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Abstract

With technological breakthroughs, drone deliveries have become increasingly popular, especially during the COVID-19 pan-

demic. Driven by both economical benefit and efficiency, drone-truck combined deliveries are in demand. However, it is very

challenging to handle the collaboration between trucks and drones. Existing methods for truck-only routing cannot be directly

applied, since their solution representations and search operators cannot consider the drone-truck collaborations effectively. In

this paper, we model the system as Traveling Salesman Problem with Drones (TSP-D), and propose a new memetic algorithm

named MATSP-D for solving it. Specifically, we design a new drone-truck solution representation and develop new crossover

and local search operators under the new representation, which can modify the drone services effectively. MATSP-D conducts

exploration by crossover, and exploitation by a variable neighborhood search process. The experimental results show that

the proposed MATSP-D significantly outperforms the state-of-the-art algorithms for most test instances, especially the large

instances with more complex collaborations between the truck and drone. Further analysis verifies the effectiveness of the newly

developed local search operators in searching for better drone-truck collaborations.
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with Memetic Computing Optimization
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Abstract—With technological breakthroughs, drone deliver-
ies have become increasingly popular, especially during the
COVID-19 pandemic. Driven by both economical benefit and
efficiency, drone-truck combined deliveries are in demand.
However, it is very challenging to handle the collaboration
between trucks and drones. Existing methods for truck-only
routing cannot be directly applied, since their solution rep-
resentations and search operators cannot consider the drone-
truck collaborations effectively. In this paper, we model the
system as Traveling Salesman Problem with Drones (TSP-D),
and propose a new memetic algorithm named MATSP-D for
solving it. Specifically, we design a new drone-truck solution
representation and develop new crossover and local search
operators under the new representation, which can modify
the drone services effectively. MATSP-D conducts exploration
by crossover, and exploitation by a variable neighborhood
search process. The experimental results show that the pro-
posed MATSP-D significantly outperforms the state-of-the-
art algorithms for most test instances, especially the large
instances with more complex collaborations between the truck
and drone. Further analysis verifies the effectiveness of the
newly developed local search operators in searching for better
drone-truck collaborations.

Index Terms—Collaborative Drone-Truck Delivery, Travel-
ing salesman problem with drones, evolutionary computation,
memetic algorithm

I. INTRODUCTION

DRONE delivery systems have contributed to human
tasks in recent years. For example, during the out-

break of Covid-19, drones have provided logistical support
for the fight against the epidemic, participating in drone
disinfection, publicity, patrols, and contact-free delivery of
relief supplies. Commercial companies such as Zipline [1],
Manna [2] and SF Express [3] used drones to provide
supplies for people in Ghana, Ireland and China in 2020–
2021. As drones are limited by capacity and endurance, the
drone-truck combined operations (DTCO) in delivery was
proposed [4], and showed greater potential than drone-only
systems [5]. In DTCO, a drone can travel between trucks and
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customers and deliver/pick up parcels without any human
intervention. The truck can deliver products at the same time
or serve as a mobile hub for drones.

DTCO is a very promising operation in delivery. It can be
essentially modeled as the traveling salesman problem with
drones (TSP-D) [6]. Briefly speaking, TSP-D is to serve all
the nodes in the given graph by a truck and a drone within
the shortest time subject to the following constraints:

1) Each node is served exactly once by either the truck or
the drone.

2) The drone must depart from the truck at a node, serve
exact one fly node, and return to the truck at another
node.

3) The truck/drone must wait for each other at the node
where the drone returns to the truck.

The collaboration between the truck and drone in TSP-
D makes a more efficient and flexible delivery system than
the truck-only system (TSP). However, TSP-D is also more
challenging than TSP, due to the interaction between the
truck and drone routes, which results in a large and complex
solution space. TSP-D is NP-hard [7]. Exact methods (e.g.,
[4], [6], [8]–[11]) are only applicable to small-size instances.
To solve larger problem instances, meta-heuristic methods
(e.g., [4], [6], [12], [13]) can obtain near-optimal solutions
in a short time. Most existing search methods for TSP-D
(e.g., [12]–[15]) are individual-based search, and can easily
get stuck into poor local optima. They also optimize the truck
and drone routes separately, thus cannot handle the complex
interactions between the truck and drone routes effectively.
This leads to insufficient exploration in the solution space,
which inevitably misses some promising solutions. However,
optimizing the truck and drone routes simultaneously can
result in huge and complex search space, which makes it
increasingly difficult to design effective search methods.

To not miss the complex interactions between the truck
and drone, we optimize both kinds of routes simultaneously.
To search in the resultant huge solution space effectively and
reduce the chance of getting stuck into poor local optima, we
select the Memetic Algorithm (MA) [16] as the technique
to solve TSP-D. MA is a hybrid evolutionary algorithm that
combines the exploration ability of genetic algorithm and
the exploitation strength of local search. One of the common
strategies is replacing mutation with local search [17], [18].
When solving complex combinatorial optimization problems
with MA, the crossover operator can help the solutions
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escape from the current local optima1, and the local search
can refine the region around the solutions. Moreover, it is
easy to incorporate domain knowledge into the MA design,
e.g., through the design of problem-specific local search
operators. MAs have been successfully applied to solve
many complex combinatorial optimization problems, such
as vehicle routing problems [19], [20], scheduling [21] and
knapsack problem [22].

When designing MA for TSP-D, it is important to design
proper individual representation and search operators to
balance exploration and exploitation. The solution space of
TSP-D is very complex due to the decisions of truck and
drone routing. Specifically, it requires to determine (1) which
nodes are served by the truck and which by the drone, (2)
the truck route and (3) the departure and return nodes for
the drone to serve each drone node. These decisions interact
with each other, making it challenging to search in the huge
and complex solution space.

The existing representation and search operators are not
effective enough to handle the complex interactions between
the different decisions in TSP-D. For example, the variable
neighborhood search algorithm in [13] is an individual-based
search with a heuristically generated initial solution, and
is lack of exploration ability. The hybrid genetic algorithm
[23], [24] represents an individual by a giant sequence of
the nodes, and decodes it into a feasible TSP-D solution by
a split algorithm [23] for evaluation. The crossover operator
is based on the giant sequences, while the local search
operators are based on the decoded TSP-D solutions (i.e.,
truck and drone routes). The limitation of this algorithm is
that there is an inconsistency before and after the decoding.
In addition, the local search operators cannot explicit change
the number of drone routes.

To address the above issues, this paper develops a new
MA for solving TSP-D more effectively, by designing a
new explicit individual representation and its corresponding
genetic operators. The paper has the following contributions:

1) Design a new explicit individual representation that
consists of both the truck and drone routes.

2) Develop a new extended crossover operator and new
effective local search operators for the newly designed
explicit solution representation.

3) Propose a MA based on the explicit solution represen-
tation and genetic operators.

4) Verify the effectiveness of the newly proposed MA on
a wide range of TSP-D instances.

II. BACKGROUND

A. Notations and Problem Definition

For quick reference, the parameters, indices, and decision
variables in the problem definition are listed in Table I.

1This is different from conventional GA, where crossover mainly focuses
on exploitation. This is because the standard crossover operators often
generate invalid offspring that violate the complex constraints of the
combinatorial optimization problems. After repairing the offspring, they
become substantially different from both parents, making it more likely to
jump out of the current local optima.

TABLE I
PARAMETERS, INDICES AND DECISION VARIABLES OF TSP-D.

Name Description

N The number of customers.
vi The ith customer vertex, i ∈ {1, ..., N}.
v0 The depot vertex.
(vi, vj) The edge (vi, vj).
c(vi, vj) The travel time of the truck for the edge (vi, vj).
cd(vi, vj) The travel time of the drone for the edge (vi, vj).
o An operation

O Set of possible operations.
V Set of all customers and the depot v0.
S ⊂ V A subset of nodes.
O(v) Set of operations containing v.
O−(v) Set of operations with start node v.
O+(v) Set of operations with end node v.
O−(S) Set of operations with start node in S and end node outside S.
O+(S) Set of operations with start node outside S and end node in S.

xo A binary variable that indicates the use of operation o,
xo ∈ {0, 1}, ∀ o ∈ O.

yv A binary variable that indicates whether node v is a start
node in at least one operation of the solution,
yv ∈ {0, 1}, ∀ v ∈ V .

TSP-D [6] seeks for the minimum cost plan for a truck
and a drone to serve customers cooperatively. Given a
graph G(V,E), where V = {v0, v1, ..., vN} is the vertex
set, containing the depot v0 and N customers {v1, ..., vN}.
E = {(vi, vj) | vi, vj ∈ V, vi 6= vj} is the set of edges. For
(vi, vj) ∈ E, the travel time of the truck and drone for the
edge are denoted as c(vi, vj) and cd(vi, vj), respectively.

A TSP-D solution is a sequence of operations, each
consisting of a start node, an end node, an optional fly
node (which can be null) and a list of truck nodes (could be
empty). Noting that the drone can only serve one customer
after launching, which suggests that the fly node is either
one customer node or null. In an operation, the truck serves
and departs from the start node, serves a (possibly empty)
list of truck nodes, and finally reaches the end node. If the
fly node is not null, then the drone takes off the truck at the
start node, serves the fly node, and returns to the truck at
the end node. Without loss of generality, we only consider
the elementary truck operations. That is, if the fly node is
null, then the list of truck nodes must be empty.

Under this definition, the set of possible operations is O .
=

{〈vs, ve, vf ,vt〉}, where vs ∈ V , ve ∈ V and vf ∈ {V ∪
null} \ v0 represent the start node, end node, and fly node,

respectively. vt stands for the list of truck nodes, where
v′ ∈ V \ v0 for each truck node v′ ∈ vt. All the nodes in
the operation are different from each other, i.e., vs 6= ve 6=
vf 6= v′, ∀ v′ ∈ vt. In addition, vf = null→ vt = [ ].

Fig. 1 shows an example TSP-D solution serving 11
customers (index from 1 to 11, the depot is indexed 0) and
its representation as a sequence of operations. The solution
is illustrated in Fig. 1(a), where the solid arrows stand for
the truck route and the dashed arrows are the drone routes.
The solution contains 5 operations, as shown in Fig. 1(b).

As the truck and the drone serve customers simultane-
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1

Truck

Drone
Customer

Operation Start Node End Node Fly Node Truck Node

1 0 2 1 9,10

2 2 3 null [ ]

3 3 5 4 11

4 5 6 null [ ]

5 6 0 7 8

(a)

(b)

4

7

8
10

11

1

2

3
5

6

9

Fig. 1. An example TSP-D solution and its sequence of operations.

ously, the cost of an operation is the maximal cost (e.g.,
travel time) induced by the truck and the drone. For example,
in Fig. 1(b), the cost of operation 2 is c(o2) = c(2, 3), since
the drone cost is zero. On the other hand, the cost of opera-
tion 5 is c(o5) = max{c(6, 8)+ c(8, 0), cd(6, 7)+ cd(7, 0)}.

To formulate the problem, we first define the following
notations. The set of all possible operations is denoted as
O. For each operation o ∈ O, co denotes the operation cost.
For each node v ∈ V , let O(v), O−(v), O+(v) ⊂ O be the
set of all operations containing v, with start node v, and with
end node v, respectively. For each subset of nodes S ⊂ V ,
let O−(S) ⊂ O be the set of all operations with start node
in S and end node in V \ S. Similarly, let O+(S) ⊂ O be
the set of all operations with end node in S and start node in
V \S. The binary decision variable xo = 1 if the operation o
is selected in the solution, and xo = 0 otherwise. The binary
decision variable yv = 1 if node v is a start node in at least
one operation of the solution, and yv = 0 otherwise.

Then, TSP-D can be formulated as follows [6]:

min
∑
o∈O

coxo (1)

s.t.:
∑

o∈O(v)

xo ≥ 1,∀ v ∈ V (2)

∑
o∈O+(v)

xo ≤ N · yv,∀ v ∈ V (3)

∑
o∈O+(v)

xo =
∑

o∈O−(v)

xo,∀ v ∈ V (4)

∑
o∈O+(S)

xo ≥ yv,∀ S ⊂ V \ v0, v ∈ S (5)

∑
o∈O+(v0)

xo ≥ 1 (6)

yv0 = 1 (7)
xo ∈ {0, 1},∀ o ∈ O (8)
yv ∈ {0, 1},∀ v ∈ V (9)

The objective Eq. (1) minimizes the total cost of the
selected operations. Eq. (2) ensures that all the nodes are
visited. Eq. (3) indicates that yv must be 1 if at least one
operation with the start node v is selected. Eqs. (4)–(6) guar-
antee that the operations in the solution {o ∈ O | xo = 1}
form a feasible route, i.e., an Eulerian graph. Eq. (7) implies
that the solution starts and ends at the depot. Eqs. (8) and
(9) are the domain constraints of the x and y variables.

B. Related Work

Drones play an essential role in various applications [4],
[25], [26]. Drone delivery routing [27]–[29] has attracted
more and more research attention recently. Most studies
concentrate on DTCO [30], and model it as TSP-D [6]. There
are a variety of TSP-D variants, such as the min-cost TSP-D
[23] that minimizes the total transportation cost and waiting
time of vehicles. the TSP-D with drone battery capacity [31],
and the Flying Sidekick TSP (FSTSP) [4], [32] that disallows
drones to take off and land on the same customer node. It
can also be extended to DTCO systems with multiple drones
[33] and each drone can serve multiple customers in each
flight [34]–[37]. The drone may also depart and land on the
truck at any location along an arc [38], [39]. The trucks can
regularly resupplied by drones [40], [41], and the truck can
recharge the drone instead of replacing a new battery [42],
[43]. Multi-objective models are considered in [44], [45].

The exact methods (e.g., integer linear programming) [4],
[6], [8]–[10], [46], [47] can guarantee optimality, but are
only applicable to small-size instances (at most 39 customers
as shown in [10]). For large-scale real-world instances,
(meta-)heuristic methods (e.g., [4], [6], [8], [23], [48]–[53])
are more commonly used. Murray and Chu [4] proposed
a heuristic named TSP-MC. First, a TSP route is obtained
by a TSP solver [54]. Then, some customers are allocated
to the drone to reduce cost. Agatz et al. [6] developed a
route first-cluster second heuristic. First, a truck route is
obtained by a TSP solver. Then, two heuristics, i.e., a greedy
partitioning heuristic and an exact partitioning algorithm, are
applied to the truck route. To explore the solution space more
comprehensively, multiple truck routes are obtained and
partitioned. Ha et al. [23] presented two heuristics to solve
the min-cost TSP-D, based on GRASP and local search,
respectively. Both heuristics start from a TSP route. GRASP
involves new local search operators for TSP-D. Yurek and
Ozmutlu [8] presented a heuristic to reduce the computing
cost of the exact method. The heuristic first applies the
nearest neighbor approach to obtain the truck routes and then
solves a mixed integer linear programming model to assign
the customers to the drone. Ponza [12] proposed a simulated
annealing algorithm that employs four move operators to
improve the current solution. Freitas et al. [55] proposed
a randomized variable neighborhood descent algorithm for
the FSTSP that starts from a TSP solution obtained by
Concorde. A Hybrid General Variable Neighborhood Search
algorithm (HGVNS) was proposed in [13]. It employs seven
neighborhoods in the framework of the VNS of the TSP-
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Algorithm 1: Framework of MATSP-D
1 P = init(popsize, trials);
2 for S ∈ P do fit(S) = evaluate(S);
3 S∗ = argminS∈P fit(S);
4 while stopping criterion is not met do
5 Set the offspring population P ′ = ∅;
6 for i = 1→ offsize do
7 C = null;
8 S1, S2 = TournamentSelection(P, 2);
9 Sx = crossover(S1, S2);

10 if Sx is not a clone of any S ∈ P then C = Sx;
11 if rand(0, 1) < Prls then
12 Sm = LocalSearch(Sx);
13 if Sm is not a clone of any S ∈ P then C = Sm;

14 if C 6= null then P ′ = P ′ ∪ C;

15 P = the top popsize individuals in P ∪ P ′, update S∗;

16 return S∗;

MC algorithm [4]. Other local search operators [56]–[58]
also mainly modify the drone and truck routes separately. A
Hybrid Genetic Algorithm (HGA) was proposed in [24]. It
uses a giant TSP tour as a chromosome, which is decoded
into a TSP-D solution by the split procedure. HGA applies
16 local search neighborhoods to the individuals in the
education step, which change the truck route and drone
route separately. Other population-based algorithm such as
Artificial Bee Colony (ABC) was designed in [59].

In summary, the exact methods for TSP-D can guarantee
optimality, but are restricted to small-size instances due to
their high computational complexity. The meta-heuristics are
more practical for large real-world instances. Most existing
meta-heuristics for TSP-D optimize the routes of the truck
and drone separately. Although the search space is much
reduced, they ignore the complex interactions between the
truck and drone, and may miss promising solutions. More-
over, the existing search operators cannot explore the solu-
tion space effectively. Specifically, they cannot effectively
change the number of drone nodes, and may lead the search
to poor local optima. To address these issues, we propose
the new MATSP-D.

III. MEMETIC ALGORITHM FOR TSP-D

Algorithm 1 shows the overall framework of MATSP-
D. First, a population of individuals P is initialized. At
each generation, an offspring population P ′ is generated. For
generating each offspring, two parents S1 and S2 are selected
by the size-2 tournament selection [60]. An offspring Sx is
generated by crossing over S1 and S2. Sx has a probability
of Prls to undergo a local search to generate Sm. If Sm or
Sx has different fitness from all the individuals in P , then
it is inserted into P ′. Finally, the top popsize individuals in
P ∪ P ′ are selected into the next generation. The evolution
process continues until the stopping criterion is met, e.g.,
after a certain number of generations. Finally, the best-found
solution is returned.

Algorithm 2: fit(S) = evaluate(S)

Input: An individual S = (NS,SV)
Output: The fitness value of the individual fit(S)

1 fit = 0, st = 0, ptr = 0, f ly = null, truck = [ ];
2 while ptr < N + 2 do
3 ptr ← ptr + 1;
4 if SV[ptr] = T then
5 op = 〈NS[st],NS[ptr], f ly, truck〉;
6 fit = fit+ c(op), st = ptr, fly = null, truck = [ ];
7 else if SV[ptr] = I then
8 truck = [truck,NS[ptr]];
9 else fly = NS[ptr];

10 return fit;

0 2 3 5 6 7 0

1 4 8

NS 0 1 9 10 2 3 4 11 5 6 7 8 0

SV T F I I T T F I T T F I T

(a)

(b)

(c)

Operation start node end node fly node truck node

1 0 2 1 9,10

2 2 3 null null

3 3 5 4 11

4 5 6 null null

5 6 0 7 8

Fig. 2. An example of the newly designed two-level representation.

A. Individual Representation and Evaluation

We design a new explicit two-level individual representa-
tion for TSP-D. An individual consists of two parts, i.e., the
node sequence and state vector. The node sequence describes
the order of customers visited by the truck and drone, with
the depot at the beginning and the end. Thus, it has N + 2
elements, where N is the number of customers. The state
vector has the same dimensionality as the node sequence.
At each dimension d, it describes the state of the action that
arrives the dth customer in the node sequence. It can take
three possible values as follows:

• T (Terminal): the node is served by the truck with the
drone on the truck (the drone can also take off or land
on the truck at the node).

• I (Internal): the node is served by the truck when the
drone is not on the truck.

• F (Fly): the node is served by the drone.

Note that no service is needed for the depot at the beginning
and end of the node sequence. For the sake of convenience,
we define their states as T.

Fig. 2 shows an example of the two-level representation
of the solution shown in Fig. 1. Each operation corresponds
to the sub-sequence between two adjacent nodes with state
T. For example, the first operation corresponds to the node
sequence [0, 1, 9, 10, 2] and state vector [T,F, I, I,T], which
is 〈0, 2, 1, [9, 10]〉.

Given an individual (NS,SV) under the proposed two-
level representation, the evaluation process is shown in
Algorithm 2. It detects the operations in the solution by
scanning the node sequence and state vector. If the current
state is T, then it calculates the cost of the newly detected
operation. If the current state is I, then it appends the current
node into the list of the truck nodes. If the current state is F,
it sets the current node as the fly node. Finally, it calculates
the fitness, which is the total cost of all the operations.
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Algorithm 3: Sx = crossover(S1, S2)

Input: Two parents S1, S2

Output: Offspring Sx

1 Sample a random index icross ∈ [2, . . . , N ];
2 NS′[0, .., icross] = NS1[0, .., icross];
3 NS′[icross + 1, .., N + 2] = NS2[icross + 1, .., N + 2];
4 SV′[0, .., icross] = SV1[0, .., icross];
5 SV′[icross + 1, .., N + 2] = SV2[icross + 1, .., N + 2];
6 R = {}, M = {} ; // Repair process
7 for i = icross → N + 2 do
8 if NS2[i] ∈ NS1[0, .., icross] then R = R ∪ i;
9 if NS1[i] ∈ NS2[0, .., icross] then M =M ∪NS1[i];

10 for i = 1→ |R| do NS′[R[i]] =M [i];
11 if SV′[icross] 6= “T” then
12 SV′[icross] = “T”, i = icross + 1;
13 while SV′[i] = “I” do
14 SV′[i] = “T”, i = i+ 1;

15 return Sx = (NS′,SV′);

B. Initialization

To initialize the population a TSP route is first generated
by Gurobi as a high-quality initial solution. Such seeding
strategy has been successfully applied in previous studies
[61]. The remaining individuals are generated randomly.
To ensure feasibility, all the states are set to T, i.e., all
the customers are served by the truck. No individual with
the same fitness is allowed in the initial population. If
a newly initialized individual violates this condition, the
random generation is repeated for at most trials times for
re-initialization.

C. Crossover

We develop a new specific crossover operator for the two-
level representation by extending the well-known Partial-
Mapped Crossover (PMX) [62] for TSP, which is named
PMX with Drone (PMX-D). First, it applies the PMX with
a single crossover point on the two parents. Specifically, it
exchanges the node sequence and state vector at a random
crossover point, and then repairs the duplicated and missing
nodes in the node sequence.

Note that after applying the PMX, the state vector may
become infeasible (e.g., internal nodes between terminal
nodes without fly node, and multiple fly nodes between
terminal nodes). To address this issue, we design a new state
vector repair operator to adjust the state vector accordingly.
Specifically, we reset the last element of the former sub-
sequence (i.e., SV[icross]) to be T. Then, for each subse-
quent element, if it is I, we replace it with T, since there is
no fly node in between.

Fig. 3 shows an example of the develop PMX-D operator,
where the crosser point is shown in dashed lines. After
swapping the sub-sequences, nodes 1 and 3 are duplicated
and nodes 6 and 8 are missing in the offspring. PMX replaces
node 1 at index 7 with node 6 and node 3 at index 8 with
node 8. To repair the state vector, since the state of node 4 at
index 4 is already T, there is no need for change. However,
indices 5 and 6 have the state I. Thus, we change them to
T to avoid internal nodes without fly nodes.

14

NS 0 1 2 3 4 5 6 7 8 0

SV T F T T T T F T F T

NS 0 2 4 6 8 5 7 1 3 0

SV T F T T F I I T F T

Single-Point Crossover directly

Correction

𝑃ଵ

𝑃ଶ

𝑆௫

NS 0 1 2 3 4 5 7 1 3 0

SV T F T T T I I T F T

NS 0 1 2 3 4 5 7 6 8 0

SV T F T T T T T T F T

M = [6, 8]

R = [7, 8]

Fig. 3. An example of the proposed PMX-D crossover.

Algorithm 4: S∗ = LocalSearch(S0)

Input: The initial solution S0

Output: The improved solution S∗
1 S∗ = S0, [N1, ..,N6] = [NIns,NDM,N2-opt,NDI,NSwap,NDD];
2 for k = 1→ 6 do
3 S′ = RandomSample(Nk(S

∗));
4 S′ = VND(S′, [N1(·), . . . ,Nk(·)]);
5 if fit(S′) < fit(S∗) then S∗ = S′, k = 1;

6 return S∗;

D. Local search

After the crossover, we employ a Variable Neighborhood
Search (VNS) [63] process to further improve Sx due to its
strong ability to jump out of local optima.

The VNS process is described in Algorithm 4. It is based
on 6 pre-defined neighborhoods. Given an initial solution
S0, it examines the neighborhoods one by one. For each
neighborhood, to escape from the current local optimum, it
first shakes the current solution S∗, i.e., randomly samples
a neighbor S′ from its current neighborhood Nk(S

∗). Then,
it improves S′ through a Variable Neighborhood Descent
(VND) process (shown in Algorithm 5). If the VND im-
proves the current solution S∗, then it replaces S∗ and the
search starts from the first neighborhood again. Otherwise, it
continues to explore the next neighborhood. The entire VNS
process stops when no improvement can be found.

Algorithm 5 shows the VND process. Given a solution
S and a list of neighborhoods [N1(·), . . . ,Nk(·)], the VND
examines each neighborhood in turn. For each neighborhood,
if the best neighbor within the neighborhood is better than
the current solution, then it replaces the current solution,
and the search starts from the first neighborhood again. The
VND stops when no neighborhood makes improvements.

1) Neighborhood Structures: The neighborhood structure
is determined by the move operators. Specifically, the neigh-
borhood of a solution S determined by the operator op can
be written as Nop(S) = {S′ | S′ = op(S)}.

As shown in Algorithm 4, we design 6 different neighbor-
hoods using 6 operators. N1(·), N3(·), N5(·) are traditional
operators that modify the node sequence as follows.
• Insert(i, j): Move a node i to a new position j.
• 2-opt(i, j): Reverse the direction of a sub-sequence

between positions i and j (i < j).
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Algorithm 5: S∗ = VND(S, [N1(·), . . . ,Nk(·)])
Input: Solution S, neighborhoods [N1(·), . . . ,Nk(·)]
Output: Improved solution S∗

1 S∗ = S;
2 for i = 1→ k do
3 S′ = null, fit′ =∞;
4 for S′′ ∈ Ni(S

∗) do
5 fit(S′′) = IncrEvaluate(S′′);
6 if fit(S′′) < fit′ then S′ = S′′, fit′ = fit(S′′);

7 if fit(S′) < fit(S∗) then S∗ = S′, i = 1;

8 return S∗;

NS 0 1 2 3 4 5 6 7 8 0

SV T F T T F I I T F T

NS 0 2 3 4 1 5 6 7 8 0

SV T F T T F I I T F T

NS 0 1 5 4 3 2 6 7 8 0

SV T F T T F I I T F T

NS 0 1 4 3 2 5 6 7 8 0

SV T F T T F I I T F T

(a)

(b)

(c)

(d)

Fig. 4. Examples of (a) the original solution, and the solutions obtained
by the (b) Insert(1, 4), (c) 2-opt(2, 5) and (d) Swap(2, 4) operators.

• Swap(i, j): Swap the nodes at position i and j (i < j).
The above operators change the node sequence only. When
applied to a solution, the state vector remains unchanged.
Fig. 4 shows an example of the three traditional operators.

The traditional operators cannot change the number of
drone nodes. To address this issue, we design three new
operators N2(·), N4(·), N6(·) to insert, delete and move
drone nodes, by modifying the state vector as follows.
• Drone-Move(s, d, f): It pushes NS[s] forward or back-

ward, depending on d and f , where d 6= 0 denotes
the move distance, and f ∈ {−1, 1} indicates whether
NS[s] is a fly node or end node. If f = −1, the
start node NS[s − 1] and fly node NS[s] are moved
to positions s + d − 1 and s + d. Otherwise, the end
node NS[s] is moved to position s + d. If d ∗ f > 0,
the state of the nodes from s to s+ d are changed to I.
Otherwise, their states become T. To ensure feasibility,
the operator can only be applied when d ∗ f ≤ 0 or the
state of the nodes from positions s to s+ d are all T.

• Drone-Insert(s, e): It selects a truck node NS[s + 1]
and serve it by drone. The drone departs from NS[s],
serves NS[s + 1], and lands on NS[e]. The state of
NS[s + 1] is turned into F. The state of the nodes
between NS[s+1] and NS[e] (exclusive) are changed
to I. To ensure feasibility, this operator can only be
applied under the following conditions: (1) the drone
is available from positions s to e, i.e., there is no node
between NS[s] and NS[e] with F or I state; (2) NS[s+
1] is served by the truck, i.e., its state is T or I.

• Drone-Delete(f): It turns a drone node NS[f ] into
truck-served. For each node from NS[f ] to the next
terminal node, if its state is I, we change it to T.

16

NS 0 1 2 3 4 5 6 7 8 0

SV T F T F I T F I T T

NS 0 1 2 3 4 5 6 7 8 0

SV T F T T T T F I T T

(a)

(b)

NS 0 1 2 3 4 5 6 7 8 0

SV T F T T T T T T T T

(c)

NS 0 1 2 3 4 5 6 7 8 0

SV T F T T T F I I T T

(d)

NS 0 1 2 3 4 5 6 7 8 0

SV T F T T T T F T T T

Fig. 5. Examples of (a) Drone-Insert(2, 5), (b) Drone-Delete(6), (c) Drone-
Move(6,−1,−1), (d) Drone-Move(8,−1, 1).

Fig. 5 shows the examples of (a) Drone-Insert(2, 5), (b)
Drone-Delete(6), (c) Drone-Move(6,−1,−1), (d) Drone-
Move(2, 2, 1). In Fig. 5(a), the state of the node 3 is changed
F and the state of the subsequent node 4 is changed to I. As
Fig. 5(b) shows, the state of the fly node 6 is changed to T.
Then, for the two nodes 7 and 8 between the node 6 and
the next terminal node 0, since their states are I, we change
their state to T. In Fig. 5(c), the state [T,F] at index (5, 6)
are moved to index (4, 5). As d ∗ f > 0, the states from
index 5 to 6 are changed to I. In Fig. 5(d), as d ∗ f < 0, the
states from index 7 to 8 are changed to T.

The order of the neighborhoods is decided based on the
following considerations. Firstly, N1(·), N3(·) and N5(·)
change the node sequence only. Therefore, it may be more
efficient to separate them from the newly designed operators
that change the state vector as well. The order of N1(·),
N3(·), N5(·) is less important. Secondly, in the VND
process, the search reverts to the first neighborhood once
a better solution is found. Therefore, the neighborhood that
tends to bring more improvement should be in the front.
To this end, we place the traditional operators N1(·), N3(·),
N5(·) before the new operators N2(·), N4(·), N6(·), since
they are more likely to bring more improvement. Among the
new operators, we put Drone-Move in the front, since it is
the most likely to make improvements. Then, we put Drone-
Insert before Drone-Delete, since Drone-Insert shortens the
truck route and tends to bring more improvement.

2) Incremental Evaluation: To speed up evaluation dur-
ing the local search, we can calculate the fitness of the neigh-
bors incrementally [20] by only calculating the difference
caused by the changed parts.

In the following, we describe the designed incremental
evaluation of the operators used in MATSP-D:
• Insert(i, j): We recalculate the links between i and j.

We change the link for the drone nodes between i and j,
and the two drone nodes immediately before and after
i and j. The complexity is usually O(F ), where F is
the number of fly nodes between i and j.

• Drone-Move(s, d, f): If f = −1, since the end node in
this operation is e, we replace the drone links [s− 1, s]
and [s, e] with [s + d − 1, s + d] and [s + d, e], and
replace the truck links [s− 2, s− 1] and [s− 1, s+ 1]
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with [s + d − 2, s] and [s, s + 1]. The complexity is
O(1). If f = 1, since fly node in this operation is f ,
we replace the drone link [f, s] with [s, s + d]. The
complexity is also O(1).

• 2-opt(i, j): We recalculate the links associated with i
and j, the drone nodes between i and j, and immedi-
ately before i and after j. The complexity is O(F ).

• Drone-Insert(s, e): We replace the truck links [s, s+1]
and [s+1, s+2] with [s, s+2], and add the drone links
[s, s+ 1] and [s+ 1, e]. The complexity is O(1).

• Swap(i, j): We recalculate the links associated with i
and j, the drone nodes immediately before and after
i, and the drone nodes immediately before and after j.
The complexity is O(1).

• Drone-Delete(f): Let the next terminal node be e, we
remove the drone links [f − 1, f ] and [f, e], and add
the truck links [f−1, f ] and [f, f+1]. The complexity
is O(1).

For each operator, the recalculation of the links is the same
as that for TSP, except that the cost of the links depend on
their corresponding states (truck or drone cost). Note that
F is usually much smaller than the number of customers
N . With the above incremental evaluation, all the operators
during the local search has much lower complexity than the
full evaluation, which is O(N).

IV. EXPERIMENTAL STUDIES

To evaluate the effectiveness of MATSP-D, two sets of
experiments have been carried out. In the first experiment
(Exp 1), we compare MATSP-D with the optimal solutions
obtained by CPLEX on the small-scale benchmark instances
provided by [6]. In the second experiment (Exp 2), we
compare MATSP-D with several state-of-the-art algorithms
(TSP-EP [6], TSP-GP [6], TSP-MC [4], HGVNS [13] and
HGA [24]) on two larger realistic datasets. The first dataset
contains 270 random instances provided by [6], with 50∼100
customers following different types of distributions and vary-
ing drone speeds. The second dataset includes 24 instances
extended from the TSPLib instances [13] derived from real-
world graphs with 51∼200 nodes.

Table II shows the parameter setting of MATSP-D in the
experiments. The algorithm stops when either the maximal
number of generations or runtime is reached. For the pop-
ulation size and offspring size, we set them to 500 for Exp
1, and 50 for Exp 2. Since the instances in Exp 1 are
small, we can afford to set a sufficiently large population
and offspring sizes to enhance exploration. However, such a
large population size will make the convergence too slow
for the larger instances in Exp 2. Thus, we set them to
50, based on the recommendation in [64], which used MA
to solve problems with similar sizes. trials = 10 and
Prls = 0.3 are set by rule of thumb. The maximal number of
generations Gm is set to balance the algorithm convergence
and computational time. Among the compared algorithms,
TSP-EP, TSP-GP, TSP-MC and HGVNS are implemented
without parameters. The result of HGA is obtained directly

TABLE II
PARAMETER SETTING OF MATSP-D.

Name Description Value

popsize Population size 500 (Exp 1) / 50 (Exp 2)
offsize Offspring population size 500 (Exp 1) / 50 (Exp 2)
trials #trials in initialization 10
Prls Local search probability 0.3
Gm Maximal #generations 500 (Exp 1) / 2N (Exp 2)

TABLE III
THE RESULTS OF CPLEX AND MATSP-D ON THE SMALL DATASET.

Avg.Cost Time(s)

N CPLEX MATSP-D CPLEX MATSP-D W-D

10 217.8 218.0 45 5 3-7
11 226.3 226.6 540 6 2-8
12 229.7 230.2 6318 7 3-7

from the original paper. For all the compared algorithms, we
ensured that the best available results are considered.

For each instance, MATSP-D and HGVNS [13] were
run 30 times independently. The compared deterministic
algorithms (i.e. TSP-EP [6], TSP-GP [6] ,TSP-MC [4]) were
run once. The experiments were executed on 64-bit version
of Windows 10 Pro, with an Intel(R) Xeon(R) Gold 6240R
(2.4GHz) CPU and 64GB RAM.

A. Results and Discussions

1) Small dataset: Table III shows the mean and standard
deviation of the 30 runs of MATSP-D and the optima
obtained by CPLEX on the small instances [6]. The instances
contain 10, 11 and 12 uniformly distributed customers, and
the drone has the same speed as the truck. We conducted
Wilcoxon rank sum test to compare the results of MATSP-D
with the optimum. The results are summarized in the “W-
D” column, where “W” indicates the number of instances
on which MATSP-D performed significantly worse than the
optimal solutions obtained by CPLEX, and “D” the number
of instances on which MATSP-D achieved the optimal
solution (the same as CPLEX).

From the table, we can see that MATSP-D performs
competitively compared with the optimum. MATSP-D con-
sistently reached the optimum on 22 out of the 30 instances.
The average gap from the optimum over all the instances is
0.1%. The runtime of CPLEX increases very rapidly with
the increase of problem size. It is less than 1 minute for 10
customers, increases to about 10 minutes for 11 customers,
and more than 2 hours for some instances with 12 customers.
This greatly restricts the applicability of CPLEX for solving
real-world large scale instances. In comparison, the runtime
of MATSP-D is always within 10 seconds.

Overall, MATSP-D can consistently obtain promising so-
lutions that are very close to the optimum on small instances
within a very short time.

2) First large dataset: The 270 instances are ran-
domly generated from three problem sizes (50, 75 and
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TABLE IV
THE AVERAGE PERFORMANCE AND RUNTIME OF THE COMPARED ALGORITHMS ON THE FIRST LARGE DATASET [6].

TSP-EP [6] TSP-GP [6] TSP-MC [4] HGVNS [13] MATSP-D

N Avg.Cost Time(s) Avg.Cost Time(s) Avg.Cost Time(s) Avg.Cost Time(s) Avg.Cost Std Time(s)

U-1
50 490.2 14 552.9 1 554 1 528.5 2 488.2 3.4 132
75 566.7 219 646.5 4 646.1 6 620 7 565.3 5.3 352

100 645.4 845 730.3 12 739.8 23 706 26 646.7 7.4 1078
W-D-L 12-9-9 - 0-0-30 - 0-0-30 - 0-0-30 - - - -

S-1
50 640.8 14 753.4 1 711.6 2 688.9 2 631.9 5 141
75 859.3 179 1013.2 4 980.1 8 927.7 9 862.8 10.4 384

100 1037.6 846 1219.9 12 1173.7 26 1128.3 28 1035.8 12.5 1136
W-D-L 7-10-13 - 0-0-30 - 0-0-30 - 0-0-30 - - - -

D-1
50 985.3 13 1152.4 1 1128.3 2 1062.1 2 984.6 7 88
75 1214.1 174 1447.5 5 1391.1 8 1325.9 9 1214.3 10.6 400

100 1360.5 1200 1610 16 1544.5 26 1496.4 28 1366.3 13.6 1181
W-D-L 13-7-10 - 0-0-30 - 0-0-30 - 0-0-30 - - - -
gap -0.11% - -13.51% - -10.69% - -7.87% - - - -

U-2
50 409.9 34 428.3 1 532.5 2 459 2 400.3 2.8 96
75 475.2 397 495.5 6 623.8 9 549.5 11 461.3 6.1 465

100 548.6 2072 567.2 19 720.5 27 618.1 32 534.4 7.5 1499
W-D-L 2-4-24 - 0-0-30 - 0-0-30 - 0-0-30 - - - -

S-2
50 506.4 29 554.8 2 678 2 599.1 2 497.7 6.7 150
75 686.2 340 741.3 8 928 9 799.4 10 679.4 11.4 481

100 833.9 1821 894.7 21 1114.4 28 952.6 32 827.7 15.5 1550
W-D-L 8-2-20 - 0-0-30 - 0-0-30 - 0-0-30 - - - -

D-2
50 804.6 26 866.1 2 1082.5 2 971.9 2 786.9 9.4 92
75 980.4 409 1075.3 9 1319.1 9 1147 11 966 12.6 426

100 1107.6 2027 1202.2 25 1477.1 27 1288.6 32 1104.1 14 1369
W-D-L 6-8-16 - 0-0-30 - 0-0-30 - 0-0-30 - - - -
gap -1.64% - -7.79% - -24.22% - -16.18% - - - -

U-3
50 380.3 35 393.7 2 520.6 2 435.3 2 358.7 3 121
75 442.5 481 451.8 10 612.3 8 521.7 10 412.1 5.7 624

100 512.1 2465 527.7 30 715.6 25 578.2 31 478 8.8 2065
W-D-L 0-0-30 - 0-0-30 - 0-0-30 - 0-0-30 - - - -

S-3
50 439.1 47 474.1 2 656.5 2 520.8 2 423.4 6.1 109
75 608.6 587 641.1 10 905.8 9 705 11 589.4 10.8 536

100 736.4 2590 773.7 30 1068.1 28 884.2 33 715.6 15.5 1773
W-D-L 2-4-24 - 0-0-30 - 0-0-30 - 0-0-30 - - - -

D-3
50 742.4 37 760.7 2 1062 2 929.3 2 695.4 7 102
75 871.4 601 928.5 11 1273.7 10 1034.6 13 842.6 10.9 502

100 996.9 2686 1050.1 34 1429.4 29 1186.9 33 967.5 15.4 1579
W-D-L 0-3-27 - 0-0-30 - 0-0-30 - 0-0-30 - - - -
gap -4.38% - -8.40% - -31.19% - -21.58% - - - -

100 nodes), three distributions (uniform, single-center and
double-center), and three ratios between truck and drone
speeds (α = cd/c = 1, 2, 3), leading to 3×3×3 = 27 groups.
For each group, 10 instances are randomly generated.

We compare MATSP-D with four state-of-the-art heuristic
algorithms: TSP-EP [6], TSP-GP [6], TSP-MC [4] and
HGVNS [13]. The source code of TSP-EP, TSP-GP and
TSP-MC are publicly available. The source code of HGVNS
is not available, and we re-implemented it. All the compared
algorithms were run on the same computational platform.
All the compared results are the best results published in
the original papers.

Table IV summarizes the results of the compared algo-
rithms on the 27 groups of large instances in [6], where
the notations “U”, “S” and “D” in the first column stand
for the “Uniform”, “Single-center” and “Double-center”
distributions, and the following numbers (1, 2 or 3) indicate
the α value. Each row shows the average cost and runtime of
the compared deterministic algorithms over the 10 instances
of that type. As MATSP-D was run 30 times independently
for each instance, we first calculate the mean and standard
deviation over the 30 runs for each instance, and then present

the average of the mean cost and standard deviation over the
10 instances in the table. We further conducted Wilcoxon
rank-sum test between MATSP-D and each compared algo-
rithm on each instance with the significance level of 0.05
and Bonferroni correction. For each type of instances, the
“W-D-L” row summarizes the number of instances where
the compared algorithm performs statistically significantly
better than, comparable with, and significantly worse than
MATSP-D, respectively. The gap row shows the average gap
between MATSP-D and each compared algorithm, calculated
as costMATSP-D−costother

costother
.

From the table, we can clearly see that MATSP-D per-
forms better than the compared algorithms in most cases.
The average gap is always negative, indicating that the
cost obtained by MATSP-D is lower than that of the other
compared algorithms. TSP-EP performs the second best, and
much better than the other three compared algorithms. This
is consistent with [6].

The advantage of MATSP-D becomes more obvious as α
increases. The gap between MATSP-D and TSP-EP starts
with −0.11% when α = 1, reaching −1.64% when α = 2
and −4.38% when α = 3. This indicates that MATSP-D
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TABLE V
THE AVERAGE PERFORMANCE AND RUNTIME OF THE COMPARED ALGORITHMS ON THE SECOND LARGE DATASET [13] WITH α = 1.

TSP-EP [6] TSP-GP [6] TSP-MC [4] HGVNS [13] HGA [24] MATSP-D

Cost Time(s) Cost Time(s) Cost Time(s) Avg.Cost Time(s) Avg.Cost Time(s) Avg.Cost Std Time(s)

berlin52 173.1(+) 12 186.9(-) 2 204.4(-) 4 220.2(-) 7 199.8(-) 14 174.7 0.9 78
eil51 9.9(=) 13 10.8(-) 1 11.7(-) 3 13.7(-) 12 13.5(-) 11 9.9 0.1 70
eil76 12.1(=) 110 13.2(-) 6 15(-) 10 16.7(-) 27 16.9(-) 27 12.1 0.1 303

kroA100 486.2(+) 783 523.5(-) 20 589.6(-) 34 609.7(-) 31 541.4(-) 98 493.7 6 1007
kroC100 498.3(+) 549 539.1(-) 17 611.7(-) 27 660.9(-) 37 547.4(-) 79 505.2 4.3 1037
kroD100 501.3(=) 817 539(-) 21 597.9(-) 35 652.3(-) 40 547.2(-) 65 502.3 2.9 1027
kroE100 521.6(+) 815 563.9(-) 20 653.9(-) 26 659.5(-) 49 581.9(-) 69 526.9 7 1075

rat99 29.1(+) 386 37.4(-) 5 36.2(-) 22 37.3(-) 35 37.5(-) 55 29.5 0.3 1004
rd100 190.5(-) 672 204.3(-) 28 224.1(-) 52 243.8(-) 34 219.4(-) 85 189.1 2.2 1020
st70 15.6(=) 101 16.8(-) 6 19.1(-) 6 21(-) 4 21(-) 22 15.6 0.2 217

bier127 2619(+) 2996 2892.2(-) 54 2893.5(-) 84 3587.9(-) 54 3506.4(-) 64 2679.8 40.4 2854
ch130 143.3(+) 3456 154.3(-) 62 182.3(-) 78 180.4(-) 44 182.9(-) 76 145.4 2.2 3466
d198 409.2(+) 56808 426.1(-) 438 448.3(-) 1123 461.8(-) 68 461.2(-) 114 411.3 3 19296

kroA150 626.4(+) 9445 670.6(-) 91 767.9(-) 187 780.9(-) 41 693.6(-) 145 636.2 7.3 6570
kroA200 702.4(+) 44877 751.8(-) 311 866.4(-) 657 874(-) 47 820.9(-) 170 718.9 7.7 22776
kroB150 603.4(+) 7899 671.8(-) 113 745.4(-) 256 773.7(-) 50 676.1(-) 146 615.2 10.2 6454
kroB200 673.5(+) 51596 922.9(-) 68 861.7(-) 714 838.4(-) 32 801.4(-) 152 698.4 13.4 22792
lin105 331.2(+) 1002 351.2(-) 25 390.6(-) 35 380.4(-) 40 381.7(-) 91 334.4 2.6 1351
pr107 979.9(+) 765 1044.2(-) 26 1072.5(-) 127 1224.4(-) 33 1038.1(-) 79 993.3 6.3 1589
pr124 1428.7(-) 1083 1490.8(-) 30 1594.7(-) 99 1996.6(-) 25 1618.1(-) 47 1418.9 12.3 2671
pr136 2116.8(+) 3227 2839.5(-) 32 2568.2(-) 110 2789(-) 45 2474.3(-) 142 2135.2 35.8 3883
pr144 1544(=) 7100 1600.7(-) 96 1675.9(-) 267 1675.8(-) 43 1675.8(-) 176 1544.6 14.7 5715
pr152 1840.1(=) 9745 1897.7(-) 163 2038.1(-) 235 2128.5(-) 61 1973.7(-) 119 1844.9 11.8 6778
rat195 56.3(+) 23351 72.1(-) 62 68.3(-) 469 71.9(-) 45 71.5(-) 169 57.4 0.5 18760
W-D-L 16-6-2 - 0-0-24 - 0-0-24 - 0-0-24 - 0-0-24 - - - -
gap 1.00% - -8.70% - -15.02% - -20.19% - -14.03% - - - -

can perform better for instances with faster drones. When
the drone speed is higher, the optimal solutions require
to use the drone more often, and the interactions between
truck and drone route are more complex. In this case,
MATSP-D performs better due to its stronger ability to
handle the complex interactions between the truck and drone
routes. The superior performance of MATSP-D for large α
demonstrates its effectiveness for solving TSP-D with more
complex collaborations between the truck and drone.

The “W-D-L” rows show that MATSP-D significantly
outperforms TSP-GP, TSP-MC and HGVNS for all 270
instances. Compared with TSP-EP, the performance is com-
parable when α = 1 (32 wins and 32 loss). When
α = 2, MATSP-D significantly outperforms TSP-EP on 60
instances, while loses on only 16 instances. When α = 3,
MATSP-D shows significantly better performance than TSP-
EP on 81 out of the 90 instances.

The runtime of MATSP-D increases with a similar trend
as the increase of the TSP-EP runtime. MATSP-D starts with
longer runtime than TSP-EP when N = 50, but with slower
increase as the problem size increases. When N = 100,
MATSP-D has even shorter runtime than TSP-EP. Note that
TSP-GP, TSP-MC and HGVNS have much shorter runtime,
but their performance are much worse than TSP-EP. As
existing studies [6] already show that TSP-EP is state-of-
the-art, we mainly focus on comparing with TSP-EP.

3) Second large dataset: The second dataset [13] contains
24 instances extended from the TSPLib instances with
α = 1. In addition, we create another 24 instances with
a higher drone speed by setting α = 3, which requires more

collaborations between drone and truck.

Tables V and VI show the performance of each algorithm
on the instances with α = 1 and α = 3. Note that
HGA has only “Avg.Cost” but no “Std”, since only the
average cost was reported in [24]. For each instance, we
conducted Wilcoxon rank sum test between each compared
algorithm and MATSP-D. The compared result is marked
with (+)/(−), if it performs significantly better/worse than
MATSP-D, and (=) if there is no statistical difference.

The results show similar patterns as on the first dataset.
When α = 1, TSP-EP performs the best, followed by
MATSP-D with slightly worse performance (only 1.00%
gap). TSP-EP is significantly better than MATSP-D on
16 out of the 24 instances. However, MATSP-D performs
significantly better than all the other compared algorithms
on all the instances. When α = 3, MATSP-D performs much
better than TSP-EP on all the 24 instances, and their gap is
-7.24%. We omit other algorithms in Table VI, as they are
even much worse than TSP-EP. In addition, MATSP-D is
superior to TSP-EP in terms of runtime when N > 100.

Since HGA is the most similar algorithm with MATSP-
D, comparison between MATSP-D and HGA might be of
particular interest. The tables show that MATSP-D performs
much better than HGA, although its runtime is much longer.
Further analysis on convergence curve in the supplementary
file shows that given the same runtime as in [24], MATSP-D
can still converge to much better solutions than HGA.
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TABLE VI
THE AVERAGE PERFORMANCE AND RUNTIME OF THE COMPARED

ALGORITHMS ON THE SECOND LARGE DATASET [13] WITH α = 3.

TSP-EP [6] MATSP-D

Cost Time(s) Avg.Cost Std Time(s)

berlin52 130.4(-) 40 118.5 1.8 103
eil51 7.6(-) 41 6.9 0.1 83
eil76 9.2(-) 303 8.2 0.2 432

kroA100 393.7(-) 1652 373.5 4.6 2206
kroC100 410.5(-) 2262 375.8 6.1 2036
kroD100 390.8(-) 1874 379 4.5 2196
kroE100 435.6(-) 2112 385.6 12.3 1915

rat99 24(-) 1768 21.1 0.6 1534
rd100 153.3(-) 1180 131.3 2 1933
st70 12.6(-) 198 11.4 0.1 359

bier127 1930.7(-) 6284 1876.2 53 3582
ch130 116.8(-) 10145 107.3 2.7 5782
d198 370.3(-) 73467 362.8 5.2 26778

kroA150 496.4(-) 24723 475.2 8.6 11290
kroA200 569.2(-) 109208 535 11 38516
kroB150 508.4(-) 15566 460.3 13.9 11454
kroB200 570(-) 90712 523.3 15.8 37729
lin105 282.6(-) 2046 275 4.5 2001
pr107 882.5(-) 223 867 8.6 3049
pr124 1223.6(-) 2778 1160.6 22.1 3298
pr136 1730.7(-) 7168 1566.4 36.9 6224
pr144 1472.5(-) 7293 1388.6 53.8 7594
pr152 1677.2(-) 17071 1592.2 19 10658
rat195 44.8(-) 88068 40.7 0.7 27152
W-D-L 0-0-24 - - - -
gap -7.24% - - - -

TABLE VII
RESULTS OVER 30 RUNS OF MATSP-D AND MA-HGVNS ON THE

UNIFORM INSTANCES WITH α = 2, N = 50.

MATSP-D MA-HGVNS

U-n50 Avg.Cost Std Time(s) Avg.Cost Std Time(s)

71 388.3 2.6 137 405.4(-) 4.9 658
72 422.9 2.4 90 442(-) 8.4 660
73 398 3.2 91 408.2(-) 5.3 585
74 411.9 1.6 95 423.4(-) 6.6 640
75 415.9 3.5 88 430.7(-) 6.5 579
76 374.4 2.1 89 386.8(-) 5.8 570
77 416.7 4.3 94 433.6(-) 7 581
78 422.2 1.6 90 438.8(-) 4.6 579
79 384.4 3.6 85 395.6(-) 5.2 656
80 368.3 2.9 102 378.3(-) 6.8 616

W-D-L - - - 0-0-10 - -

B. Further Analysis

1) Effect of New Local Search Operators: An important
contribution of MATSP-D is the newly proposed local search
operators. To verify the efficacy of the local search opera-
tors, we replace the VNS process in MATSP-D with the
HGVNS process [13] (namely MA-HGVNS), and compare
between them on 10 instances with uniform distribution and
α = 2. Table VII shows the comparative results. From the
table, we can see that MATSP-D can obtain significantly
better solutions than MA-HGVNS on most instances with
a much shorter time. Similar patterns can be observed on
other instances. This verifies the effectiveness of the newly
proposed local search operators.

Fig. 6. Results over 30 runs of PMX-D and other common crossover
operators on the uniform instances with α = 2, N = 50.

2) Effect of the PMX-D Crossover Operator: The PMX-
D operator extends the PMX operator to adapt to the specific
representation of MATSP-D. It first applies PMX to the
node sequence, and then develops a new repair process for
the state vector. To verify the effectiveness of the PMX-
D operator, we replace it with six other common crossover
operators [65], i.e., PMX, APX, POS, OX2, OX1, and CX.
To prevent infeasible offspring, we set the state of all the
nodes to T. We compare the MATSP-D counterparts with
different crossover operators on 10 instances with uniform
distribution and α = 2, and the results are shown in Fig. 6.
We can see that the results of PMX-D are significantly better
than that of the other crossover operators on all the instances.
Similar trends can be observed on other instances. This
verifies the effectiveness of the proposed PMX-D operator.
Furthermore, the advantage over the original PMX operator
verifies the efficacy of the newly proposed state vector repair
process in PMX-D.

3) Practical Implication on Customer Distribution: We
further analyze the practical implication of TSP-D, i.e., when
it is good to use drones together with trucks. Here, we
investigate the effect of customer distribution, by comparing
MATSP-D with Gurobi that considers no drone (i.e., solving
TSP) on the first large dataset.

Fig. 7 shows the heatmaps of the gap between with
drone (MATSP-D) and without drone (TSP by Gurobi),
which is calculated as costMATSP-D−costTSP

costTSP
. The horizontal

and vertical axes indicate the number of customers and
their distributions, respectively. We can see that all the
gaps are negative, i.e., the drone-truck collaborative system
always outperforms the truck-only systems. Besides, the gap
increases when the drone speed (α) increases, which is
consistent with intuition that a faster drone speed requires
more collaboration between the truck and drone. Further-
more, it is shown that the gap is the largest on the single-
center instances, followed by the double-center instances.
As shown in [66], the urban population distribution tends
to be single-center or double-center. The most advantage of
MATSP-D over TSP on the single-center and double-center
instances suggests that the collaborative drone-truck delivery
system will play a vital role in urban logistics transportation.
To fully utilize the advantage of the truck-drone delivery
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(a) 𝛼 ൌ 1 (b) 𝛼 ൌ 2 (c) 𝛼 ൌ 3

Fig. 7. Heatmaps of gap between TSP-D and TSP routes (a) α = 1 (b) α = 2 (c) α = 3.

systems, we recommend deploying them separately for each
region/sub-center of the city.

V. CONCLUSIONS

This paper proposes a novel memetic algorithm to solve
the challenging TSP-D more effectively, especially for the
cases when the drone speed is faster than the truck. To
represent the coupling relationship between the truck route
and drone route accurately, we develop a new two-level
solution representation for the node sequence and state
vector. Unlike traditional TSP-D algorithms, the proposed
algorithm, namely MATSP-D, optimizes the truck route
and drone route simultaneously by the extended PMX-D
crossover operator and six new local search operators.

The results on both the synthetic and realistic datasets
show that for small instances, MATSP-D can almost always
obtain the optimal solution. For large instances, MATSP-D
can significantly outperform the state-of-the-art algorithms
when α ≥ 2 (the drone is at least as twice fast as the truck)
in most cases. Besides, we demonstrate the effectiveness of
the newly developed crossover and local search operators.
We further investigate the applicable scenarios for the col-
laborative drone-truck delivery system. According to a case
study, the collaborative drone-truck delivery system is more
suitable to be deployed in urban scenarios.

A limitation of MATSP-D is its high computational cost.
To address this issue, there can be several possible future
directions. First, we will improve the efficiency of the local
search by designing more intelligent schemes to select the
solutions with more potential. Second, we will improve the
effectiveness of the method for large-scale instances, e.g.,
through the divide-and-conquer strategies and cooperative
co-evolution. Last but not least, we will extend our method
to more complex and practical problem models such as
multiple delivery trucks and drones.
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S.I. DETAILED RESULTS ON THE SMALL DATASET

Table SI shows the summarized results of CPLEX and
MATSP-D on the small dataset [1]. Each group contains
10 instances with N uniformly distributed customers. We
conducted the Wilcoxon rank sum test to compare the
results of MATSP-D with the optimum. The optimal result
is marked with (+), if MATSP-D performs significantly
worse than the optimum, and (=) if there is no statistical
difference. For each group, the summary results are listed in
the “W-D” row. “W” indicates the number of (+), and “D”
the number of (=).

From the table, we can see that MATSP-D consistently
reached the optimum on 22 out of the 30 instances. The
average gap from the optimum over all the instances is as
small as 0.1%.

An interesting observation is that the standard deviation
of MATSP-D is always zero, even when the solution is
not optimal. In other words, MATSP-D converges to the
same sub-optimal solution in all the runs. We further looked
into the solutions of the MATSP-D for these instances and
compared with the optimal solutions, and found that the
optimal solutions require the drone to depart and return to
the same truck node. The representation of MATSP-D (each
operation must have different start and end nodes) does not
allow such a situation. However, MATSP-D still obtains the
optimal solutions with the assumption that the drone must
depart and return to different truck nodes.

S.II. DETAILED RESULTS ON THE FIRST LARGE
DATASET

Table SII-SX shows the detailed results of the four
compared algorithms on the nine groups of the first large
instances. Each group is distinct in three distributions (uni-
form, single-center and double-center), and three ratios be-
tween truck and drone speeds (α = cd/c = 1, 2, 3). Each row
shows the cost and runtime of the compared deterministic
algorithms. As MATSP-D was run 30 times independently
for each instance, we first calculate the mean and standard
deviation over the 30 runs for each instance, and then present
the average of the mean cost and standard deviation over the
10 instances in the table. We conducted Wilcoxon rank sum
test between MATSP-D and the compared algorithms. The

TABLE SI
THE MEAN (STD) OF MATSP-D AND RUNTIME OVER 30 INDEPENDENT

RUNS ON THE SMALL INSTANCES.

Instance CPLEX Time(s) MATSP-D Std Time(s)

U-n10-51 250.7(=) 45 250.7 0.0 4
U-n10-52 189.5(+) 48 191.3 0.0 5
U-n10-53 192.2(=) 43 192.2 0.0 4
U-n10-54 224.9(=) 41 224.9 0.0 5
U-n10-55 253.1(=) 39 253.1 0.0 5
U-n10-56 226.9(=) 37 226.9 0.0 5
U-n10-57 197.2(+) 59 197.5 0.0 4
U-n10-58 213.3(=) 38 213.3 0.0 7
U-n10-59 204(=) 52 204 0.0 5
U-n10-60 225.9(+) 44 226 0.0 4

W-D 3-7 - - - -
Avg. 217.8 45 218.0 0.0 5

Instance CPLEX Time(s) MATSP-D Std Time(s)

U-1-n11 221.2(+) 433 223.4 0.0 10
U-2-n11 205.8(=) 542 205.8 0.0 5
U-3-n11 193(=) 655 193 0.0 5
U-4-n11 241.3(=) 395 241.3 0.0 5
U-5-n11 248.1(=) 386 248.1 0.0 5
U-6-n11 217.7(=) 523 217.7 0.0 6
U-7-n11 237.3(=) 727 237.3 0.0 5
U-8-n11 214.8(=) 418 214.8 0.0 5
U-9-n11 256.3(+) 682 256.8 0.0 5
U-10-n11 227.9(=) 635 227.9 0.0 5

W-D 2-8 - - - -
Avg. 226.3 540 226.6 0.0 5

Instance CPLEX Time(s) MATSP-D Std Time(s)

U-1-n12 239.7(=) 5264 239.7 0.0 6
U-2-n12 221.3(=) 5824 221.3 0.0 8
U-3-n12 247.1(+) 6255 247.5 0.0 7
U-4-n12 230(=) 8469 230 0.0 7
U-5-n12 243.3(=) 7645 243.3 0.0 7
U-6-n12 222(=) 5249 222 0.0 6
U-7-n12 225.8(=) 5702 225.8 0.0 7
U-8-n12 227.9(+) 6759 229.3 0.0 8
U-9-n12 243.9(=) 5313 243.9 0.0 6
U-10-n12 196.1(+) 6698 198.8 0.0 7

W-D 3-7 - - - -
Avg. 229.7 6318 230.2 0.0 7

compared result is marked with (+), if it performs signif-
icantly better than MATSP-D, (=) if there is no statistical
difference, and (−) if it performs significantly worse than
MATSP-D. For each scale, the summary results are listed in
the “W-D-L” row. “W” indicates the number of (+), “D”
the number of (=), and “L” the number of (−).
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TABLE SII
THE AVERAGE PERFORMANCE AND RUNTIME OF THE COMPARED ALGORITHMS ON THE UNIFORM DATASET WITH α = 1

Instance TSP-EP [1] TSP-GP [1] TSP-MC [2] HGVNS [3] MATSP-D

N id Cost Time(s) Cost Time(s) Cost Time(s) Avg.Cost Time(s) Avg.Cost Std Time(s)

50

71 479.8(+) 13 530.1(-) 1 529.9(-) 2 506.2(-) 2 481.2 1.8 86
72 510.6(+) 18 600(-) 1 568.5(-) 1 541.7(-) 2 513.6 5.2 137
73 488.3(+) 15 563.8(-) 1 568.6(-) 1 518.6(-) 1 491.3 2.7 148
74 484.5(-) 10 560.2(-) 1 541(-) 1 526.5(-) 2 483.9 1.6 142
75 523.4(-) 8 578.9(-) 1 571.7(-) 1 555.2(-) 1 516.1 5 146
76 470.5(+) 14 534.6(-) 1 552.4(-) 1 505.3(-) 2 472.4 3.6 156
77 513.7(=) 14 583.6(-) 1 602.1(-) 1 545.7(-) 1 513.1 4.4 138
78 506.8(-) 21 554(-) 1 569.4(-) 1 550.5(-) 1 492.9 2.8 166
79 466.7(-) 15 522.2(-) 1 533.7(-) 2 533.7(-) 2 464.5 3.5 131
80 458(-) 7 501.1(-) 1 503.2(-) 2 501.4(-) 2 452.7 3.3 73

W-D-L 4-1-5 - 0-0-10 - 0-0-10 - 0-0-10 - - - -

75

81 575.5(=) 176 644.1(-) 6 670.7(-) 6 621.6(-) 7 575.9 5.6 334
82 527.8(+) 262 600.9(-) 3 612.9(-) 5 558.6(-) 6 530 2.6 340
83 544.8(=) 201 609(-) 5 602(-) 7 588.3(-) 8 544.9 4.9 358
84 566.9(+) 324 651.1(-) 4 646.6(-) 6 636.8(-) 7 574.4 5.5 353
85 599.5(=) 234 689.5(-) 2 696.8(-) 5 671(-) 6 598.4 7.1 347
86 579(=) 216 695.2(-) 1 645.3(-) 6 645.3(-) 6 579.8 4.3 342
87 579.2(+) 198 674.4(-) 2 646.8(-) 7 631(-) 9 587 5.1 366
88 601.3(-) 234 655.9(-) 5 678.9(-) 6 634.7(-) 8 580.9 5.7 360
89 526.7(-) 185 591.6(-) 5 599.7(-) 7 560.4(-) 9 518.8 7.3 348
90 565.9(-) 160 653.3(-) 4 660.6(-) 6 651.8(-) 7 563.2 4.4 369

W-D-L 3-4-3 - 0-0-10 - 0-0-10 - 0-0-10 - - - -

100

91 676(+) 595 749.3(-) 11 769.7(-) 18 726.3(-) 23 678.7 5.9 1109
92 615.8(=) 774 683.8(-) 12 700.9(-) 21 676.4(-) 23 615.8 6.5 1080
93 610.2(+) 898 701.6(-) 11 707.7(-) 22 678.7(-) 25 613.2 5.1 1025
94 634.2(+) 1239 734.3(-) 9 719.5(-) 24 673.8(-) 27 639.7 6.5 1056
95 651.3(+) 394 728.3(-) 10 763.1(-) 23 700.5(-) 27 657.6 6.2 1091
96 649.9(=) 863 725.3(-) 15 758(-) 23 730.1(-) 27 654.1 9.1 1087
97 674.1(=) 1263 763.9(-) 8 766.1(-) 22 730(-) 25 673.9 6.8 1131
98 620.7(+) 557 738(-) 12 720.7(-) 26 671.3(-) 29 628.3 7.2 1047
99 652.3(=) 1217 731.1(-) 13 742.3(-) 27 723.2(-) 29 653.8 7.9 1113

100 669.7(-) 653 746.9(-) 16 749.8(-) 26 749.8(-) 27 651.7 13 1041
W-D-L 5-4-1 - 0-0-10 - 0-0-10 - 0-0-10 - - - -

It is shown that MATSP-D significantly outperforms TSP-
GP, TSP-MC and HGVNS for all 270 instances. Compared
with TSP-EP, the performance is comparable when α = 1
(32 wins and 32 losses). When α = 2, MATSP-D signif-
icantly outperforms TSP-EP on 60 instances, while losing
on only 16 instances. When α = 3, MATSP-D shows
significantly better performance than TSP-EP on 81 out of
the 90 instances.

S.III. CONVERGENCE CURVES

Fig. S1 shows the convergence curves of the compared
algorithms on three representative instances: (a) U 3-75-
n50 (b) U 3-100-n100 and (c) berlin52 with α = 1. From
Fig. 1(a), we can see that when N = 50, MATSP-D
converged slightly more slowly than TSP-GP, but similar to
other compared algorithms. It can reach better solutions than
all the other algorithms. Note that TSP-GP, TSP-MC and
HGVNS had much shorter convergence curves than TSP-EP
and MATSP-D, since they are designed as fast heuristics and
have much shorter computational complexity than TSP-EP
and MATSP-D. They are deterministic algorithms, and thus
we cannot extend their runtime to further improve their per-
formance. In fact, the original literature [1] already showed

that TSP-EP can achieve better final performance than TSP-
GP, although with higher computational complexity. From
Fig. 1(b), we see similar patterns. MATSP-D had slightly
slower convergence than TSP-GP, TSP-MC and HGVNS,
but the same as TSP-EP at the beginning. After around 100
seconds, TSP-EP started to stagnate and its curve became
flatter. However, MATSP-D can still improve substantially,
and reached much better final solutions than TSP-EP.

In Fig. 1(c), the final performance and runtime of HGVNS
and HGA were directly obtained from their literature, which
are plotted as two points in the figure. Since the compared
algorithms were implemented on different computers, nor-
malization has been carried out to make fair comparisons
on runtime. That is, all the runtimes presented in this
experiment were obtained by dividing the runtimes in the
original publications by some factors. To be specific, HGA
was implemented on Intel Core i7-6700 (3.4GHz); therefore
the runtimes presented in [4] were divided by 2.4/3.4. We
can observe consistent patterns with that on the other two
instances. Furthermore, we can directly obtain the results
of HGA on this instance from [4]. Since HGA is the
only population-based algorithm among the five compared
algorithms, comparison between MATSP-D and HGA might
be of particular interest. The figure shows that if given the
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TABLE SIII
THE AVERAGE PERFORMANCE AND RUNTIME OF THE COMPARED ALGORITHMS ON THE UNIFORM DATASET WITH α = 2

Instance TSP-EP [1] TSP-GP [1] TSP-MC [2] HGVNS [3] MATSP-D

N id Cost Time(s) Cost Time(s) Cost Time(s) Avg.Cost Time(s) Avg.Cost Std Time(s)

50

71 404.9(-) 25 422.1(-) 1 508.2(-) 2 455.8(-) 3 388.3 2.6 137
72 429.1(-) 60 459.3(-) 1 558(-) 2 497.3(-) 2 422.9 2.4 90
73 399.2(-) 20 418.4(-) 2 550.8(-) 2 446.6(-) 2 398 3.2 91
74 417.7(-) 25 424.6(-) 1 500.5(-) 2 425.3(-) 2 411.9 1.6 95
75 445.4(-) 25 464.7(-) 1 555.4(-) 2 480.8(-) 2 415.9 3.5 88
76 370.7(+) 33 397.7(-) 2 509.2(-) 2 444.8(-) 3 374.4 2.1 89
77 433.6(-) 22 446(-) 1 584.3(-) 1 465.4(-) 2 416.7 4.3 94
78 436.9(-) 32 448.4(-) 1 562.9(-) 2 459(-) 2 422.2 1.6 90
79 381.7(+) 75 409.6(-) 1 524(-) 2 524(-) 2 384.4 3.6 85
80 379.5(-) 23 391.6(-) 1 471.7(-) 3 391.3(-) 3 368.3 2.9 102

W-D-L 2-0-8 - 0-0-10 - 0-0-10 - 0-0-10 - - - -

75

81 481.7(-) 427 504(-) 8 649.8(-) 9 557(-) 10 471.5 6.7 493
82 454.1(-) 239 475.8(-) 4 601.5(-) 8 502(-) 10 440.2 4.3 483
83 455.1(-) 393 466.4(-) 4 570.2(-) 11 504.7(-) 13 446.5 6.7 448
84 470.8(=) 533 500(-) 5 622.6(-) 9 622.6(-) 9 472.8 5.4 422
85 508.9(-) 229 534(-) 6 678.1(-) 7 572.1(-) 9 486.2 6.5 555
86 488.9(-) 415 512(-) 6 616.6(-) 9 604.4(-) 10 469.1 7 461
87 473.2(=) 523 491.9(-) 6 628.1(-) 11 573.5(-) 13 471.7 5.4 451
88 508.9(-) 340 529.4(-) 6 651.5(-) 8 567(-) 10 462.7 4 436
89 446.9(-) 535 458.5(-) 5 576.1(-) 9 467.7(-) 11 428.6 7.2 431
90 462.9(=) 335 482.5(-) 8 643.4(-) 8 523.7(-) 10 463.6 7.5 466

W-D-L 0-3-7 - 0-0-10 - 0-0-10 - 0-0-10 - - - -

100

91 565.7(-) 3186 585.1(-) 18 761(-) 24 634.2(-) 30 559.7 7.5 1546
92 517.7(-) 2914 533.2(-) 19 679.6(-) 28 594.6(-) 30 499.2 7.6 1394
93 526.2(-) 2393 546.4(-) 15 683.3(-) 25 563.4(-) 32 501.7 8 1458
94 541.8(-) 2295 558.2(-) 21 711.3(-) 26 609.9(-) 29 534.2 9.4 1435
95 549.3(-) 1451 560.9(-) 20 758.3(-) 24 595.7(-) 27 538.7 6.4 1575
96 555(-) 1729 577.2(-) 18 739.1(-) 26 636.9(-) 32 545 8.2 1469
97 582.8(-) 2505 607.1(-) 21 742(-) 26 662(-) 34 563.2 8.9 1508
98 520.1(=) 1085 529.4(-) 20 681.1(-) 29 583.7(-) 35 522.2 5.6 1567
99 556(-) 1438 577.4(-) 16 719.5(-) 34 643.8(-) 41 544.3 5.4 1537

100 571(-) 1728 596.6(-) 20 730.1(-) 29 656.8(-) 32 535.7 8.3 1498
W-D-L 0-1-9 - 0-0-10 - 0-0-10 - 0-0-10 - - - -

(a) (b) (c)

Fig. S1. The convergence curves of the compared algorithms on (a) U 3-75-n50 (b) U 3-100-n100 and (c) berlin52 (α = 1).

same runtime as in [4], MATSP-D can converge to much
better solutions than HGA.
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TABLE SIV
THE AVERAGE PERFORMANCE AND RUNTIME OF THE COMPARED ALGORITHMS ON THE UNIFORM DATASET WITH α = 3

Instance TSP-EP [1] TSP-GP [1] TSP-MC [2] HGVNS [3] MATSP-D

N id Cost Time(s) Cost Time(s) Cost Time(s) Avg.Cost Time(s) Avg.Cost Std Time(s)

50

71 365.4(-) 33 380.8(-) 3 496.1(-) 2 452.9(-) 3 349.9 3.5 161
72 392.4(-) 48 427.7(-) 1 551.5(-) 2 453(-) 2 384.4 2.8 114
73 383(-) 31 394.8(-) 2 536.3(-) 2 394.3(-) 2 364.6 2.5 125
74 390.1(-) 27 396.1(-) 2 490.2(-) 2 439(-) 2 372.7 3.7 119
75 415.1(-) 32 414.4(-) 3 538.3(-) 2 482.5(-) 2 364.3 2.6 115
76 347.9(-) 30 363.6(-) 2 481.4(-) 2 427.5(-) 3 333.7 3 119
77 386.6(-) 38 396.3(-) 2 572.9(-) 2 440.6(-) 2 377.6 2.7 109
78 397.4(-) 30 424.9(-) 2 560.5(-) 1 451.5(-) 2 369.7 3.8 105
79 365.1(-) 40 366.7(-) 2 518.5(-) 2 433.1(-) 2 334.2 2.9 131
80 359.4(-) 45 371.7(-) 1 460.2(-) 2 378.5(-) 3 336.1 3 108

W-D-L 0-0-10 - 0-0-10 - 0-0-10 - 0-0-10 - - - -

75

81 457.3(-) 710 468.5(-) 9 637.9(-) 8 515.4(-) 9 425.3 7.2 597
82 433.6(-) 376 434.8(-) 9 594(-) 7 456.8(-) 9 403.9 4.9 542
83 407.8(-) 367 426.9(-) 8 576.5(-) 10 470(-) 12 393.7 5 668
84 438.1(-) 434 441(-) 11 616.7(-) 8 488.8(-) 10 414.1 5.9 629
85 467.4(-) 472 474.9(-) 12 670.5(-) 7 546.1(-) 8 445.6 4.9 705
86 450.4(-) 539 452.9(-) 10 605(-) 9 590.3(-) 11 408.7 6.1 625
87 438.5(-) 548 454.3(-) 11 595.8(-) 11 518.3(-) 11 415.1 4.2 573
88 485.5(-) 486 504(-) 10 639.9(-) 8 537(-) 9 410.5 4.6 608
89 420.1(-) 344 429(-) 10 569.3(-) 9 477.1(-) 11 390.5 6.1 625
90 426.7(-) 530 431.8(-) 11 617.3(-) 8 616.9(-) 9 414 7.8 670

W-D-L 0-0-10 - 0-0-10 - 0-0-10 - 0-0-10 - - - -

100

91 531.2(-) 2226 538.2(-) 31 759.4(-) 22 584.9(-) 26 501.2 6.6 2206
92 482.4(-) 2488 511.7(-) 24 678.8(-) 26 550.8(-) 31 442.2 7.6 1909
93 484.6(-) 2772 499.5(-) 33 676.4(-) 24 523.5(-) 30 446 7.2 1981
94 506.4(-) 2477 528.2(-) 32 705.4(-) 25 594(-) 29 476.1 10.7 2014
95 502.3(-) 2814 528.9(-) 26 757.2(-) 23 557(-) 32 484.8 5.8 2258
96 523(-) 2918 528.5(-) 29 724.3(-) 25 585.7(-) 29 501.5 3.4 1944
97 547.9(-) 2966 563(-) 33 739.9(-) 24 582.3(-) 34 493.4 15 1978
98 479.6(-) 1828 499.2(-) 29 691.1(-) 26 547.7(-) 30 461.9 9.6 2200
99 524.3(-) 2040 531.9(-) 31 707.9(-) 31 578.9(-) 40 498.5 7.4 1920

100 539.3(-) 2122 547.8(-) 35 715.4(-) 28 676.8(-) 31 474.5 15.2 2245
W-D-L 0-0-10 - 0-0-10 - 0-0-10 - 0-0-10 - - - -
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TABLE SV
THE AVERAGE PERFORMANCE AND RUNTIME OF THE COMPARED ALGORITHMS ON THE SINGLE-CENTER DATASET WITH α = 1

Instance TSP-EP [1] TSP-GP [1] TSP-MC [2] HGVNS [3] MATSP-D

N id Cost Time(s) Cost Time(s) Cost Time(s) Avg.Cost Time(s) Avg.Cost Std Time(s)

50

71 564.1(-) 16 664.8(-) 1 613.4(-) 2 610(-) 2 550.6 2.4 85
72 623.2(=) 12 731.9(-) 1 738.1(-) 2 685(-) 2 622.9 4.2 160
73 470.5(-) 20 534.7(-) 2 581.3(-) 2 520.1(-) 2 468.9 4.5 164
74 711.9(-) 26 842.2(-) 1 805.7(-) 2 791.9(-) 2 695.8 3.1 156
75 722.7(-) 23 878.5(-) 1 814.7(-) 2 772.1(-) 2 705.9 8.1 178
76 696.1(-) 8 837.8(-) 1 745.5(-) 2 745.5(-) 2 687.9 7.7 160
77 567.8(=) 11 681.8(-) 1 603(-) 2 602.7(-) 2 569.3 4.2 193
78 719.9(=) 5 789.3(-) 0 743.6(-) 2 743.6(-) 2 719.1 4.2 138
79 587.3(-) 16 672.7(-) 1 648.2(-) 2 614.3(-) 2 577.1 5.7 91
80 744.9(-) 7 900.4(-) 1 822.4(-) 2 803.7(-) 3 721.7 6 85

W-D-L 0-3-7 - 0-0-10 - 0-0-10 - 0-0-10 - - - -

75

81 952.2(+) 369 1128.7(-) 5 1161.6(-) 7 1005(-) 7 959 13.9 394
82 762.3(=) 149 922.8(-) 4 817.2(-) 11 811.3(-) 12 761.7 8.4 353
83 788.9(+) 274 904.1(-) 4 897.2(-) 7 854(-) 8 796.9 6.3 365
84 884.8(+) 113 989(-) 4 1014.8(-) 8 947.4(-) 9 893.8 10.1 367
85 743.3(+) 175 956.2(-) 4 809.8(-) 8 795.3(-) 8 759.2 6.9 399
86 941.9(=) 77 1100.7(-) 5 1121.6(-) 7 1040.3(-) 8 939.9 9.3 401
87 903.2(-) 197 1025.2(-) 5 1030.9(-) 7 966.6(-) 9 897.9 9.4 394
88 864.2(+) 179 1089.5(-) 4 927.7(-) 10 920.7(-) 11 881.4 11.9 416
89 815.4(-) 89 915.8(-) 5 881.5(-) 9 859.9(-) 10 808.4 12.7 376
90 937.2(-) 169 1099.9(-) 5 1138.3(-) 7 1076.5(-) 8 929.5 14.6 372

W-D-L 5-2-3 - 0-0-10 - 0-0-10 - 0-0-10 - - - -

100

91 987.5(+) 521 1209.1(-) 12 1144(-) 26 1105.6(-) 29 996 15.1 1141
92 1112.4(=) 865 1302.4(-) 10 1291.7(-) 23 1197.8(-) 25 1111.9 15.2 1114
93 1097.2(=) 660 1282.7(-) 5 1186.9(-) 26 1162(-) 29 1096.6 12.4 1129
94 1234.6(-) 740 1430.6(-) 8 1388(-) 23 1387.6(-) 24 1208.5 15.1 1136
95 958.9(=) 906 1133.5(-) 13 1100.5(-) 27 1045.3(-) 28 964.6 12.7 1112
96 1076.3(-) 992 1264.8(-) 13 1171.9(-) 30 1090.1(-) 32 1056.3 13.1 1119
97 1069.4(+) 982 1295.3(-) 11 1188(-) 27 1159.6(-) 29 1086.7 8.9 1187
98 1030.7(=) 1198 1208(-) 13 1165.1(-) 34 1108.2(-) 35 1034.5 13.2 1205
99 846.8(=) 847 952.7(-) 17 1021.2(-) 22 947.5(-) 24 847.9 8.8 1123

100 962.6(-) 750 1119.5(-) 14 1079.6(-) 25 1079.6(-) 27 954.8 10.8 1090
W-D-L 2-5-3 - 0-0-10 - 0-0-10 - 0-0-10 - - - -
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TABLE SVI
THE AVERAGE PERFORMANCE AND RUNTIME OF THE COMPARED ALGORITHMS ON THE SINGLE-CENTER DATASET WITH α = 2

Instance TSP-EP [1] TSP-GP [1] TSP-MC [2] HGVNS [3] MATSP-D

N id Cost Time(s) Cost Time(s) Cost Time(s) Avg.Cost Time(s) Avg.Cost Std Time(s)

50

71 457.7(-) 21 480.3(-) 2 602.3(-) 2 505.7(-) 2 437.3 6.4 98
72 484.3(+) 17 533.8(-) 1 730.4(-) 2 566.2(-) 2 489.4 6.2 200
73 375.1(-) 16 410(-) 1 564.8(-) 2 457.3(-) 2 368 3.4 178
74 556.2(-) 31 597.2(-) 1 729.4(-) 2 693.5(-) 3 545.1 9.7 187
75 587.1(-) 24 648.1(-) 1 798(-) 2 702.5(-) 2 572.9 7.5 181
76 569.6(-) 22 634.2(-) 1 734.9(-) 2 664.3(-) 2 552.7 6.6 198
77 439.9(-) 16 489.1(-) 2 572.4(-) 2 543.2(-) 2 436.6 4.9 186
78 553.5(+) 53 628.6(-) 1 691(-) 2 671.7(-) 3 559.8 5.7 83
79 463.4(-) 70 483.2(-) 2 639.3(-) 2 513.8(-) 2 450 6.8 93
80 576.8(-) 24 643.1(-) 2 717.4(-) 2 672.9(-) 3 565.4 10.1 91

W-D-L 2-0-8 - 0-0-10 - 0-0-10 - 0-0-10 - - - -

75

81 734.1(-) 504 803.4(-) 8 1017.4(-) 9 840(-) 11 724.3 15.6 447
82 596.9(-) 298 650.4(-) 7 769.5(-) 11 736.9(-) 12 588.1 11.9 460
83 640.7(-) 309 664.8(-) 9 879.5(-) 8 735.1(-) 9 626 7.8 522
84 738.5(-) 260 785(-) 9 955.5(-) 9 811.6(-) 10 710.6 9.2 506
85 589.5(+) 282 636.4(-) 7 739.5(-) 9 697.2(-) 10 601.1 8.6 453
86 743.9(=) 291 804.2(-) 8 1104.5(-) 7 828.5(-) 8 746.9 16.3 476
87 711.9(=) 453 781.4(-) 9 1024(-) 7 868.8(-) 8 709.5 12.7 485
88 697.5(+) 232 770.2(-) 8 860.3(-) 15 847.7(-) 16 707.7 12.4 443
89 665.8(-) 353 709.7(-) 6 841.6(-) 9 773.3(-) 11 657.1 8.4 505
90 743(-) 414 807.3(-) 10 1088.2(-) 7 855.2(-) 10 722.3 10.9 508

W-D-L 2-2-6 - 0-0-10 - 0-0-10 - 0-0-10 - - - -

100

91 820(-) 1250 869(-) 17 1099.2(-) 28 916.4(-) 32 801 14.7 1449
92 877.3(+) 1481 944.1(-) 24 1243(-) 26 1059.2(-) 29 888.1 19.8 1477
93 932.2(-) 1904 969.1(-) 22 1135.7(-) 27 1018.7(-) 30 883.1 17.1 1743
94 987.4(-) 1679 1026.3(-) 23 1311.5(-) 25 1108.2(-) 29 976.1 16.4 1416
95 735.7(+) 2276 792.6(-) 23 1072.5(-) 29 879.3(-) 33 760.3 14.1 1545
96 813.1(+) 1984 912.6(-) 18 1093.4(-) 33 962(-) 37 842.6 19.8 1480
97 843.7(+) 1829 943.5(-) 20 1129.8(-) 29 976.7(-) 33 853.9 16.2 1677
98 824.7(-) 1483 916.7(-) 21 1026.1(-) 34 913.2(-) 38 806.2 12.3 1405
99 699.3(-) 2055 737.2(-) 25 990.2(-) 25 775.9(-) 31 683.4 10.4 1643
100 805.5(-) 2273 835.8(-) 20 1042.8(-) 25 916.1(-) 29 782.1 14.3 1668

W-D-L 4-0-6 - 0-0-10 - 0-0-10 - 0-0-10 - - - -
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TABLE SVII
THE AVERAGE PERFORMANCE AND RUNTIME OF THE COMPARED ALGORITHMS ON THE SINGLE-CENTER DATASET WITH α = 3

Instance TSP-EP [1] TSP-GP [1] TSP-MC [2] HGVNS [3] MATSP-D

N id Cost Time(s) Cost Time(s) Cost Time(s) Avg.Cost Time(s) Avg.Cost Std Time(s)

50

71 410.5(-) 74 436(-) 2 588.6(-) 2 470.1(-) 2 386.2 4.3 145
72 433.8(=) 52 465.4(-) 2 724.2(-) 2 525.8(-) 2 433.7 4.9 109
73 322(-) 41 339.9(-) 2 549.2(-) 2 361.7(-) 2 309 3.4 109
74 484(-) 90 514(-) 2 715.7(-) 2 589.8(-) 3 467.2 7.8 120
75 499.3(-) 41 539.5(-) 2 745.3(-) 2 610.9(-) 2 481.8 7.8 99
76 531.2(-) 34 550.9(-) 1 720.7(-) 1 546.6(-) 2 486.8 7.6 107
77 384.6(-) 25 401.1(-) 2 552.8(-) 2 436.7(-) 2 368.1 4.3 109
78 467.6(-) 29 523.4(-) 2 646.8(-) 2 594.8(-) 2 453.3 6.5 98
79 379.3(-) 41 427.6(-) 2 639.3(-) 2 432.4(-) 2 374.1 5.2 94
80 479(-) 47 543.2(-) 2 681.8(-) 3 639.6(-) 3 473.8 9 101

W-D-L 0-1-9 - 0-0-10 - 0-0-10 - 0-0-10 - - - -

75

81 650.9(-) 362 715(-) 8 964.1(-) 9 664.7(-) 11 621.7 13.4 540
82 505.9(-) 633 550.7(-) 10 757(-) 10 584(-) 15 498.9 9.7 507
83 564.3(-) 554 572.8(-) 11 855.8(-) 7 675.2(-) 9 556.5 9.6 576
84 666.1(-) 489 676.1(-) 10 935(-) 9 769.4(-) 10 622.7 10.1 553
85 535.8(-) 503 548.7(-) 10 723.5(-) 9 622.7(-) 10 522.4 9.9 505
86 685.5(-) 731 724.7(-) 9 1075.1(-) 7 777.2(-) 8 657 13.3 535
87 590.2(=) 707 648.7(-) 10 1009.4(-) 7 697.4(-) 8 592.6 10.2 544
88 659(-) 470 685.8(-) 11 818.9(-) 16 818.9(-) 16 617.9 13.7 504
89 562.5(=) 804 576.5(-) 13 843.5(-) 9 667.5(-) 11 563.6 10.2 547
90 665.7(-) 612 712(-) 11 1075.2(-) 7 773.2(-) 9 640.3 7.8 544

W-D-L 0-2-8 - 0-0-10 - 0-0-10 - 0-0-10 - - - -

100

91 712.5(-) 2100 752.9(-) 24 1081.8(-) 28 798(-) 35 698.6 13.2 1696
92 789.6(-) 3497 806.5(-) 33 1206.2(-) 25 906.8(-) 34 756.6 15.5 1675
93 875.3(-) 3488 881.1(-) 27 1112.5(-) 27 918.6(-) 33 779.3 16 1964
94 837.1(-) 2901 916(-) 33 1253.1(-) 25 1051.4(-) 27 823.6 16.2 1586
95 632.5(+) 3614 684.3(-) 25 1040.7(-) 28 791(-) 33 647.1 18.7 1740
96 757.9(-) 2258 779.3(-) 25 1079.4(-) 31 1079.4(-) 33 722.9 16.1 1711
97 741.7(+) 2176 781.1(-) 35 996.4(-) 31 901.8(-) 34 756.8 14.2 1870
98 685(=) 2085 731.9(-) 35 948.9(-) 37 766.6(-) 42 685.1 18.3 1672
99 611.8(-) 2142 643.3(-) 32 947(-) 24 764.1(-) 28 594.9 12.8 1735

100 721(-) 1635 760.6(-) 26 1014.7(-) 27 864.3(-) 30 691.1 13.6 2084
W-D-L 2-1-7 - 0-0-10 - 0-0-10 - 0-0-10 - - - -
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TABLE SVIII
THE AVERAGE PERFORMANCE AND RUNTIME OF THE COMPARED ALGORITHMS ON THE DOUBLE-CENTER DATASET WITH α = 1

Instance TSP-EP [1] TSP-GP [1] TSP-MC [2] HGVNS [3] MATSP-D

N id Cost Time(s) Cost Time(s) Cost Time(s) Avg.Cost Time(s) Avg.Cost Std Time(s)

50

71 1060.7(=) 8 1260.3(-) 2 1178(-) 2 1110.7(-) 2 1057.4 8.1 120
72 989.2(-) 8 1134.2(-) 1 1170.7(-) 2 1082(-) 2 985.6 8 86
73 900.6(-) 10 1101.2(-) 1 1004(-) 2 1004(-) 2 893.5 7.7 82
74 903.7(+) 13 1012.3(-) 1 1080.5(-) 1 950.1(-) 1 910.5 7.4 81
75 1017.1(=) 10 1170.1(-) 1 1185(-) 2 1055.8(-) 2 1016.1 5 85
76 1044.1(-) 8 1280.9(-) 2 1171.9(-) 2 1142(-) 3 1029.3 8 85
77 961.2(+) 10 1098.4(-) 1 1048.4(-) 2 1048.4(-) 2 966.2 5.4 87
78 949.6(+) 22 1173.1(-) 1 1167.3(-) 1 1020.7(-) 2 961.7 8.3 86
79 955.7(=) 18 1091.3(-) 1 1080.4(-) 1 1080.2(-) 2 957.9 4.8 85
80 1070.5(-) 22 1202(-) 1 1196.7(-) 2 1127.2(-) 2 1067.9 7.6 79

W-D-L 3-3-4 - 0-0-10 - 0-0-10 - 0-0-10 - - - -

75

81 1091.6(+) 129 1247.8(-) 3 1292(-) 8 1188(-) 9 1107.4 8.5 406
82 1170.2(-) 150 1380.8(-) 6 1363.1(-) 6 1303.8(-) 8 1161.3 13.2 424
83 1128.7(-) 98 1312(-) 5 1231.6(-) 9 1179.9(-) 10 1121.8 8.1 421
84 1452.3(-) 235 1680.7(-) 4 1646.5(-) 8 1630.1(-) 8 1416.1 18.6 368
85 1356.3(=) 179 1742.8(-) 4 1575.4(-) 7 1490.6(-) 9 1357.8 12.7 413
86 1130.4(+) 98 1359.3(-) 3 1262.5(-) 7 1218.8(-) 8 1139 4.7 367
87 1196.9(=) 161 1392.1(-) 4 1446(-) 6 1307.7(-) 8 1198.1 10.6 367
88 1353.9(+) 312 1697.6(-) 4 1553.3(-) 9 1521.1(-) 10 1372.7 9.7 433
89 1159.7(+) 220 1399.4(-) 6 1335.6(-) 7 1234.4(-) 8 1167.2 12.6 391
90 1100.8(=) 158 1262.7(-) 7 1205.3(-) 10 1184.6(-) 12 1101.9 7 405

W-D-L 4-3-3 - 0-0-10 - 0-0-10 - 0-0-10 - - - -

100

91 1318.6(+) 667 1609.6(-) 12 1572.4(-) 22 1527.5(-) 25 1332.9 13.5 1099
92 1312.2(-) 1156 1485.3(-) 17 1483.2(-) 22 1468.2(-) 24 1301.6 11.3 1234
93 1216.5(+) 1440 1407.9(-) 18 1407.5(-) 23 1304.8(-) 25 1233.2 9.1 1203
94 1332.5(=) 2064 1552.5(-) 20 1517.8(-) 28 1439.2(-) 29 1328.2 17.1 1158
95 1395.5(+) 1359 1717.4(-) 16 1601.2(-) 24 1543.5(-) 26 1431.6 12.3 1178
96 1486.5(-) 1191 1684(-) 12 1635.8(-) 25 1622.4(-) 30 1459.5 14.9 1174
97 1487.7(+) 723 1779.6(-) 15 1690.3(-) 29 1638.4(-) 31 1506.5 16.7 1138
98 1397.4(-) 863 1565.7(-) 17 1518.1(-) 27 1467.2(-) 29 1385.3 18.6 1220
99 1250.6(+) 1095 1557.1(-) 15 1422.9(-) 27 1387.6(-) 30 1263.2 11.4 1176

100 1407.1(+) 1444 1740.7(-) 18 1595.7(-) 30 1564.8(-) 32 1421.3 11.1 1230
W-D-L 6-1-3 - 0-0-10 - 0-0-10 - 0-0-10 - - - -
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TABLE SIX
THE AVERAGE PERFORMANCE AND RUNTIME OF THE COMPARED ALGORITHMS ON THE DOUBLE-CENTER DATASET WITH α = 2

Instance TSP-EP [1] TSP-GP [1] TSP-MC [2] HGVNS [3] MATSP-D

N id Cost Time(s) Cost Time(s) Cost Time(s) Avg.Cost Time(s) Avg.Cost Std Time(s)

50

71 871.8(-) 22 946.6(-) 2 1106.9(-) 2 960(-) 2 836.4 20.1 133
72 823.1(-) 20 908.5(-) 2 1105.8(-) 2 1105.8(-) 2 806.8 9.3 82
73 756.9(-) 18 769.7(-) 2 953.4(-) 2 879(-) 2 725.7 7.8 83
74 705.3(+) 55 776.5(-) 2 1073.2(-) 1 788(-) 2 710.1 7.1 88
75 847.2(-) 20 914.3(-) 1 1169.6(-) 1 959.7(-) 2 836.5 10.3 85
76 856(-) 22 942.1(-) 1 1102.1(-) 2 902.5(-) 3 810.1 7.3 84
77 736.6(=) 28 785.4(-) 2 1028(-) 2 961.1(-) 3 738.1 8.6 96
78 762.5(-) 22 816.8(-) 1 1096.9(-) 2 1095.2(-) 2 747 6.9 88
79 814.8(-) 20 851.4(-) 1 1076.3(-) 1 1076.3(-) 1 787 11.2 88
80 871.9(=) 36 950(-) 2 1113.1(-) 2 991.8(-) 3 871.3 4.9 89

W-D-L 1-2-7 - 0-0-10 - 0-0-10 - 0-0-10 - - - -

75

81 868.1(+) 452 969.5(-) 10 1279.9(-) 7 957.4(-) 10 873 10.2 434
82 919.2(-) 420 1021.8(-) 6 1297.5(-) 7 1074.8(-) 9 906.9 11.5 420
83 894.7(-) 470 992.9(-) 9 1100.2(-) 14 1077.1(-) 15 881.3 8.3 435
84 1150.1(=) 575 1287.4(-) 12 1619.1(-) 8 1594.3(-) 9 1149 14.9 418
85 1067.8(=) 458 1201.2(-) 8 1436.1(-) 7 1241.2(-) 10 1073.4 18 423
86 928.8(+) 319 974.7(-) 8 1219(-) 8 1098.1(-) 12 932.5 9.3 448
87 944.5(+) 252 1009.2(-) 9 1412.8(-) 7 1052.4(-) 11 953 10.3 394
88 1171(-) 291 1241.4(-) 9 1477.2(-) 11 1271.4(-) 12 1096.9 21.4 444
89 998.3(-) 358 1081.8(-) 9 1330(-) 7 1111.4(-) 10 940.6 13.8 437
90 861.2(-) 492 973.3(-) 9 1019.4(-) 14 991.6(-) 15 853.7 8.7 409

W-D-L 3-2-5 - 0-0-10 - 0-0-10 - 0-0-10 - - - -

100

91 1063.4(=) 1751 1142.2(-) 23 1515.9(-) 23 1326.9(-) 27 1058.6 13.1 1330
92 1013.3(=) 1761 1140.7(-) 26 1460.9(-) 23 1169.6(-) 30 1014.3 15.1 1260
93 1041(-) 1935 1087.5(-) 22 1374.5(-) 23 1161.6(-) 27 1014.5 12.7 1414
94 1092.2(=) 2581 1205.6(-) 25 1470.1(-) 29 1295.5(-) 32 1095 19 1361
95 1131(-) 2372 1230.3(-) 18 1557.9(-) 25 1357.8(-) 31 1115.3 13 1338
96 1210.9(-) 2003 1280.7(-) 30 1551.5(-) 27 1406.3(-) 31 1188.9 16.5 1367
97 1247.5(-) 1869 1392.3(-) 24 1550.2(-) 32 1344.6(-) 36 1240.6 12.8 1354
98 1154.1(=) 3009 1195.7(-) 28 1461.8(-) 31 1292.2(-) 37 1148.7 15.7 1563
99 1008.6(+) 1612 1098.1(-) 22 1333.7(-) 27 1206.3(-) 32 1020.7 10.1 1396

100 1113.7(+) 1380 1248.4(-) 29 1494.1(-) 32 1325.6(-) 38 1144.3 11.7 1305
W-D-L 2-4-4 - 0-0-10 - 0-0-10 - 0-0-10 - - - -
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TABLE SX
THE AVERAGE PERFORMANCE AND RUNTIME OF THE COMPARED ALGORITHMS ON THE DOUBLE-CENTER DATASET WITH α = 3

Instance TSP-EP [1] TSP-GP [1] TSP-MC [2] HGVNS [3] MATSP-D

N id Cost Time(s) Cost Time(s) Cost Time(s) Avg.Cost Time(s) Avg.Cost Std Time(s)

50

71 787.8(-) 44 822(-) 3 1062.4(-) 2 878.2(-) 3 730.1 7.5 146
72 750(-) 42 802.5(-) 2 1099.8(-) 1 1099.8(-) 2 691 8.5 100
73 671.6(-) 59 725.4(-) 2 967.8(-) 2 909.9(-) 2 654.5 6.7 96
74 658.2(-) 25 662.8(-) 2 1060.4(-) 1 720.5(-) 2 624.5 4.6 95
75 795.7(-) 36 790.2(-) 4 1146.4(-) 1 875.6(-) 2 735.5 7.9 104
76 797.1(-) 24 791.4(-) 3 1074.9(-) 2 942.7(-) 3 722.8 7 92
77 700.4(-) 23 704.1(-) 2 995.3(-) 2 833.8(-) 3 656.7 6.9 97
78 693.8(-) 35 694.6(-) 2 1096.9(-) 2 1095.2(-) 2 653 4.4 94
79 737.5(-) 33 759.3(-) 2 1059.5(-) 2 1041.8(-) 2 691.4 7 95
80 831.6(-) 47 854.8(-) 3 1056.7(-) 2 895.1(-) 3 794.1 9.9 104

W-D-L 0-0-10 - 0-0-10 - 0-0-10 - 0-0-10 - - - -

75

81 784.2(-) 684 816(-) 12 1243.2(-) 8 878.1(-) 10 768.3 8.4 515
82 816.9(-) 714 850.9(-) 14 1281.3(-) 7 1036.6(-) 9 802.3 10.9 594
83 789.3(=) 617 835.1(-) 12 983.3(-) 15 899.2(-) 19 787.4 5.3 535
84 1021.2(-) 974 1076.5(-) 15 1618.6(-) 8 1285.4(-) 11 980.3 12.2 483
85 970.5(-) 502 1014.5(-) 9 1402.1(-) 8 1155.5(-) 11 932.6 15.5 487
86 858.6(-) 523 926.8(-) 7 1196.7(-) 8 1196.7(-) 9 816.5 10.2 475
87 843.2(-) 389 908.4(-) 11 1399.3(-) 6 965(-) 10 837.9 10.4 470
88 957.4(-) 739 1077.3(-) 10 1374.1(-) 15 1116.8(-) 16 910.2 17.3 468
89 869.7(-) 502 940.3(-) 10 1286.3(-) 8 945.5(-) 11 826.4 10.1 478
90 802.7(-) 364 838.7(-) 10 951.7(-) 17 867.6(-) 22 763.9 8.9 520

W-D-L 0-1-9 - 0-0-10 - 0-0-10 - 0-0-10 - - - -

100

91 922(=) 2440 971.4(-) 38 1503.1(-) 23 1206.9(-) 30 922.8 14.9 1578
92 896.5(-) 3223 985.6(-) 29 1359.7(-) 24 1008.5(-) 30 863.1 14.7 1404
93 911.8(-) 4255 1005.6(-) 29 1376.6(-) 24 1079.6(-) 28 902.7 11.5 1582
94 951.1(=) 4048 1017.2(-) 43 1366.2(-) 34 1151.2(-) 40 960.3 23.9 1529
95 982.6(-) 2606 1048.5(-) 29 1511.2(-) 26 1178(-) 30 974.8 14.7 1658
96 1104.9(-) 3356 1116.1(-) 39 1511.6(-) 29 1342.5(-) 34 1037.2 17.4 1570
97 1167.2(-) 1444 1198.4(-) 39 1480.2(-) 35 1188(-) 43 1088.5 19 1539
98 1086.8(-) 2009 1126.6(-) 29 1452.6(-) 32 1286.2(-) 35 1026.3 18 1732
99 924.1(-) 1495 961.6(-) 27 1309.7(-) 27 1179.4(-) 30 906.5 10.6 1667
100 1021.5(-) 1984 1070(-) 37 1422.5(-) 30 1249(-) 34 993.1 9.8 1531

W-D-L 0-2-8 - 0-0-10 - 0-0-10 - 0-0-10 - - - -


