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Abstract

The article introduces a novel channel attention architecture embedded within a sensor fusion framework for fetal movement
monitoring. Our proprietary multi-sensory device recorded the training dataset, comprising accelerometric sensor data collected
from forty-four pregnant mothers. The channel attention architecture, LBCAM (LSTM Based Channel Attention Map) can
learn important information by observing the evolution of each sensor channel with time. Notably, it outperforms existing
state-of-the-art models, showcasing its superior performance in fetal movement monitoring.

We believe that the demonstrated accuracy and efficiency of our model, as outlined in the manuscript, will significantly contribute

to advancements in not only in fetal health monitoring but also in introducing a model that brings contextual modifications to

robust models that are already in use in computer vision. The integration of novel channel attention module and sensor fusion

has aided this introduced model to surpasses current methodologies.
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Abstract— Fetal movement monitoring is critical to en-
sure the health of a fetus. A well-known approach to mea-
suring fetal health is to keep track of fetal kicks on a regular
basis. As a result, various devices and algorithms that can
count the number of fetal kicks are being developed. In
this article, we introduce a novel channel attention archi-
tecture that can learn pertinent information by observing
the evolution of each channel with time. This novel channel
attention-aided architecture is embedded in the introduced
novel model to forecast the fetal kick count based on a set
of accelerometric data collected from forty-four pregnant
mothers. The dataset utilized for training was collected
using our own multi-sensory device. With the more pow-
erful channel attention and sensor fusion in the proposed
architecture, we were able to outperform previous state-of-
the-art models in terms of accuracy. Notably, the proposed
channel attention architecture offers broad applicability in
scenarios where channel prioritization based on temporal
significance is required. Hence, this work represents a
substantial improvement in the field of fetal monitoring and
has the potential to be applied in contexts beyond fetal kick
counting.

Index Terms— channel attention, LSTM, fetal movement,
multi-sensory data, sensor fusion

I. INTRODUCTION

MOnitoring fetal movements (FMs) is an important
routine task during pregnancy, which contributes to

monitor the fetal condition and thereby helps reduce the risk
of adverse perinatal outcomes [1], [2]. Studies have been
conducted to evaluate the correlation between reduced fetal
movements (RFMs), stillbirths [1], preterm births [2], neonatal
intensive care admissions, neonatal Seizures, neonatal Syn-
dromes [3] as well as low birth weight [4], [5]. The presence
of healthy FMs indicates a healthy fetus, while irregular FMs
may indicate an unhealthy fetus or fetal distress [6]–[10].
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Monitoring of FMs on a regular basis helps to identify
abnormalities or distresses in the fetus and take remedial action
promptly. As such, pregnant mothers are advised to keep a log
of the number of kicks by the fetus as a robust indicator of
FMs, especially after the 28th week of pregnancy [11], [12].
This involves manually and consciously counting the number
of kicks by the mother. Keeping track of the fetal kicks and
counting them while engaging in day-to-day activities is a
tedious task [13]. Moreover, the mother may not be able to
feel or recognize fetal kicks during the first pregnancy. It is
not abnormal not to feel the kicks until the 25th week of the
pregnancy [14] or even later or not feel any such at all [15].

Therefore, automatic fetal movement counting systems are
employed to better evaluate the condition of the fetus. These
counting systems are employed [16]–[18] with the expectation
of monitoring and raising alarm about possible absence or
irregularities in the number of fetal movements so that they
may be referred to a physician for a clinical evaluation.

Fetal movement monitoring can be conducted using many
clinical techniques such as the use of Cardiotocography (CTG)
[19], Magnetic Resonance Imaging (MRI) [20], [21], and
Ultrasound Scanners (USS) [21]. CTG scanning provides
a waveform of the contractions and can only capture the
mother’s contractions, while MRI and USS provide a visual
image. These devices also produce electromagnetic waves and
when used repeatedly, ultrasound scanners may have a variety
of negative side effects [22]. Furthermore, all these being
clinical diagnostic equipment, their usage is restricted to a
clinical setting under the expertise of a professional practi-
tioner. Therefore, while being highly reliable and accurate
in the conclusions, access to them is often limited as the
patient has to visit the location of the clinical practice in
person; which may be highly restricted in some cases due
to the irregular distribution of facilities and resources. Access
to those facilities may also be limited due to financial reasons,
socio-economic constraints, or even stigma and beliefs.

Under these considerations, systems that enable routine,
or continuous, monitoring of FMs and/or kick counts un-
der non-clinical settings are invaluable. Additionally, such a
device being non-invasive (i.e., not emitting radiation, light,
sound, vibration, or application of any other electromagnetic
or mechanical energy form, or any chemical or biological
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involvement), being wearable, and having a simple interface,
makes it possible to make prolonged measurements of FMs
safely.

Studies have been done to identify fetal movements using
Inertial Measurement Units (IMUs) with the detection of fetal
movement using both a single accelerometric sensor and with
the use of multiple sensors mounted on the pregnant mother’s
abdomen [17], [23], [24]. The positioning, and number of
sensors have also been evaluated in some studies [25] and
variables such as different arrangements, force, and duration
have also been investigated [26].

Several techniques have been evaluated to be used for the
preprocessing, detection, and analysis of FMs using accelero-
metric data collected via IMUs. Kurtosis-based analysis, and
nonnegative matrix factorization [17], independent component
analysis (ICA), discrete wavelet transform (DWT), support
vector machines (SVM), decision tree, random forest [24],
bayesian optimization with hyper-parameter tuning [27], re-
current neural networks [28] have also been investigated in
the recent years.

Furthermore, it is critical to distinguish between fetal
movements and other maternal movements such as cough,
positional movements, breathing, hiccups, abdominal gas, and
bloating which could result in incorrect recognition of prenatal
movements. Such movements must be identified and labeled
algorithmically to improve the accuracy of the process of
recognizing fetal movements [17], [29].

Although many works (e.g. [30]–[34]) have utilized some
recent developments in the field of machine learning (ML),
in particular the recent advances in deep learning (DL), it
does not compare to the extent in which advancements in
ML has been utilized in other fields such as computer vision.
As an example, taking inspiration from the human visual
system, attention mechanisms in DL have been used to obtain
better performance in various applications such as computer
vision. Soft attention, spatial attention, channel attention, and
mixed attention mechanisms have been introduced in the past
few years and they have been able to overcome some of
the inherent limitations of ordinary DL network architectures
[35]–[37]. Although most of these have been used in computer
vision-related applications, only some attempts have been
successful in utilizing these methods on applications stemming
from biomedical signals [38]–[42].

Therefore, this shows a clear lack of penetration of DL-
based AI in biomedical problems as a whole, including in
the fetal monitoring problem [43]–[48]. Even when consid-
ering the works in biomedical signal processing that have
utilized some DL architectures, it is evident that many works
use generic ML algorithms without utilizing the contextual
biomedical basis to modify the architectures to suit the precise
nature of the problem [49], [50].

In contrast, the research significance of this paper is that we
take inspiration from state-of-the-art DL models from com-
puter vision and make fundamental contextual modifications
to the AI architecture and the associated algorithm for our
specific biomedical problem of FM detection via kick counts.
Both the raw signal data as well as their spectrograms are
utilized to capture more descriptive temporal and frequency

characteristics.
As such, the main contribution of this paper is to propose

a novel channel attention architecture that can learn pertinent
information by utilizing the time-evolution of each channel in a
manner specific to the biomedical problem of fetal movement
detection and thereby predict fetal kick count with a better
accuracy compared to the state-of-the-art. As exemplified and
elaborated in the results and discussion sections, the following
outcomes of the paper can be highlighted:

• Construct spectrograms as a descriptive feature set, which
incorporates time and frequency attributes, allowing them
to be used effectively by considering the temporal signif-
icance through deep learning

• Enabling the sensor fusion to be learnable by considering
the entire multi-sensory network as a bundle of sensory
inputs as opposed to the common practice of fusion
using rudimentary operations such as concatenations,
averaging, etc.

• Making the DL pipeline contextual for the application
by incorporating a temporal Long Short-Term Memory
(LSTM), by noting the fact that spectrograms are images
and thereby drawing inspiration from an architecture,
CBAM [37], originally designed for computer vision
applications

• Utilizing a global type of learning and not a mere
individual-specific learning which adds to the reusability
of the algorithms introduced by the study.

The above-mentioned modifications to the CBAM architec-
ture are proposed to reliably assess the use of channel attention
in the biomedical signal processing context demonstrating
promising prospects for these types of future applications.
These modifications have been introduced in an explainable
manner to improve the interpretability of the algorithm allow-
ing for further improvement as a future aspect of the study.

II. MATERIALS & METHODS

A. Recording Device
The signal acquisition device used in this project was

developed to be lightweight, and non-invasive. Considering
these factors, a wearable device consisting of four MPU-6050
inertial measurement modules was designed that cost around
$24. This method not only ensures the cost to be a minimum,
but also allows pregnant mothers to monitor fetal count with
the comfort of their own homes, minimizing the need for
frequent hospital trips. Each MPU-6050 module contains a 3-
axis accelerometer and 3-axis gyroscope, as well as an inbuilt
analog-to-digital converter and a serial peripheral interface.
The data stream from the four sensor modules is transferred
to a central microcontroller via the serial peripheral interface
for processing and storage. The sampling rate used by the
microcontroller was 32 samples per second.

The first prototype of the recording device was in the form
of a wearable belt, where the sensor modules were woven
into the fabric of the belt. However, this gave rise to various
practical complications, such as making the device difficult to
sterilize. Thus, with the advice of medical health professionals,
a second prototype device was constructed in which, the sensor
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Fig. 1. Arrangement of accelerometers on the mother’s abdomen.
Arrows mark the orientation of the axes of the sensor

modules were enclosed in plastic, and could be placed on the
mother’s abdomen and secured using medical tape.

In both devices, the sensor modules were placed on the
mother’s abdomen according to the configuration shown in
Fig. 1. This configuration was selected as it covers all four
quadrants of the mother’s abdomen and enables the device
to detect all fetal movement, even as the baby moves around
inside the womb.

The device was constructed to have the capability of record-
ing up to four types of FMs of choice (trunk movement,
general body movements, isolated limb movements, move-
ments in the 1st quadrant, etc.) and recording other movements
that occur during the recording process such as cough, laugh,
other positional movements. This wide flexibility of recording
movement types was added to aid the data pre-processing
steps.

B. Acquired Dataset
The dataset from the above-mentioned process, ”A Multi-

Sensory Inertial Measurement Unit Dataset for Fetal Condition
Monitoring” [51] consists of seventy-one files including the
data description. Beyond analysis of the dataset, we believe
that the respiratory movements can also be captured from the
IMU readings of the data and we consider that to be a future
exploratory aspect of the dataset.

C. Signal Acquisition Process
During the data collection phase, recordings were collected

from forty-four pregnant mothers, who volunteered for the
study providing written and verbal consent. They were
inpatients at the Professorial Unit of the Gynecology Ward,
Teaching Hospital, Peradeniya, Sri Lanka. Two types of
recording sessions were conducted to develop the dataset.
The first type of readings were collected with the mother
operating the device and pressing a button when a fetal kick
occurs. Hence, the ground truth is the mother’s perception
of a fetal kick occurring, and its accuracy depends on the
mother’s sensitivity to such events and how such an event
is perceived by the individual. The second type of reading
was taken while a doctor was performing an ultrasound scan.
With ultrasound measurements, the fetal movements can be
distinguished precisely as they are clearly visible on the
screen and the occurrence of such events can be accurately
marked as ground truth. Hence, the findings made using

Fetal movement
Ground truth label
8 second window

Fig. 2. Possible correct labeling/ mislabeling scenarios

the ultrasound observations serve as the ground truth of the
second type of recording. The accuracy of the second type of
recording is significantly higher than the first, as it does not
depend on the mother’s sensitivity to fetal kicks. In that sense,
the first type of recording is a subjective measurement and
the second type of recording is an objective measurement. In
both cases, a typical recording session ran for approximately
20 minutes. More details about the recording sessions can be
found by accessing the dataset.

Ethical Clearance: This study was approved by the Ethics
Review Committee, Faculty of Medicine, University of Per-
adeniya, Sri Lanka. Approval was granted to conduct research
project No. 2018/EC/43 entitled “Fetal movement analysis for
condition monitoring” at the Teaching Hospital, Peradeniya,
Sri Lanka.

D. Signal Preprocessing
A certain delay is inherently present between the actual

occurrence of the fetal movement and the ground truth label
due to human errors in the recording process. This delay
is smaller for USS recordings than for mothers’ perception
ground truth recordings. As a preprocessing step, a separate
algorithm was used to deal with this delay and the corner cases
that come with it. In this step, each accelerometer recording of
the dataset was broken down into overlapping windows with a
length of eight seconds and a stride of one second. This delay
was observed to be approximately one second between the
actual occurrence of a fetal kick and the subsequent pressing
of the ground truth button. These scenarios are shown in Fig.
2.

Windows that had no fetal kick ground truth within its entire
8-second duration, as well as the 2 seconds following it, were
marked as windows with no kicks. The additional 2 seconds
were considered to account for the 1 second delay with a
tolerance. Windows which had a marked ground truth within
its first 2 seconds, and within the 2 seconds after the window
were discarded due to their ambiguity. Finally, windows that
had a positive ground truth label in their latter 6 seconds
were marked as windows that contained fetal movements. The
distribution of kicks in the selected windows was non-uniform
as many of the windows did not contain any fetal movements.
To mitigate this, a subset of windows was randomly sampled
from the set of all windows that had no fetal movements to

https://doi.org/10.7910/DVN/QHFHYC
https://doi.org/10.7910/DVN/QHFHYC
https://doi.org/10.7910/DVN/QHFHYC
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Fig. 3. Twelve spectrograms of a sample kick window

make the processed dataset more uniform, as it was required
to create robustly trained networks to better identify fetal
movements.

1) Feature Analysis: A sliding Hanning window of 16 sam-
ples with a stride of 1 was used to calculate the STFT and thus
construct the magnitude spectrogram of each accelerometer
channel of the selected windows as shown in Fig. 3. The
magnitude spectrogram was utilized in this case since it is
one of the most expressive signal representation methods
representing the intensity plot of frequencies of a signal that
fluctuates with time [52]. Since narrow windows have a short
time duration but a wide bandwidth, a narrow window length
of 8 samples will have a good time resolution but a coarse
frequency resolution. On the other hand, a broad window
length of 32 samples will result in a fine frequency resolution
but a coarse time resolution. In order to account for this
window effect, a window length of 16 samples was used.
These spectrograms were used as the inputs of deep neural
networks when attempting to identify the occurrence of a fetal
kick.

E. Deep Learning Architecture
It is a widely accepted fact that human perception depends

significantly on attention. Human vision does not process an
entire scene at once and instead, to better understand visual
organization, a series of sporadic glimpses is used to choose
key segments. To capture this crucial aspect of human vision,
the Convolutional Block Attention Map (CBAM) [37] has
been developed. CBAM sequentially infers attention maps
along the channel and spatial dimensions from an intermediate
feature map. The attention maps are then multiplied by the
input feature map for adaptive feature refinement. The main
flaw in this approach is that the time series data contained in
a signal fails to be handled by this module. To account for
this, we have produced a modified version with RNNs that is
more adept at capturing time series data.

1) LSTM Based Channel Attention Map (LBCAM): It is
evident that while assigning priority to each channel, the

previous architecture has failed to give essential consideration
to time series data. In CBAM, each channel is assigned a
weight mostly based on the channel’s maximum pool and
average pool values. Here, two spatial information descriptors
are used. These descriptors: F c

avg and F c
max which denote

average-pooled features and max-pooled features respectively,
are forwarded into a shared network of multi-layer perceptron
(MLP) with a single hidden layer.

In a nutshell, channel attention is calculated as,

Mc = σ(W1×ReLU(W0×F c
avg)+W1×ReLU(W0×F c

max))

where,
ReLU denotes the ReLU function
σ denotes the sigmoid function
W0 ∈ RC/r×C and W1 ∈ RC×C/r denote the MLP
weights.

In our novel LSTM Based Channel Attention Map (LB-
CAM), the F c

max and F c
avg have been replaced by quantities

that can capture time series data. The architecture of the
LSTM-based channel attention map (LBCAM) is shown in
Fig. 4. Here, the input data shape is C ×N ×M , where C is
the number of channels, N is the number of time samples, and
M is the number of frequency samples. To capture the time
series significance of each channel, C channels are split and
routed through parallel LSTM layers. The output of the kth

LSTM channel is calculated as,

ft,k = σ(Wf,k × (ht−1,k ⊕ xt,k) + bf,k)

it,k = σ(Wi,k × (ht−1,k ⊕ xt,k) + bi,k)

C̃t,k = tanh (WC,k × (ht−1,k ⊕ xt,k) + bC,k)

Ct,k = ft,k × Ct−1,k + it,k × C̃t,k

ht,k = σ(Wo,k × (ht−1,k ⊕ xt,k) + bo,k)× tanh (Ct,k)

where,
x is the input spectrogram
i is the output of the input gate layer of an LSTM cell
h is the output of the hidden cell of an LSTM layer
W and b denote the weights and the bias
t denotes the tth time sample
k denotes the kth channel
tanh denotes the tanh function
σ denotes the sigmoid function
⊕ denotes the concatenation operation
Then, the last hidden cell output (hN ) of each LSTM

channel is sent through separate dense layers to obtain a
single value for each channel. This architecture tries to carry
out learned long-term dependencies through this value. In
CBAM, this value is obtained using max pooling or average
pooling which doesn’t carry much detail about the time series
progression.

The output of the linear layers is sent through a shared MLP
layer to learn attention weights considering cross-channel
long-term dependencies. Finally, the output of the shared MLP
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Fig. 4. Architecture of the LSTM Based Channel Attention Map (LBCAM)
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Fig. 5. Architecture of the classification model

is sent through a sigmoid layer to obtain the final channel
attention map.

Yk = σ(Mk) =
1

1 + e−Mk

where,
Yk denotes the channel attention map
σ denotes the sigmoid function
Mk denotes the output of the shared MLP corresponding to
the kth channel

The goal of this architecture is to facilitate learning
meaningful data from each spectrogram by looking at the
progressions along the time axis.

2) Classification Model: A novel classification model was
used to predict the number of fetal kicks within a given
window. The classification model was trained to predict four
separate classes, including windows with no kicks, single
kicks, two kicks, and more than two kicks.

The spectrograms that were weighted by the LBCAM
module were fed into this novel classification model. The
initial breakthrough was weighting each channel based on
the signal’s evolution along the time axis. The following
objective was to predict the number of fetal kicks in each
window. The classification model employs a sensor fusion
technique to boost the productivity of the learning process.
This model primarily attempts to acquire information from
each spectrogram collectively.

First, the generated spectrograms are sent through the
LBCAM to weigh the channels according to their spec-
tral significance as shown in Fig. 5. The set of weighted
spectrogram is sent through two sets of channel-wise 2-
dimensional convolutional layers followed by a 2-dimensional
batch normalization layer. Our LBCAM is tuned such that
MLP tries to squeeze the number of channels from 12 to
6 and excite to 12 again. Hence, it can be interpreted as
the LBCAM block trying to weigh the 6 most significant
channels. Hence, the two 2-dimensional convolutional layers

in the classification model are implemented such that the
number of channels in the output is reduced to 6. In other
words, this approach attempts to exclude six spectrograms
that have the least spectral significance. This output is then
passed via a max pool layer in the same order. It is envisioned
that the model will try to decrease the spatial complexity
of the spectrograms by selecting only high-magnitude spatial
data. Here, the max pooling is tuned in such a way that
each vector will be reduced to a vector of T × 1. Hence,
the output shape will be N × 6 × T × 1 where N and T
represent the batch size and the number of samples along the
time axis. In other words, the 2-dimensional spectrograms are
reduced to 1-dimensional time signals considering their long-
term dependencies and spectral significance. After that, the
channels are split and routed through parallel LSTM layers.
The outputs of each LSTM layer are concatenated together and
sent through 2 dense layers activated by the ReLU function.
After that, the current output and the outputs of the last
hidden cell of previous LSTM layers are concatenated and sent
through another dense layer activated by a softmax function.

Z = WT (D ⊕ hN ) + b

Yi = S(Zi) =
eZi∑n
j=1 e

Zj

where,
W and b denote the weights and bias of the second dense
layer
D denotes the output of the second dense layer
hN denotes the last hidden layer output of the parallel
LSTM layers
⊕ denotes the concatenation operation
Z denotes the output of the final dense layer
S denotes the softmax function
Y denotes the fetal kick count prediction probability vector

The fundamental idea behind the three dense layers in this
case is to perform sensor fusion to get the most out of the input
channels. The last hidden cell outputs of the parallel LSTM
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TABLE I
VALIDATION ACCURACY, SENSITIVITY AND SPECIFICITY OF THE MODELS

TRAINED ON THE DATASET WITH MOTHER’S PERCEPTION AS THE

GROUND TRUTH

Model Validation
Accuracy Sensitivity Specificity

Model 50% 0.66 0.54
Squeeze and Excitation
+ model 48% 0.54 0.61

CBAM + model 53% 0.58 0.64
LBCAM + Novel model 69% 0.83 0.81
xresnet1D 62% 0.56 0.87
inception1D 59% 0.6 0.76
STS 54% 0.76 0.57

TABLE II
VALIDATION ACCURACY, SENSITIVITY AND SPECIFICITY OF THE MODELS

TRAINED ON THE DATASET WITH ULTRASOUND SCAN AS THE GROUND

TRUTH

Model Validation
Accuracy Sensitivity Specificity

Model 55% 0.83 0.55
Squeeze and Excitation
+ model 51% 0.65 0.51

CBAM + model 58% 0.7 0.59
LBCAM + Novel model 80% 0.91 0.8
xresnet1D 69% 0.48 0.71
inception1D 61% 0.43 0.63
STS 58% 0.78 0.58

layers are passed to the final dense layer in order to give more
weight to long-term dependencies. In other words, this sensor
fusion algorithm learns the fusion while attempting to learn
more from the accumulative time series information grasped
at the last hidden cell of the parallel LSTM layers.

III. EXPERIMENTAL TESTS AND RESULTS

As discussed in section II-C, our dataset contains two sets
of readings. The first dataset was created using the mother’s
perception as the ground truth, and the second was created
using an ultrasound scan as the ground truth. Our model was
trained and validated on both the dataset separately. Moreover,
the model was cross-validated between the two datasets.

In order to verify the performance of the proposed novel
architecture, results were compared with several state-of-the-
art architectures in the field of fetal monitoring and in other
biomedical applications such as xresnet1D [53], inception1D
[53], SleepPoseNet (STS) [54], Squeeze and Excitation [36],
Convolutional Block Attention Module (CBAM) [37].

Each of these state-of-the-art architectures was modified
in such a way that they can be used to predict the fetal
kick count. Furthermore, architectures such as xresnet1D and
inception1D, which were previously utilized for different ECG
signal predictions, were modified to predict fetal kick count
using the accelerometric data recorded by our signal acquisi-
tion device. In this case, the same signal windowing functions
were utilized. However, since xresnet1D and inception1D only
forecast on 1-dimensional data, windowed signals were not
transformed into spectrograms.

For the performance analysis, prediction accuracy, sensitiv-
ity and specificity were chosen as the performance metrics.

TABLE III
CROSS-VALIDATION ACCURACIES

Model Validation Accuracy

Trained on mother’s
perception dataset
and validated on
ultrasound dataset

Trained on
ultrasound dataset
and validated on
mother’s perception
dataset

Novel model 43% 49%
Squeeze and Excitation
+ model 39% 37%

CBAM + model 45% 49%
LBCAM + model 58% 64%
xresnet1D 52% 58%
inception1D 48% 52%
STS 47% 51%

Since neural network-based predictions are slightly random-
ized, each model was trained and tested four times, and aver-
age values were obtained. Prediction accuracy was obtained
considering the four classes as mentioned in II-E.2. When
calculating sensitivity and specificity, predicting the presence
of a fetal kick was considered a positive result, whereas
predicting no fetal kick was considered a negative result.
Sensitivity and specificity were calculated as follows.

Sensitivity =
True Positives

True Positives+ False Negatives

Specificity =
True Negatives

True Negatives+ False Positives

Each of these models was trained and validated on the two
datasets. Table I and II show the validation accuracy, sensitiv-
ity and specificity of our model and the other architectures.

While high sensitivity and specificity values are crucial,
particular emphasis is placed on specificity. In the context
of fetal movement prediction, lower sensitivity implies that
the model may predict a reduced fetal movement, prompting
the mother to consult with a doctor to address any concerns
about the fetus’s health. On the other hand, lower specificity,
indicating the model predicts heightened fetal movement when
the actual movement is low, could potentially lead to a mother
choosing to stay at home, posing a risk of overlooking critical
situations.

From Table II, it is evident that the LBCAM + model
surpasses other models across all performance metrics. As
shown in Table I, the xresnet1D exhibits the highest speci-
ficity at the expense of lower sensitivity, indicating a bias
towards predicting 0. While the increased specificity suggests
a reduced likelihood of false positives, the trade-off is an
increased rate of false negatives, necessitating more frequent
consultations with a doctor for the mother. Notably, Table I
illustrates that the specificity of the LBCAM + model is at an
acceptable level. Considering this, along with specificity and
other metrics, it becomes apparent that the LBCAM + model
outperforms other models.

For a comprehensive evaluation of the models, cross-
validation was performed on the datasets. Table III shows the
validation accuracies of cross-validation results.
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It is evident that our novel LBCAM combined with our
novel prediction model has outperformed other models in
accuracy metrics. However, xresnet1D has come closer to the
accuracy level of the LBCAM + model.

Since xresnet1D is a deep neural network, it has a larger
parameter space relative to our data space. As a result, it has
a high tendency to overfit. Table I and II, show that while
xresnet1D has good validation accuracy on the same dataset, it
has performed badly in cross-validation. In simple terms, the
xresnet1D model has overfitted the train set to a significant
extent.

Moreover, a further study was carried out to observe this
tendency to overfit. Here, a minor change was introduced to
the data set. During the pre-processing, windows were split
from the raw signal with a stride of 1 second. Hence, there
are partially overlapping windows. Precautions were taken to
limit these sets of overlapping windows to the train set or
the test set. Otherwise, the model may overfit to certain data
windows in the train set and accurately predict the fetal count
in an overlapping window that is present in the test set. Here,
this proactive approach was removed, and all the windows
were mixed together and randomly selected for the train and
test datasets. As a result, the train and test datasets now
have a significant quantity of data with partially overlapping
windows.

TABLE IV
VALIDATION ACCURACIES WITH THE NEW DATASETS

Model Validation Accuracy
Trained and validated
on modified mother’s

perception dataset

Trained and validated
on modified

ultrasound dataset
LBCAM + model 77% 85%
xresnet1D 91% 94%

Our novel LBCAM + model and the xresnet1D model
were trained again using this modified dataset. The validation
accuracies are shown in table IV. It can be observed that the
xresnet1D model has a higher tendency to overfit when the
results from tables I, II and IV are compared. The xresnet1D
tends to learn and overfit to an overlapping part of two
time-domain windows. On the other hand, LBCAM tries
to learn temporal progressions in a spectrogram. Although
there can be overlapping windows in the time domain, the
two corresponding spectrograms may have different temporal
progressions. Hence, it is very unlikely for our model to overfit
to a certain overlapping part of two windows. Considering
these aspects, our novel LBCAM and model will outperform
xresnet1D in this biomedical application.

IV. DISCUSSION

A. Improvement of channel attention with LSTM addition

The performance metrics in Table I and II show that the
LBCAM + novel model has surpassed all architectures. The
LBCAM module has played an important part in this. Table II
shows that adding a CBAM block to the novel model has
only increased the validation accuracy from 55% to 58%.
Nonetheless, the addition of an LBCAM block has boosted

the validation accuracy from 55% to 80%. However, this
improvement is accompanied by a reduction in sensitivity from
0.83 to 0.7. In essence, the CBAM model tends to predict a
lack of fetal movement more frequently. In CBAM, mainly
max-pool and avg-pool layers are used to grasp significant
information from a specific channel. While it is a common
procedure in deep learning to use max pooling and average
pooling, however, when those are used on a specific data
stream like spectrograms, it may not have any physical mean-
ing. Therefore, the usage of an LSTM layer that encapsulates
the underline structure will become more feasible. Hence,
our novel LBCAM architecture could improve the channel
attention significantly.

In CBAM architecture, there is a spatial attention block to
learn where to focus. However, if we consider this spectrogram
to be a picture, we anticipate x and y spatial coordinates to be
equivalent to t and f; time-frequency coordinates that are not
necessarily equivalent in a physical sense. Therefore, while
we can be inspired by an image-like measure, direct plug-
and-play may not be possible here. Our main target was to
learn from this spectrogram in an orderly fashion because
this has a certain temporal structure. These temporal structures
can be learned by the LSTM layers in LBCAM. As a result,
rather than introducing a max pooling or average pooling layer
or a spatial attention block, the addition of an LSTM layer
has improved the strength of the channel attention for this
application.

To examine the influence of LBCAM on the training pro-
cess, cross-entropy curves were plotted. Fig. 6 depicts the
training cross-entropy loss curves.

Fig. 6. Cross-entropy loss curves of novel model, novel model with
CBAM, novel model with LBCAM

As shown in Fig. 6, the addition of a CBAM layer has
greatly diminished the training rate of our model. This phe-
nomenon could be attributed to the CBAM’s attempt to learn
more data by treating the spectrogram as an image. Given that
the fetal kick count is predominantly represented in the tem-
poral structure of the spectrogram, providing channel attention
becomes challenging when treating the spectrogram solely as
an image. On the other hand, the addition of LBCAM has
enhanced the training rate. This could be linked to LBCAM’s
capacity to prioritize each channel based on its temporal
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significance. As it turns out, it is clear that the addition of an
LSTM layer has substantially enhanced the ease of training as
well as the performance metrics.

B. Recordings with inherent noise
Noisy recordings in our dataset may pose significant barriers

and may have a significant effect on accuracy. They can
be electrical interference, equipment limitations, and sensor
inaccuracies in the device. Furthermore, noise may be created
due to the imprecise nature of human perception in situations
when mothers operate the device and press a button when they
detect a fetal kick.

The primary issue with the dataset obtained from the
mother’s perspective as the ground truth is that it may contain a
significant amount of human error. As a result, training on this
dataset will be very challenging. The model may attempt to
learn to forecast errors. On the other hand, the dataset recorded
using an ultrasound scan as the ground truth may contain
only a handful of human errors. Errors such as electrical
interference, equipment limitations, sensor inaccuracies and
so on may account for miniature errors in the dataset.

The effect of noise on the dataset is readily apparent in the
results of Tables I and II. Most of the performance metrics
shown in Table I are lower than those shown in Table II.

To summarise, coping with noisy recordings in fetal move-
ment monitoring is an important part of this field’s research.
The quality and dependability of data can be improved by
being aware of the sources of noise, understanding its po-
tential effects, and utilizing a combination of technological
and methodological solutions. This opens up new avenues for
further exploration and research in the field.

V. CONCLUSION

In this paper, we have proposed a novel channel attention
architecture as well as a model to predict fetal kick count.
Our new channel attention architecture learns by observing
the evolution of each channel with time. The two datasets used
for the training process were gathered using our own multi-
sensory device. Our architecture could predict fetal kick count
with high accuracy because of the more powerful channel
attention in our innovative LBCAM architecture and sensor
fusion in our novel model.

The performance of the proposed method was verified
by comparing prediction results with several state-of-the-art
architectures in the field of fetal monitoring and in other
biomedical applications. The results demonstrated that the
proposed model outperforms all state-of-the-art models. Fur-
ther studies suggested that the likelihood of xresnet1D for
overfitting will reduce the significance of xresnet1D for this
application.

In future work, we are planning on recording more fetal
movement data with high accuracy and less noise. There is
tremendous potential for the usage of AI and deep learning
architectures specifically in biomedicine. Our work and other
related works highlight the importance of contextual knowl-
edge of biomedicine and applying appropriate architectures,
algorithms, functions, etc. for the given application. The whole

rationale is that when AI is used in biomedicine, there is less
potential for success when other algorithms are simply reused.
The AI model should have explainable steps. Moreover, those
explainable steps should be aligned with physical reality.

While this solves certain problems and introduces a new
way of thinking, what we have really done is pioneer in a
certain direction. So, as the future work, there is a lot more
work to be done for the future researchers if they want to
go down this lane. Compared to much of the work that is
being used in biomedicine, researchers may tend to perform
transfer learning. Transfer learning is not AI design. There is a
significant difference between transfer learning vs a dedicated
or a specific AI that connects us to a specific problem. We are
not going for a one-fits-all architecture. We want to promote
this in another way where contextual bio-medical knowledge,
contextual medical realities, and practical realities coupled
with the inherent meaning of each of the components in the
neural network, all matter.
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