved a prospective population-based case-control study with
sixty participants from the Malaysian cohort. They focused
on five variables statistically significant in predicting CVD,
including the R-R interval, root mean square of sequential
differences recovered from the ECG, systolic and diastolic
blood pressures, and total cholesterol levels. Comparing the
performance of six ML techniques, including k-nearest neigh-
bor (KNN), linear discriminant analysis (LDA), decision trees,
linear and quadratic support vector machines, and artificial
neural network (ANN), they found that ANN achieved the
highest prediction performance, with 90% specificity, 90%
sensitivity, and 90% accuracy. Marbaniang et al. [9] also in-
vestigated six similar ML algorithms, except for ANN, where
they used Naı̈ve Bayes. Similar to Anuar et al., they found
that introducing feature selection facilitated the identification
of important risk factors. They observed increased accuracy
with the inclusion of ‘Blood pressure’ and ‘Body Mass
Index (BMI)’ factors, with KNN outperforming other ML
techniques and achieving an accuracy of approximately 73%.
Mai et al. proposed a non-contact-based method using ballis-
tocardiogram (BCG) signals for CVD prediction, employing
UNet coupled with bidirectional long short-term memory (Bi-
LSTM) [10]. Their focus was on the robustness of noise in
BCG signals to provide reliable predictions. Zarkogianni et al.
[11] discussed a comparison of ML-based approaches for CVD
risk prediction. They proposed a novel method using ensemble
learning to combine multiple models for handling unbalanced
datasets. However, their analysis focused on specific classes
of patients rather than all patients.

Mishra et al. [12] developed a JAVA application system
named the Heart Disease Risk Predictor, providing an online
platform to forecast disease occurrences based on various
symptoms. Users can select from a range of symptoms to
identify diseases along with their probability percentages.
They used sophisticated systems that implemented data mining



techniques such as Naı̈ve Bayes and Decision Tree. Despite
slight differences in performance, the authors claim that the
Naı̈ve Bayes algorithm outperformed the Decision Tree. The
Heart Disease Risk Predictor system maintains all patient
data in a single database, which physicians utilize for patient
counseling and record maintenance.

The HeartCare+ mobile application, developed by Elsayed
et al. [13], helps assess the risk of coronary heart disease
over 10 years using clinical and nonclinical data, categorizing
patients’ risk as low, moderate, or high. In addition, Heart-
Care+ provides alerts for additional treatment suggestions. Its
primary objective is to provide assistance to rural residents.
One of the scoring methods utilized to estimate a person’s risk
of CVD is the Framingham Risk Score, developed to calculate
the 10-year risk of coronary heart disease using data from the
Framingham Heart Study. A gender-specific method based on
this score is used to calculate the 10-year cardiovascular risk
of an individual [14].

In [15], a CVD prediction technique was developed using
multiple ML techniques, including logistic regression, random
forest, Naı̈ve Bayes, SVM, KNN, decision tree classifiers, and
ANN. KNN exhibited the lowest accuracy, around 68.65%,
while most other algorithms, except the decision tree classifier,
achieved accuracy rates greater than 85%. According to [15],
Naı̈ve Bayes performed the best, with an accuracy rate of
90.16

In [16], the use of a trained recurrent fuzzy neural network
(RFNN) based on a genetic algorithm (GA) was investi-
gated to diagnose cardiac diseases. The performance of the
proposed method was evaluated using the Cleveland heart
disease dataset from the University of California, Irvine (UCI)
as a benchmark, comprising 297 patient data samples, 45
for testing and 252 for training. The experiment yielded a
remarkable 97.78% accuracy for the test set. Additionally,
measures including root mean square error, F score, sensitivity,
specificity, precision, and misclassification error were assessed
alongside accuracy. Compared to related studies, the findings
of the study [16] were considered satisfactory.

C. IoT-based Frameworks in Healthcare and CVD Prediction

IoT finds applications in various fields, including healthcare.
The study by Al-Makhadmeh et al. [17] introduces an IoT-
based medical device to collect heart details from patients both
before and after the occurrence of heart disease. Subsequently,
these data are processed using a method known as the higher-
order Boltzmann deep belief neural network (HOBDBNN).
Bardia et al. proposed a cloud-based ECG monitoring system
for IoT devices in [18]. The system comprises hardware,
firmware, and AI-based analytics. Additionally, the authors
introduced a novel encoding method to enhance performance,
with a primary focus on hardware-based solutions. Golec et al.
introduced a Function as a Service (FaaS) named HealthFaaS
for CVD risk prediction using AI, IoT, and serverless comput-
ing in [19]. They compared the performance of serverless and
non-serverless platforms for CVD risk prediction, evaluating
various ML models to achieve the highest F-score of 92.06.

Khan et al. [20] also proposed an IoT-based framework sim-
ilar to [17], utilizing a Modified Deep Convolutional Neural
Network (MDCNN) instead of a deep belief neural network.
Their study involved connecting a smartwatch and a heart
monitor device to the patient via IoT technology to collect
sensor data for the diagnosis and prognosis of heart disease.
The acquired data was processed using the Modified Deep
Convolutional Neural Network (MDCNN) to classify it into
normal and abnormal categories.

D. Federated Learning for CVD Prediction

Research has explored the use of Federated Learning (FL)
to safeguard privacy in applications related to CVD prediction.
Linardos et al. [21] utilized cardiovascular magnetic resonance
(CMR) data from four distinct centers employing FL to
diagnose hypertrophic cardiomyopathy (HCM). Their findings
illustrate that FL exhibits greater robustness and sensitivity
to domain-shift effects, yielding promising results despite
limited data. The efficacy of FL models for CMR diagnosis
was compared to conventional centralized learning models
while ensuring patient privacy. Results indicate that FL offers
prospective results comparable to collective data sharing, even
with a modest sample size of 180 patients from four centers.

Yaqoob et al. [22] developed a hybrid FL-based tech-
nique with MABC-RB-SVM architecture that uses federated
matched averaging at the cloud end of health service providers
(HSPs) to address data privacy concerns for heart disease
prediction in HSPs systems. This method enables HSPs to
protect patient privacy while sharing only the necessary in-
formation for heart disease prediction. Enhancing the privacy
of patient data is the modified artificial bee colony optimiza-
tion with support vector machine (MABC-SVM) technique,
employed at the client end of HSPs for optimal feature
selection and classification of heart disease. Compared to
conventional FL techniques, the study [22] suggests that the
hybrid FL-based method with MABC-RB-SVM architecture
increases the prediction accuracy by 1.5%, achieves 1.6% less
classification error, and requires 17.7% fewer rounds to reach
maximum accuracy. The proposed framework outperforms
current FedAvg-SVM, FedMA-SVM, and FedMA algorithms
with GA-SVM by achieving 93.8% accuracy after 4500 rounds
of communication.

Research Gap: The literature review highlights the im-
portance of developing prognosis applications for CVD risk
prediction, along with research on using machine learning
(ML) and Internet of Things (IoT) frameworks for CVD
predictions. Additionally, there has been work on utilizing
Federated Learning (FL) to protect user privacy while devel-
oping ML models for CVD diagnosis. However, there is a
gap in the literature regarding an integrated framework that
combines IoT and FL techniques to improve CVD prognosis.

Furthermore, most FL research assumes homogeneous par-
ticipation in the distributed learning process, presuming that
FL clients are homogeneous because they all possess the
same set of data features and are aware of the target labels.
However, this assumption is unrealistic as clients could be



Fig. 1: Proposed System Model

heterogeneous entities with different feature sets. Moreover,
in realistic scenarios, clients may not be aware of the labels
for training ML models. Therefore, we propose an integrated
IoT-based framework that utilizes VFL for CVD prediction,
where distributed nodes hold and maintain different types of
data features and are unaware of the target class labels.

To the best of our knowledge, this is the first attempt to
address the scenario in which different sample features are
present with different clients, and they are not aware of the
target labels for the distributed training of ML models for CVD
prediction applications.

III. SYSTEM MODEL

This section presents the proposed IoT-based system model
for predicting CVD based on distributed features at different
locations. Additionally, it provides the problem statement and
the proposed VFL-based algorithms for CVD prediction.

A. Proposed System Model

Figure 2 shows the basic overview of the proposed system
that has three layers, heterogeneous clients, server, and appli-
cation deployment layer.

In the proposed system model, IoT-based heterogeneous
clients do not share the raw data. Instead, clients transform
their raw data into a low-dimensional vector representation
using ML models, which are then shared with the central
server. Additionally, the different clients have disparate feature
sets. For example, one client could be a hospital where doctors
examine symptoms physically or using IoT-based medical
instruments, another client could be a lab where IoT-based
medical instruments have taken patients’ vitals, and the third
one could be IoT devices holding patients’ demographic
information. Thus, the three clients not only have distributed

storage of the data but also have distinct features. Furthermore,
individual clients do not have labels to train the ML models
and therefore cannot be used independently to develop ML
applications for CVD prognosis.

The central server may hold some additional features as well
as the label of the dataset. Its role is to synchronize the various
Artificial Intelligence (AI) models placed at the disparate
clients, collect information from the clients in the form of low-
dimensional data representation, and merge them using the
gradients and true labels it maintains to obtain the converged
global AI model. The AI model can be deployed on the server
itself or on external cloud-based platforms as an application
or Software-as-a-Service (SaaS) platform using deployment
tools such as Flask, MLOps, or AgileML [23], [24], [25]. The
globally deployed model is used by the stakeholders involved
in the VFL process, as well as by any party that has similar
input data.

The proposed framework can be utilized to develop mobile
or Software-as-a-Service (SaaS) applications, wherein user
data is dispersed across various locations. The VFL-based
ML model would be deployed on users’ devices/wearables, in
hospitals on doctors’ devices or measuring instruments, and
at testing centers on IoT-based devices like ECG instruments.
Based on available patient data at disparate locations, an AI-
based mobile application can be developed to alert users if
they are at risk of CVD. Moreover, such applications can
be beneficial for telehealth care providers. Often, telehealth
providers lack access to patients’ data, such as blood reports,
as it is provided by a third party. This issue is particularly
common in regions with strict privacy regulations. Therefore,
by employing the proposed framework, an application for
telehealth care providers can be developed where access to
raw data is not necessary for diagnostic purposes.



B. Problem Statement

We consider N clients, each represented by the variables n,
where n ∈ {1, 2, ......, N}. Spatially distributed clients contain
a unique set of features represented as xm such that ∩

m
xm = ∅.

It should be noted that although the different clients have
disparate feature sets, they have the same number of samples
P for synchronization purposes. Consequently, for a specific
patient, disparate data and features are available to all the
clients. Furthermore, during the training process, the clients
and servers communicate with each other to get a globally
trained ML model.

To ensure the preservation of user privacy, distinct clients
do not share their feature space or their data with the server.
Instead, they transform the higher-dimensional data xm into
a lower-dimensional vector hm parameterized by θm in the
form of smashed information that cannot be deciphered. In
addition, we assume that the clients do not have access to
the true categories or labels of the training data set. Thus,
they only have their own partial set of features xm. The true
category or label y is maintained and stored on the server,
which is not shared with clients.

The objective of the proposed method is to solve the
equation 1 subject to the fact that the feature set xm does
not leave the client for every client, clients do not have labels
y, and the labels do not leave the server.

F (θ) :=
1

|y|
ΣL(θ0, h1, h2, ....., hn) (1)

In equation 1, θ0 represents a global model, while θ =
[θ′1, θ

′
2, . . . , θ

′
n]

′ represents a set of variables. The variable L
denotes the loss function, and |y| indicates the cardinality of
the set y. Given that the optimization function utilizes the
first derivative, the optimization algorithm employed here is of
the first-order [26]. To address the optimization problem, we
utilize the algorithm outlined in the subsequent section, which
leverages the first derivatives of the cost with respect to the
weights to iteratively minimize the optimization function.

C. Implementation Details

Fig. 2 illustrates the workflow for the proposed system. The
proposed process is divided into three distinct steps. In the
initial step, an open source dataset is used [27]. The data
undergoes processing, normalization, and is then partitioned
among different clients based on the feature set. Subsequently,
in the next step, a Neural Network model is initiated. The
model is trained by sharing the loss and updates between the
clients and the server to obtain the global model. Once the
model is trained, in the final step, its performance is evaluated
using classification accuracy metrics and other relevant metrics
such as precision, recall, and F-score. Performance calculation
is done using test data that were separated before training the
model. Once we achieve satisfactory performance, the trained
model can be deployed for users.

Fig. 2: Overall research framework

IV. PROPOSED VERTICAL FEDERATED LEARNING (VFL)
ALGORITHM

To solve the optimization model mentioned above, we
propose VFL for CVD prediction that minimizes loss function
using a gradient-based optimizer in a distributed manner, in-
stead of traditional centralized servers, to protect client privacy
while applying the fundamental VFL system in the context
of classification problems. The proposed approach is aimed
at improving the confidentiality of client information because
data attributes, as well as feature space, are not gathered
from multiple clients situated at spatially separate locations.
In contrast to centralized ML, our proposed parameter-based
learning provides advanced privacy measures for each client,
ensuring that only the parameters of local models are shared
with the global model for aggregation and that none of the
actual data, features, and labels are shared.

The complete data set can be represented by the variable x,
which is ∪

m
xm, where as mentioned before each client has only

the partial feature set xm. The data set can be represented in
the form of a matrix of size P ×Q. xi is one row, that is, the
set of all the features of the dataset, and xi,j is a particular
feature of the row. Each client xm holds and maintains features
of size |xm|, where |xm| is the cardinality of the set xm.

The algorithms 1 and 2 present the proposed VFL algorithm
which is run by the client and server in a synchronized manner
for reducing the error based on the y and y′, where y and y′

respectively are the true prediction and predictions made by



the globally converged model F (θ) after the training process.

Algorithm 1 Client pseudocode

Require: Shared row ids i
Batch size B
Gradients ∇(hs)

Ensure: Updated parameters θm

Gradients ∆hm

1: if e == 0 then
2: θm = rand()
3: end if
4: Get xm from i′s
5: hm = f(xm, θm, ζ)
6: if e! = 0 then
7: Calculate ∇(hm) based on ∇(hs)
8: Update θm using equation 4
9: end if

10: Transfer hm and ∇(hm) to the server

Algorithm 2 Server pseudocode

Require: hm

∇hm

∇Lm(ye
′
, ye)

Ensure: Updated parameters θs

1: (Get a set of IDs i )
2: if ζ! = 0 then
3: Convert to a low dimensional representation hs =

f(xs, θs, ζ)
4: end if
5: for all e in E do
6: if ζ == 0 then
7: Calculate the prediction confidence score pe =

argmax(( Σhm+hs

(N+1)∗B )
8: else
9: Calculate the prediction confidence scores pe =

argmax(ζ ∗ (Σhm

N∗B )

10: Perform mapping pe → ye
′

11: Find overall loss le = L(ye
′
, ye)

12: Update parameters θs based on the equation 4
13: end if
14: Send updated gradients to all the clients
15: end for
16: Deploy the global model

1) Client Process: Algorithm 1 describes in detail the
pseudocode run by the clients to train the local model. The
client does not share the information of the sample features
with each other as well as with the server. They only share
the local gradients via different communication rounds. In
each such communication round, it first receives a unique set
of IDs i from the server for synchronization purposes. For
this unique set of IDs, it extracts samples from the feature
set xm of batch size B. In every round of communication,
the client converts the high-dimensional vector xm into a

lower-dimensional representation hm, using a highly nonlinear
function f(xm, θm, ζ), parameterized by θm ∈ R|θm| and a
nonlinear function ζ. During the initial iterations, the set of
θm is initialized to a low random value. The hm, as it is a lower
dimensional representation of the feature ser maintained by a
client, cannot be deciphered by the server. This ensures that the
server does not have access to the raw sample features and thus
client’s privacy is ensured. After the initial communication
round, the clients also receive the server gradients. In addition,
clients calculate their gradients ∇(hm) using the one received
from the server. Subsequently, it updates the set of θm based
on ∇(hm) using Equation 4. It should be noted that the
Equation 4 is also used by the server to update its gradients.
The calculated gradients from the client ∇(hm) are sent to the
server for further aggregation and parameter updates.

2) Server Process: During different communication rounds,
the server collects a list of sample IDs i for a batch of
data sets B. The list of row IDs is sent to the client for
synchronization purposes so that the same sample is used for
the gradient update by all the clients and the server. The server
communicates with clients, and one of these communication
rounds is considered an epoch e and the total number of
such epochs is E. The server merges the partial information
predictions from the disparate clients according to Equation 2.

pe = argmax(ζ ∗ ( Σhm

N ∗B
) + (1− ζ) ∗ ( Σhm + hs

(N + 1) ∗B
) (2)

In equation 2, pe is the confidence score of the prediction
in rounds e for a batch of the dataset of size B, hs is the
low dimensional representation of the server features and the
binary variable ζ represents if the server contains the portion
of the feature set. Based on the probability of prediction, a
mapping pe → ye is performed to the corresponding target
categories where ye

′ ∈ y for the communication round e.
Furthermore, using ye

′
and known target values, the loss

is calculated using Equation 3, where le is the loss in the
communication round e.

le = L(ye
′
, ye) (3)

For every round of communication e, the server also collects
the gradients ∇Lm(ye

′
, ye) from the clients. It should be noted

that ∇Lm(ye
′
, ye) is indirectly calculated using server loss

and chain rule and the ye
′

and ye are not directly utimilized
to maintain privacy. The loss is used by the server to update
its gradient based on the Adam optimization algorithm, as
explained in equation 4 which has been customized for the
proposed VFL setup [28]. In the equation, η is the learning
rate, ge is the gradient in round e, µe is the exponential average
of the gradients, se is the exponential average of the square
of the gradients and β1 and β2 are the hyperparameters used
for optimization.



θe+1 = θe +∆θe

∆θe = −η ∗ ge ∗
µe√
se + κ

µe = β1 ∗ µe−1 − (1− β1) ∗ ge
se = β2 ∗ se−1 − (1− β2) ∗ ge

(4)

Both the client and the server update their gradients in
different communication rounds, resulting in a converged
global model that minimizes prediction loss. Subsequently, the
global model can be deployed for real-time use. It should be
noted that as new patterns in the data become available in the
future, the global model serves as a base model for retraining.
Since clients involve IoT devices like ECG machines that
might lack sufficient power, they do not need to train the
model every time. Instead, they can continue collecting data,
and when a sufficient amount is available, they could train the
model for a few epochs. Furthermore, to conserve power, they
might opt to train it when plugged into a power source.

V. RESULTS AND DISCUSSION

This section presents the implementation and simulation de-
tails of the proposed VFL-based CVD prediction mechanism.
Firstly, we discuss the implementation details and the dataset
used in this study. Later, we analyze the performance of the
proposed method for various case studies. We also compare
the proposed method with the state-of-the-art.

Fig. 3: CVD distribution in the dataset

A. Dataset Discription

We utilize the Z-Alizadeh Sani Data Set’ [27], available in
the public repository UCI Machine Learning Repository’. The
dataset comprises 55 characteristics and includes information
on user demographics, symptoms, and examination, ECG mea-
sures, and laboratory analysis. The distribution of the dataset
is illustrated in Fig. 3. During data analysis, we discovered
that the dataset was devoid of duplicates and null values. The
‘Label’ column contains two categories, namely ‘normal’ or

‘CVD’. In the dataset, approximately 71.3% are affected by
CVD, while around 28.7% are normal (Fig. 3).

Fig. 4: 2-split VFL (Patient and hospital)

Fig. 5: 3-split VFL (Patient, doctor, and laboratory)

B. Case Studies

We conduct three different case studies based on how
features are distributed among the clients in this study. The
55 features of the dataset can be categorized into four dif-
ferent types: 1) demographic information (e.g., age, gender),
symptoms and examination such as blood pressure and pulse
rates, 3) specific characteristics of the ECG, and 4) laboratory
measurements such as hemoglobin level. Based on the type of
features, we considered the possible combinations of features
that could be available to different clients. These include a 2-
split where data features are considered to be divided between
the patient and hospital, such that the demographic features are
available with the patient and the others are with the hospital.
Similarly, in 3-split scenarios, data features are considered to
be separated among the patient, hospital, and laboratory. For 4-
split, features are considered to be divided among the patient,



the hospital, the ECG center, and the laboratory. These splits
present a realistic scenario, as many hospitals may not have
a laboratory and generally refer the patient for testing at a
pathological center. On the other hand, some hospitals may
have a testing facility within their premises. Consequently, we
tested against different possible combinations of feature splits
based on realistic scenarios.

Fig. 6: 4-split VFL (patient, doctor, ECG, and laboratory)

Fig. 7: Conventional DNN

C. Performance Measure

We compare the proposed VFL-based CVD prediction
across different case studies. Additionally, we compare the
performance of the traditional DNN-based approach for CVD
prediction. To ensure consistency across all cases, we train and
test using the same hyperparameters.

Figures 4, 5, 6, 7 present the performance of loss and
accuracy with the number of communication rounds for the
test data for the different case studies and the conventional
DNN-based approach. As depicted in the figures, compared
to the conventional DNN model, the novel implementation of

proposed VFL algorithms in the prediction of CVD provides
comparable accuracy. The results indicate that the convergence
of the proposed algorithms is achieved in around 60 commu-
nication rounds, after which there is minimal improvement in
accuracy.

We also compute and compare other relevant classification
metrics such as Precision, Recall, F-score, and AUC. Table
I presents the classification metrics of the mentioned case
studies and the conventional DNN model.

The results indicate that for different case studies, the
performance is comparable to that of the traditional DNN
method. For instance, when the sample features are situated
at two different locations (patient and hospital), the F1 score
is notably higher, surpassing that of the conventional DNN
methods. Similarly, for 3-splits (patient, lab, and hospitals),
the metrics are comparable to those of the traditional methods.
Hence, it can be inferred that the proposed VFL-based method
demonstrates comparable performance to traditional central-
ized DNN methods, while also offering the added benefits of
data privacy for heterogeneous clients.

D. Comparison With the State-of-the-art

We compare our proposed system with the state-of-the-art
using Table II and III. Table II illustrates the performance
of our proposed method compared to the centralized ML-
based training approach. The table also displays the percentage
performance difference between the proposed approach and
the highest-performing state-of-the-art method in brackets for
all three case studies. As depicted in the table, the advantage
of our proposed method lies in user privacy as well as feature
splitting. Our 2-split VFL method achieves an F-score of
91.92.

It is important to note that the state-of-the-art methods
are capable of achieving better performance compared to
our proposed method. However, the state-of-the-art techniques
utilize feature engineering approaches. For instance, [30]
utilized wrapper methods and Recursive Feature Elimination
(RFE) to enhance accuracy. Feature engineering helps improve
the accuracy of the model by leveraging the relationship
between features and labels in the entire dataset and employing
statistical methods to select the optimal number of features.

In the proposed scenario of VFL, each client possesses
different features, while the server holds the labels. Similarly,
clients hold only a portion of the dataset. Consequently, a
client does not have knowledge of other clients’ features,
data distribution, or the labels stored on the server. Therefore,
feature engineering cannot be applied in our scenario as it
would violate privacy, which is an essential component of
VFL. Thus, our method is able to achieve good accuracy
despite not employing feature engineering techniques, which
we also cannot apply to guarantee clients’ privacy.

Furthermore, it should be noted that in [29] and [30],
although they achieve higher accuracy, they employ ensemble
learning. In ensemble learning, multiple classifiers are trained,
and predictions are made by each classifier. Subsequently,
these predictions are combined using methods such as voting.



TABLE I: Classification accuracy metrics of the models

Model Accuracy Precision Recall F1-Score AUC

2-split VFL 88.53% 93.02% 90.91% 91.95% 91.85%
3-split VFL 85.25% 88.89% 90.91% 89.89% 92.51%
4-split VFL 80.33% 86.36% 86.36% 86.36% 83.56%
DNN 85.25% 87.23% 93.18% 90.11% 92.65%

TABLE II: Comparison of the proposed VFL-based system with state-of-the-art centralized systmes

Benchmark Method Privacy Feature split Accuracy Precision Recall F-score
Qin et al. [29] Ensemble-based ✗ ✗ 93.70 95.65 97.63 95.53

Wang et al. [30] Stacking-based model ✗ ✗ 95.43 97.71 95.84 96.77
Kolukisa et al. [31] Ensemble-based model ✗ ✗ 83.48 83.83 82.77 83.3
Shahid et al. [32] Emotional Neural Network ✗ ✗ 88.34 92.37 91.87 92.12

Proposed VFL 2-split ✓ ✓ 88.53 (6.9) 93.02 (4.69) 90.91 (6.72) 91.95 (4.82)
Proposed VFL 3-split ✓ ✓ 85.25 (10.18) 88.89 (8.82) 90.91 (6.72) 89.89 (6.88)
Proposed VFL 4-split ✓ ✓ 80.33 (15.1) 86.36 (11.35) 86.36 (11.27) 86.36 (10.41)

TABLE III: Comparison of the proposed VFL-based system with state-of-the-art FL systems

Benchmark Method Federated Privacy Feature split Label storage
Mahalingam et al. [33] Edge FL ✓ ✗ Client

Linardos et al. [21] Pre-trained CNN based FL ✓ ✗ Client
Wang et al. [34] Noise and incentive-based FL ✓ ✗ Client
Zhou et al. [35] Hierachical FL ✓ ✗ Client
Proposed VFL 2-split ✓ ✓ Server
Proposed VFL 3-split ✓ ✓ Server
Proposed VFL 4-split ✓ ✓ Server

As ensemble learning involves training multiple classifiers, it
is computationally complex and not feasible for IoT devices.
In contrast, our method employs a single classifier and is
computationally less complex.

We also compare our proposed method with other state-
of-the-art FL methods in Table III. In contrast to the other
FL methods, our proposed method assumes that the sample
features of the data are split among different clients, meaning
they have different kinds of features. Our scenario is more
realistic as it not only guarantees that data privacy is main-
tained but also ensures that different clients may have different
information. Furthermore, the benchmark methods assume that
the labels are stored on each client. This is again an unrealistic
scenario for training an ML model, as clients (for example,
patients) are not aware of the data labels. Labels are generally
available at the server. Thus, our method considers a more
realistic scenario where clients are not aware of the training
labels.

VI. CONCLUSIONS AND FUTURE WORK

This paper introduces an IoT-based framework utilizing
Vertical Federated Learning (VFL) for automated cardiovas-
cular disease prediction using Machine Learning (ML). Un-
like traditional federated learning (FL), our proposed method
considers data set features to be separated across different
clients. Through comparison with various case studies, the
results demonstrate that our proposed methods offer compa-
rable performance to traditional DNN-based methods while
also providing the advantages of privacy, feature separation,

and clients being agnostic of training labels. Furthermore,
our framework preserves user privacy and feature separation
among different client devices.

In the future, we plan to collaborate with the local hospital
to evaluate the proposed method using a recent dataset that
includes a large number of features. Additionally, we aim to
integrate transfer learning into the proposed VFL framework
to optimize the energy requirements for training the model
on IoT devices. Moreover, one of the challenges in VFL is
that clients are unaware of each other’s data distribution and
feature sets. Therefore, data balancing and feature engineering
are challenging in the case of VFL. In the future, suitable tech-
niques for performing data balancing and feature engineering
need to be investigated as open research problems.
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