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Abstract

This study introduces Norma, a novel association-mining framework tailored for continuous spatial variables analysis. Norma

introduces the unique Continuous Variable Threshold (CVT) pattern, aiming to identify a pair of thresholds within the value

domain of two continuous variables, revealing strong associations within a specified geographic area. For example, it may unveil

a strong association between COVID-19 infection rates above 2% and poverty rates above 15% in New Mexico. Norma associates

pointwise functions with each variable-e.g., a function that returns poverty rates for each location in New Mexico. It employs

a novel interestingness function, which measures agreement with respect to hotspots where variable pointwise functions exceed

associated thresholds. Norma also employs a grid-based spatial hotspot-growing algorithm to discover high-interestingness

regions and pairs of thresholds that generate interestingness surpassing a predefined threshold. Furthermore, the framework

introduces measures for assessing variable relatedness based on CVT associations. A comparative case study against traditional

correlation methods are presented using county-level COVID-19 infection rates and nineteen other socio-economic variables

from the continuous United States, and demonstrate how Norma can be used to explore association among subset of values

related to spatial continuous variables.
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Appendix for paper ’Norma: A Framework for Finding

Threshold Associations Between Continuous Variables Using

Point-wise Functions’

Md Mahin1 and Christoph F. Eick1

1Department of Computer Science, University of Houston, Houston, Texas, USA

1 Proofs of Interestingness Bounds

Proof of EI : Let P (v) = γ and P (v′) = γ′, since hotspots from each variable cover γ and
γ′ fraction of the observation area, respectively. By the product rule of probability, the
probability of the intersection of two independent events is equal to the product of their
individual probabilities, i.e., P (F ∩ F ′) = P (F )× P (F ′) = γ × γ′.

Proof of LBI and UBI : Let two variables v, v′ are extremely negatively correlated.
If area coverage from both variables are γ and γ′ respectively, where γ + γ′ > 1, lower
bound of the interestingness function is 1− ((1− γ)+ (1− γ′)). However, when γ+ γ′ ≤ 1,
lower bound of interestingness will be 0. So the lower bound of I can simply defined as:
LB = max((γ + γ′ − 1), 0).

Let the, two variables v, v′ are extremely positively correlated. If area coverage from

both variables are γ and γ′ respectively, upper bound of I will be UB = min(γ,γ′)
max(γ,γ′) , where

min(γ, γ′) represents the intersection and max(γ, γ′) represents the union.
Similarly, we can define expected interestingness EI′ , Upper Bound UBI′ and Lower

Bound Upper Bound LBI′ for alternate interestingness I ′ as follows:
Proof of EI′: From multiplication rule of probability, if P (v ≥ t) and P (v′ ≥ t′) are

c, c′, than P (X ≥ t ∧ Y ≥ t′) = P (X ≥ t)× P (Y ≥ t′) = c× c′.
Proof of UBI′ and LBI′: If v and v′ are extremely positively correlated P (v ≥ t) = c

and P (v′ ≥ t′) = c′, then UBI′ = min(c, c′).

If v and v′ are extremely negatively correlated P (v ≥ t) = c and P (v′ ≥ t′) = c′, than
LBI′ = c+ c′ − 1 when c+ c′ > 1 and 0 when c+ c′ ≤ 1. So, LBI′ = max((c+ c′ − 1), 0).

1

2



TKDE 1

Norma: A Framework for Finding Threshold
Associations Between Continuous Variables

Using Point-wise Functions
Md Mahin and Christoph F. Eick

Abstract—This study introduces Norma, a novel association-mining framework tailored for continuous spatial variables analysis.
Norma introduces the unique Continuous Variable Threshold (CVT) pattern, aiming to identify a pair of thresholds within the value
domain of two continuous variables, revealing strong associations within a specified geographic area. For example, it may unveil a
strong association between COVID-19 infection rates above 2% and poverty rates above 15% in New Mexico. Norma associates
pointwise functions with each variable-e.g., a function that returns poverty rates for each location in New Mexico. It employs a novel
interestingness function, which measures agreement with respect to hotspots where variable pointwise functions exceed associated
thresholds. Norma also employs a grid-based spatial hotspot-growing algorithm to discover high-interestingness regions and pairs of
thresholds that generate interestingness surpassing a predefined threshold. Furthermore, the framework introduces measures for
assessing variable relatedness based on CVT associations. A comparative case study against traditional correlation methods are
presented using county-level COVID-19 infection rates and nineteen other socio-economic variables from the continuous United States,
and demonstrate how Norma can be used to explore association among subset of values related to spatial continuous variables.

Index Terms—Spatial Data Analysis, Association Analysis, Interestingness Measure, Grid-Based Search, Pattern Mining

✦

1 INTRODUCTION

MANY business enterprises accumulate large quan-
tities of data from their day-to-day operations in-

volving different variables. Association analysis aims to
discover interesting relationships among those variables,
often also called patterns, hidden in such large data sets.
Association analysis frameworks have been developed to
mine datasets for different types of relationships, such as
association rules, frequent sequences, graphs, collocation,
and correlation measure. The interestingnesses of patterns
for different, specific types of associations are evaluated
using interestingness measures specific to the particular
type of association. For example, confidence, support, and
lift serve are popular choices to measure the interestingness
of a particular association rule [1]. Support is a popular
interestingness measure in sequence mining, looking for
subsequences that are frequent in the collected data.

The association analysis problem can be formally stated
as follows:
Definition 1.1. Given a dataset D, a set of possible patterns

P with respect to D, a type of association A, and an
interestingness measure IA with respect to A, find all
patterns, p, such that: p ∈ P and IA(p) ≥ θ
Where θ is a user-defined threshold for the interesting-
ness measure.

As there are usually large numbers of patterns P and as
sizes of D are usually large, developing an efficient search

• The authors are with the Department of Computer Science, University of
Houston, Houston, TX 77204-2013. E-mail: mmahin, ceick@uh.edu.

procedure for a particular type of association A that finds
all interesting patterns is a major research challenge in
association analysis. Moreover, there are redundant patterns
and many other challenges in association analysis.

In contrast to the prevalent association analysis frame-
works that focus on discovering interesting associations
between discrete variables [2], this paper concentrates on
association analysis for continuous variables. Among some
of the existing measures, correlation analysis is one example
of finding relationships between various pairs of continuous
variables; for example, we might be interested to identify
pairs of continuous variables whose absolute correlation
values exceed 0.7.

Moreover, the scope of this study is further restricted
to the analysis of associations for continuous, spatial vari-
ables. This study posits that a pointwise function is as-
sociated with each continuous, spatial variable. Pointwise
functions calculate the value of a continuous variable at
a specific location, providing a convenient way to cap-
ture heterogeneity of spatial data by hiding data acqui-
sition details. As an illustration, consider the continu-
ous variables of COVID-19 infection rates and Poverty
Rate. We assume the existence of point-wise functions
ψPoverty Rate and ψCOV ID−19 Infection Rate for the ob-
servation area, which can yield the COVID-19 infec-
tion rates and Poverty Rate for specific locations de-
fined by their longitude-latitude pairs. Exempt from data
generation concerns, an analyst can invoke the function
ψCOV ID−19 Infection Rate(35.68,−105.94) and it might re-
turn 0.003, indicating that the COVID-19 infection rate at
the Santa Fe Plaza (located at latitude 35.68 and longitude
-105.94) is 0.3%. The main focus of this research is the devel-
opment of association analysis frameworks for continuous,
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spatial variables that operate on such pointwise functions.
Finding thresholds for continuous variables is an im-

portant problem in many applications. For example, when
studying the relationship of air pollution and lung dis-
eases it is important to obtain findings such as: ”PM2.5

concentrations above 40µg/m3 are associated with increased
occurrence of Bronchial Asthma”. Finding such thresholds is
also critical to come up with governmental regulations and
laws to alleviate the health impacts of PM2.5. This paper
proposes methods to find such thresholds; it focuses on
associations between different continuous spatial variables
restricting its attention to associations between values of
spatial continuous variables above a given threshold, and
not all values of the continuous variables. For example,
our framework might uncover a strong association between
Bronchial Asthma Percentages (BPC) above 0.3% and PM2.5

concentrations above 40µg/m3. In particular, the paper in-
troduces a new form of association {(PM2.5 40) (BMC 0.04)}
called CVT (short for “continuous variable threshold”) as-
sociation and introduces a framework called Norma to find
such associations. The aim of Norma is to identify a pair of
thresholds within the domain of two continuous variables,
such that the values above these thresholds exhibit a strong
association within a given geographic observation area with
respect to a novel interestingness function. The interesting-
ness function measures agreement with respect to hotspots,
where the respective variable’s pointwise function is above
the associated threshold.

The scope of research focusing on exploring associations
between continuous, spatial variables has been limited. In
the spatial domain, single variable autocorrelation meth-
ods such as Moran I [3] are used to find collocation of
similar values from one variable. The global methods like
Moran I return a single association value between −1 to
+1, indicating overall association among values from a
variable within the observation area. For example, if high
values from a variable are located in close proximity to
other high values and low values are located in close
proximity of other low values in an observation area, we
expect a high Moran I score close to +1 and for high low
collocation we will get a value close to −1. On the other
hand, spatial local autocorrelation measures [4], [5], [6] find
these associations on a local scale and locate regions where
either high values neighbor other high values or low values
neighbor other low values in form high-value cluster or low-
value cluster. Nonetheless, none of these methods attempt
to discover associations among all subsets of values from
the two continuous variables. To the best of our knowledge,
only one study, by Eick et al. [7], has explored continuous
variable association for subset of values. The framework
proposed by Eick et al. categorizes values into high values
or low values to find association among them and does
not examine all possible associations for different subsets
of values. The framework Norma is developed considering
such scenarios and explores association among the subset of
values from different continuous variables. Overall, Norma
tries to answer the following research questions:

• Can we develop a computationally efficient frame-
work to find all valid CVT associations?

• Can the framework extract knowledge that tradi-

tional methods like correlation analysis ignore?
• Can the framework find actionable knowledge that

is beneficial for the society?

To answer these research questions Norma makes the
following contributions:

1) A new framework to mine associations between
continuous variables in spatial datasets is intro-
duced, which associates pointwise functions over an
observation area with continuous, spatial variables.

2) A new form of spatial association called continuous
variable threshold (CVT) association is introduced.
A new interestingness measure to mine CVT pat-
terns is introduced, which measures a pattern’s
interestingness as the agreement with respect to
regions of hotspots in the observation area, where
the value of the continuous variable is above the re-
spective threshold. A rectangular hotspot discovery
algorithm is also proposed to obtain such hotspots.

3) Three measures to asses the relatedness of variables
based on the characteristics of observed CVT asso-
ciation are proposed.

4) A case study is presented, which assesses the merit
of CVT associations to understand the factors that
are associated with high COVID-19 infection rates
for a socio-economic dataset from USA.

5) We also briefly discuss how CVT patterns could be
generalized to find more general associations be-
tween sets of continuous variables and explain how
our work differs from other methods while finding
association between spatial continuous variables.

The remainder of this paper is structured as follows. In
Section 2, we introduce the concepts of CVT patterns and
interestingness measures. In Section 3, we detail the compu-
tational methods used to solve the CVT association mining
problem. Section 4 presents case studies and comparative
analyses between CVT association mining and traditional
association mining methods. Finally, Section 5 concludes the
paper.

2 PROBLEM STATEMENT: CONTINUOUS VARI-
ABLE THRESHOLD ASSOCIATIONS

2.1 Pointwise Functions
Definition 2.1. Observation Area: An observation area is

a geographic region where values of the continuous
variables are collected. We assume that an observation
area OA is represented using a bounding polygon.

Definition 2.2. Pointwise Functions: A pointwise function
ψv is a function that maps a geographic location l ∈ OA
to its corresponding value for a given variable v.

A pointwise function ψCOV ID−19 Infection Rate related
to the variable COVID-19 Infection Rate returns the COVID-
19 infection rate for any location l in the observation area.
Three popular types of pointwise functions are: polygonal
function, spatial density functions and spatial interpolation
functions.

A polygonal function operates on a set of polygon-
value pair {(f1, value1), (f2, value2), ..., (fn, valuen)}
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Notations
OA Observation Area or observation polygon V A set of continuous variables
l Any location within OA with format (latitude, longitude) v, v′ Continuous variables
L A set of l t, t′ Threshold values related to variable v and v′
F A set of polygons. In this paper, these polygons are over the

geo-spatial observation area.
X,X′ Set of all possible values related to variable v, v′, where

X = {t1, ..., tn} → v and X′ = {t′1, ..., t′m} → v′.
f A polygon. In this paper, these polygons are over the geo-spatial

observation area.
δ() agreement function, measure agreement between two

set of hotspot polygons F .
δ′() Alternate agreement function.

Y A set of sets of hotspots. Y = {F1, ..., Fn}. ψv , ψv′ Pointwise functions.
R A set of Rectangualr Hotspot polygons. In this paper, they are

polygon set on the Cartesian space formed by the values of v, v′
p A continuous variable threshold pattern with format

{(v t), (v′ t′)}
r A Hotspot polygon. In this paper, they are polygons on the

Cartesian space formed by the values of v, v′
I Interestingness Measure.

H() Hotspot function. Generate a set of hotspot polygon F for a
pointwise function ψv based on a threshold t

∩G() Global Intersection function. Calculate a scalar intersec-
tion polygon area from two set of hotspot polygons F .

∩i() Intersection function. Generate an intersection polygon from
two hotspot polygon f

∪G() Global union function. Calculate a scalar union polygon
area from two set of hotspot polygones F .

area() Area function. Calculate the scalar area of a polygon f . C() Calculate total number of point are above a threshold t
when a set of points L applied on a function ψ.

C∩() Calculate total number of common points that are above both
threshold t and t′ when a set of points L applied to function ψ
and ψ′.

range() Function to find set of values from two value limit.
range(value1, value2) indicates all values in between
[value1, value2].

α Threshold that restricts the maximum area of the observation
OA that can be covered by a hotspot polygon set F .

tlow Lowest threshold from the variable v that generates
hotspots with area lower than α× area(OA).

β Threshold that restricts the minimum area of the observation
area OA that must be covered by a hotspot polygon set F .

thigh Highest threshold from the variable v that generates
hotspots with area higher than β × area(OA).

θ Interestingness threshold domain() domain(v) indicates set of values a variable v can have.
TS Two dimension threshold space created using the values of

domain(v) and domain(v’)
MA Maximum Interestingness within all patterns from a

variable pair.
EI Expected interestingness for a variable pair under the assump-

tion of variable independence
Lift Deviation of interestingness from the EI .

UB Maximum interestingness possible for a pattern. LB Minimum interestingness possible for a pattern.
AUC Area Under the Interestingness Curve MaxTcorr Maximum threshold correlation pattern in a variable

pair.

where {f1, f2, ..., fn} are polygons inside the OA and
{value1, value2, ..., valuen} are values of a continuous
variable v, where each value is associated to a polygon. The
polygonal pointwise function ψv(l) then return valuei if l is
inside polygon fi.

For example, suppose we have a location l=(29.76,
−95.37) within the Harris county polygon. The polygo-
nal function ψCOV ID−19InfectionRate(l) might return 0.3,
which is the COVID-19 infection rate of county.

Another form of pointwise functions are spatial density
functions. When using this approach a density estimation
technique, such as non-parametric density estimation [8], is
used to obtain a spatial density function which measures an
event’s density in an observation area based on the influence
of a set of locations where that event occurred. For example,
based on locations of burglaries, occurred in an observation
area such as Harris County, Texas, a kernel density function
ψBurglary can be used as a pointwise function that will
return the density of burglary events on a location based
on the influence of existing burglary events from the nearby
locations.

Moreover, spatial interpolation functions [9] can serve
as pointwise functions; spatial interpolation functions com-
pute the value for a query location l based on a set of
location-value pairs that were observed inside the obser-
vation area; for example, we might calculate the amount of
rainfall in a location l by interpolating the observed rainfall
quantities from five weather stations in the observation area.

2.2 Continuous Variable Threshold Pattern
Let V a set of m distinct continuous spatial variables with
associated pointwise functions {ψv1 , ..., ψvm}. A continuous

variable threshold pattern p for a dataset D with variables
V is defined as a set S of variable-threshold pairs of the
form (v t), where v ∈ V and t ∈ ℜ, subject to the following
constraints:

1) the cardinality of S is at least 2
2) each variable v ∈ V occurs at most once in S

Initially, we concentrate attention on binary CVT pat-
terns. For two continuous variables v, v′ ∈ V and associated
thresholds t ∈ domain(v), t′ ∈ domain(v′), we define
pattern p as follows:

p = {(v t), (v′ t′)} (1)

A pattern such as p={(COVID-19 Infection Rate 0.25),(Median
Income 50000)} is interesting if the interestingness is above a
user defined threshold e.g. 0.70.

2.3 Interestingness Measure

We will introduce an interestingness measure in this section.
Let us consider a set of variables {v, v′} with a set of associ-
ated thresholds {t, t′} , and associated pointwise functions
{ψv, ψv′}; we define interestingness measure I for pattern
p = {(v t), (v′ t′)} as follows:

I({(v t), (v′ t′)}) = δ(H(ψv, t), H(ψv′ , t′)) (2)

The interestingness measure in equation 2, assesses the
regions where the respective pointwise functions surpass
the associated threshold, and calculates the degree of agree-
ment between them. The function δ determines the agree-
ment of the regions where pointwise functions are above
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(a) F = H(ψv, t),
Area Cover of OA = 13%

(b) F ′ = H(ψv′ , t′), Area Cover of
OA = 14%

(c) Intersection of F,F’. Area Cover of OA =
11% and interestingness = 0.69

Fig. 1: Behaviour of Interestingness measure based on Hotspot coverage for v and v′ with percent of the area covered
by each hotspot, their intersection area with area coverage, and measured interestingness value for the pattern. (c) shows
intersection of F, F ′ in red color (69% of union of F, F ′) and blue color represents where F, F ′ does not agree (31% of
union of F, F ′), resulting total agreement of 0.69.

the associated thresholds. If I value is high, it indicates a
strong agreement, otherwise, a weak agreement.

The hotspot function H(ψ, t) in equation 3, returns the
set of k polygons, denoted as F = {f1, f2. . . , fk} from OA.
Each polygon in the set, f ∈ F , satisfies the condition that
the pointwise function ψ is greater than or equal to the
threshold t at all points l ∈ f :

∀f ∈ F (∀l ∈ f(ψ(l) ≥ t)) (3)

Given a set of k hotspot polygons generated for the
variable v, represented as F = {f1, f2. . . , fk}, and a set of j
hotspot polygons generated for the variable v′, represented
as F ′ = {f ′1, f ′2. . . , f ′j}, the agreement between the two sets
of polygonal hotspots is computed using Equation 4. This
equation finds the ratio between the area of the overlapping
space (calculated by ∩G function ) and area of the union
space occupied by the two sets of hotspots (calculated by
∪G function).

δ(F, F ′) =
∩G(F, F

′)

∪G(F, F ′)
(4)

The ∩G function from Equation 5 calculates the total sum
of intersection polygon areas for two sets of polygons. The
function performs an iteration over all pairs of hotspot
polygons. It selects a pair of polygons (f, f ′) from the
Cartesian product of the two sets of hotspots F × F ′. Next
for each (f, f ′), the intersection polygon is found using the
∩i function and the areas of all intersection polygons are
summed to produce a scalar value.

∩G is defined by the following formula:

∩G(F, F
′) =

k∑
x=1

j∑
y=1

area(∩i(fx, f
′
y)) (5)

The ∪G function in Equation 6, returns a scalar value,
which is the union area covered by the hotspots from the
two sets F, F ′. It is found by taking the sum of the area of
all polygons in both sets, and subtracting the intersection
area as calculated by ∩G.

∪G(F, F
′) = (

k∑
x=1

area(fx)+

j∑
y=1

area(fy))−∩G(F, F
′) (6)

Figure 1 depicts hotspots for an imaginary pattern
p = ({(v t), (v t′)}), where Figure 1.a and Figure 1.b display
the hotspots of variable v, F = H(ψv, t) and variable v’,
F ′ = H(ψv′ , t′). F and F ′ cover 13% and 14% of the
observation area, respectively. The intersection hotspots of
F and F ′, obtained by applying ∩i over all (f, f ′) from
{F ×F ′}, are presented in Figure 1.c in red color. Blue color
in the figure represents the regions from the two pointwise
functions where F and F ′ do not intersect. The intersection
hotspots cover 11% of the given observation area. The red
portion from Figure 1.c covers 69% of the union area covered
by all hotspots F, F ′ from column 1 and 2 (red and blue
portion combined), resulting in the interestingness value
0.69. In Figure 1.c, blue color represents the 31% of the area
from the union of F, F ′ where they do not agree.

2.4 Approximation of the Interestingness Measure
This section presents a computationally efficient method
for measuring agreement between variable threshold pairs
and define an approximate interestingness measure which
is quite economical to compute. Instead of relying on com-
puting hotspots overlap, we utilize a sampling technique
to measure interestingness. Specifically, we apply point-
wise functions ψv and ψv′ to a set of n sample locations
L = {l1, ..., ln} within the observation area. Interestingness
measure I ′, for a pattern p = {(v t), (v′ t′)} in the following
equation:

I ′({(v t), (v′ t′)}) = δ′(C(ψv, t, L), C(ψv′ , t′, L),

C∩(ψv, t, ψv′ , t′, L))
(7)

In Equation 7, δ′ is the approximate agreement function.
The C function defined in Equation 8, applies either the ψv

or ψv′ function to a set of locations L and counts the total
number of locations c or c′ that are above the respective
threshold t or t′.

C(ψv, t, L) = count({l ∈ L|ψv(l) ≥ t}) (8)

The C∩ function defined in Equation 9, also operates on
the same set of locations L and counts the total number of
locations c∩, where in each location, both ψv and ψv′ are
above their respective thresholds t and t′.
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Fig. 2: A depiction of interestingness function surface for patterns {(Covid −
19 Infection Rate, t)(Bachelor Degree Rate, t′)} (a) and {(Covid − 19 Infection Rate, t)(Median Income, t′)}
(b), with 100 × 100 sample threshold pairs from two variables. (c) and (d) depicts interestingness value
for 15 × 15 pair of thresholds for {(Covid − 19 Infection Rate, t)(Bachelor Degree Rate, t′)} and
{(Covid− 19 Infection Rate, t)(Median Income, t′)} .

C∩(ψv, t, ψv′ , t′, L) = count({l ∈ L|ψv(l) ≥ t∧ψ′
v(l) ≥ t′})

(9)
The approximate agreement function δ′ defined in Equa-

tion 10, determines the level of agreement between two
patterns by computing the ratio of the number of locations
where both ψv and ψv′ exceed their respective thresholds
(c∩) to the number of locations above the threshold for either
ψv or ψv′ (i.e., the union of points), which is measured as
(c+ c′ − c∩).

δ′(c, c′, c∩) =
c∩

c+ c′ − c∩
(10)

2.5 Constrained CVT patterns and Expected Interest-
ingness

2.5.1 Constrained CVT patterns

The Interestingness measure defined in Equation 2 has the
property that it returns high interestingness values if very
low thresholds (t, t′) are chosen for the variable pair (v, v′),
as in this case the respective hotspots cover large percent-
ages (γ, γ′) of the observation area; that is, γ and γ′ are
close to 1. For example if γ = γ′ = 0.99, the interestingness
for the associated CVT pattern is in the interval of (0.98, 1.0)
and can be viewed a trivial patterns. On the other side of
the spectrum, if γ and γ are close to 0; e.g. 0.001; even if a
patterns has a high agreement, we do not like to report it
as it lacks support. One example can be seen in Figure 2.a
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(upper right corner), where the agreement value of 0.8 is
generated by two hotspots sets that cover only 0.07% of the
observation area.

To address the issue of trivial and low support CVT
patterns, we introduce two user-defined parameters α and β
to narrow down the range of thresholds used in CVT pattern
mining, where α restricts lower thresholds and β restricts
upper thresholds. These parameters are within the range
[0, 1]. For instance, α = 0.5 means that only the thresholds
which cover hotspot areas lower than 50% of the observa-
tion area are considered interesting. On the other hand, if
β = 0.01 is chosen, hotspot areas associated with the thresh-
old must cover at least 1% of the observation area to be
considered interesting. Thresholds space restricted by α and
β can be represented by {[tlow, thigh]× [t′low, t

′
high]}, where

{tlow, thigh} ∈ domain(v) and {t′low, t′high} ∈ domain(v′).
{tlow, t′low} are the smallest set of thresholds that satisfies
α and {thigh, t′high} are the largest set of thresholds that
satisfies β from the two variables.

2.5.2 Expected Interestingness and Upper and Lower In-
terestingness Bounds

Lemma 2.1 define expected interestingness value for two
sets of hotspots for Interestingness defined in Equation 2
based on their area cover (γ, γ′). According to Lemma 2.1,
if hotspots from v, v′ covers 0.75 or 75% of the observation
area, the expected interestingness value is 0.563.

Lemma 2.1. Overlap Probability of Hotspot Sets from Inde-
pendent Variables. Let F and F ′ be two sets of hotspots
from two independent variables v and v′, respectively,
which cover γ and γ′ fraction of an observation area,
where γ, γ′ ∈ [0, 1]. Then assuming independence, the
probability of hotspots being overlap is EI= γ × γ′.

On the other hand, lower and upper bound can be deter-
mined by considering two variables as extremely negatively
correlated and extremely positively correlated. Lemma 2.2
define lower and upper bound of interestingness for two
sets of hotspots.

Lemma 2.2. For two sets of hotspots F and F ′, with
area coverage γ and γ′ fraction of an observation area
the Lower Bound LB of their interestingness will be
max((γ + γ′ − 1), 0) and Upper Bound UB of the
interestingness value will be min(γ,γ′)

max(γ,γ′) .

According to Lemma 2.2,in case of lower bound, When
both variable are in extreme negative correlation, interest-
ingness is 1 when both hotspot sets cover 100% of the
observation area, but for every 1% less area coverage from
any set of hotspots, agreement will be reduced by 0.1, until
its reaches zero. On the other hand, in case of upper bound,
When both variable are in extreme positive correlation, if
one hotspot set covers 0.25 fraction of the observation area
and another covers 0.5 fraction of the observation area,
agreement value is expected to be 0.25, ensuring maximum
overlap with smaller set of hotspots.

For a pattern p = {(v t), (v′ t′)} with interstingness I, if
LB < I < EI , we can say the pattern has no association and
if EI < I < UB, we can say the pattern has some positive
association.

We further define a Lift measure to reflect the strength
of relationship between two sets of hotspots in the Defini-
tion 2.3.
Definition 2.3. Lift of a CVT pattern p = {(v t), (v′ t′)}

is I
EI

, where I is obtained interestingness and EI is
expected interestingnness under the assumption that
both variables are independent.

According to Definition 2.3, Lift is the fraction of inter-
estingness we get from a pattern p, divided by the ex-
pected interestingness EI if both variables were completely
independent. Lift value greater than 1 indicates positive
association and Lift value between 0 to 1 indicates lack of
association.

2.6 Demo of CVT Associations and the Interestingness
Function I
As CVT associations are new, we try to discuss some ex-
ample CVT associations in this subsection, to provide the
reader with:

1) A better understanding of the semantics of CVT
associations.

2) To illustrate how the introduced interestingness
measure I works.

3) To discuss some examples to illustrate the computa-
tional challenges of mining CVT associations.

In our analysis, we have observed the introduced bi-
variate interestingness measure I usually has multiple
peaks. Figure 2 depicts the nature of interestingness mea-
sure I for the patterns {(Covid-19 Infection Rate t),(Bachelor
Degree Rate t’)} and {(Covid-19 Infection Rate t),(Median In-
come t’)}. Figure 2.a and Figure 2.b depicts the interesting-
ness functions which were constructed based on (100×100)
sample threshold pairs where trivial patterns of interesting-
ness almost 1 can be seen for low thresholds (lower left cor-
ner). Figure 2.c and Figure 2.d shows the results in tabular
form for (15× 15) thresholds pairs from the same patterns,
where Figure 2.c interestingness 1 observable for Bachelor
Degree threshold 0, which cover whole observations area.
Similarly, Bachelor Degree Rate threshold 54.6 and COVID-
19 Infection Rate threshold 0.41 has interestingness 0.39.

From Figure 2 we can deduce the interestingness mea-
sure I can have multiple local maxima.For example, apart
from the maxima on the lower thresholds from both pat-
terns, we can see another local maxima 0.39 on Figure 2.c
for the pattern {(Covid-19 Infection Rate t),(Bachelor Degree
Rate t’)} on thresholds (0.41,59.15) and 0.2 for the pattern
{(Covid-19 Infection Rate t),(Median Income t’)} on thresh-
olds (0.43,93041.11). Figure 2.a suggest existence of another
higher maxima around 0.8 for the pattern {(Covid-19 Infec-
tion Rate t),(Bachelor Degree Rate t’)}.

To visualize nature of CVT Associations and the In-
terestingness function more closely, we analyzed patterns
with a constant threshold value c for one variable. Fig-
ure 3 visualizes two such interestingness measure. In Fig-
ure 3.a the maximum interestingness can be observed to
be around the threshold t′ = 50000 for the pattern p =
(Bachelor Degree Rate 20), (Median Income t′).

In some cases, the function can exhibit
significant complexity with several peaks, as
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(a) I({(Bachelor Degree Rate 15)(Median Income t′)})

(b) I({(COV ID − 19 Infection Rate 0.3)(Median Income t′)})

Fig. 3: A depiction of interesting-
ness function plot for the pattern
{(Bachelor Degree Rate 20)(Median Income t′)} and
{(COV ID − 19 Infection Rate 0.3)(Median Income t′)}
based on 500 sample thresholds from the variable
Median Income

demonstrated in Figure 3.b for the pattern
{(COV ID−19 Infection Rate 0.3), (Median Income t′)}.
In this case, function I has multiple modes with numerous
local maxima. Due to the function’s continuous nature,
pinpointing the exact location of the global maxima poses
a significant challenge, and search algorithms may get
trapped in local maxima.

2.7 Three Measures for the Relatedness of Variables
Based on Mined CVT Associations

After we analyzed the CVT associations between two
variables v and v′ for threshold pairs in the [tlow, thigh]
[t′low, t

′
high] rectangle, what does this tell us about the re-

latedness of the two variables v and v′? To address this
question, we propose three different evaluation measures
in this section, which measure the relatedness of v and v′,
based on observed CVT-association as follows:

1) The maximum observed interestingness in
[tlow, thigh]× [t′low, t

′
high], called MA

2) The area under the interesting curve over
[tlow, thigh]× [t′low, t

′
high], called AUC

3) The percentage of the area in [tlow, thigh] ×
[t′low, t

′
high] where the interestingness is above a

user-defined interestingness threshold ; e.g. θ =
0.55; this evaluation measure is called PIT.

For example, if the maximum observed interestingness
of variables v1 and v2 is 0.42 and the maximum observed
interestingness of variables v1 and v3 is 0.79, we would
conclude that v3 is more related to v1 than v2. The three
measures will be explained in more detail next!

2.7.1 Maximum CVT Association (MA)
The objective of MA is to identify maxima for the function
g(t, t′) defined in Equation 11, which is a two-dimensional
and continuous function as illustrated in Figure 2.a,b. Here,
the maxima will identify the threshold pattern with maxi-
mum interestingness.

g(t, t′) = I({(v t), (v′ t′)})
where, tlow ≤ t ≤ thigh and t

′
low ≤ t′ ≤ t′high

(11)

Locating the maximum value within the rectangular
space of g(t, t′) can pose a considerable challenge due to
the extensive search space arising from a high number of
potential thresholds across two variables. Additionally, the
proposed measure of interestingness may exhibit multiple
local maxima as depicted in Figure 2.a,b, further complicat-
ing the task. These issues further necessitates for sophisti-
cated search procedures to find maxima.

2.7.2 Area Under the Curve (AUC)
The strength of CVT association for two variable v, v′

can be quantified as the Area Under the Interesting-
ness Curve(AUC). The higher the AUC, more strongly
variable v and v′ are associated threshold its threshold
space. For I({(v t), (v′ t′)}) over the rectangle formed by
(tlow, thigh)× (t′low, t

′
high), where (tlow, thigh) ∈ domain(v)

and (t′low, t
′
high) ∈ domain(v′), AUC is formally defined as

follows:

AUC(v, t, v′, t′) =

∫ thigh

tlow

∫ t′high

t′low

I({(v t), (v′ t′)}) dt dt′

(12)

2.7.3 Percentage of Interestingness above Threshold θ
(PIT)
We define another measure Percentage of Interestingness
above Threshold θ (PIT) because of the similar purpose
discussed in Section 2.7.2. PIT measures total percentage
of thresholds pairs whose Interestingness above an user-
defined threshold θ.

Considering the whole two dimensional threshold space
TS created from domain(v) and domain(v′) as a continuous
space, we can define PIT as follows:

PIT (θ) =
area(TS ≥ θ)

area(TS)
(13)

In Equation 13 defines PIT as function of the parameter
θ that measures the fraction of threshold space TS above θ.

Computational procedures to implement MA, AUC and
PIT are discussed in Section 3.3.
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2.8 CVT Patterns of Arity Three or More
The interestingness measure can further be extented for a
set of n continuous variables {v1, ..., vn}. For a set of n
threshold {t1, ..., tn} associated with the n variables, where
ti ∈ domain(vi), we define a CVT pattern with arity n, pn
as follows:

pn = {(v1 t1), ..., (vn tn)} (14)

The interestingness measure for arity n, In can be defined
as follows:

In({(v1 t1), ..., (vn tn)}) = δn(H(ψv1 , t1), ...,H(ψvn , tn))
(15)

Each H() function from Equation 15 generates a set
of hotspot. For n set of hotspots {F1, F2, ..., Fn} from n
number of H() function, δn can be defined as follows,

δn(F1, ..., Fn) =
∩G(F1, ..., Fn)

∪G(F1, ..., Fn)
(16)

The ∩G in Equation 16 returns the scalar intersection area
within all n set of hotspots and ∪G returns scalar total union
area covered by all hotspot sets. The δn function returns a
scalar fraction values within (0, 1) indicating the fraction
covered by the overlap compared to the total area coverage
by the n set of hotspots as explained in Section 2.3

2.9 CVT Patterns in Non-spatial Environments
Analyzing threshold associations can also benefit non-
spatial associations, such as correlation. In general set-
ting, classical correlation gives an overall association value
among all values from two variables. However, often rel-
ative strong correlation can be observed for high values
of two variables, instead of the fact that the correlation
between the two variables over the full domain of val-
ues is quite weak. For example, we created a dataset
D = THHouston using hourly measurements of relative
humidity and temperature over a year for a location in
Houston (latitude= 29.75225, longitude = -95.3689 ) and
found that there is almost no correlation between humidity
and temperature (the correlation is -0.11), but there is a
strong negative correlation of -0.80 between humidity above
53% and temperatures above 80.98; similarly, there is a
strong correlation of -0.77 between humidity above 48%
and temperatures above 85.01—as it is reported in figure 4.
Again it is important to determine thresholds above which
such associations become strong. In this section we propose
that instead of looking for correlations between two vari-
ables, look for correlation between subset of values above
two thresholds within the two variables.

For a dataset D with a set of continuous attributes
{v, v′}, and a set of associated thresholds {t, t′} for each
attribute, we define threshold correlation as TCorr as fol-
lows:

TCorr(D, v, v′, t, t′) = Correlation(D′, v, v′) (17)

In Equation 17, the TCorr function measure correlation
of subset of values D′ from dataset D, extracted based on
the threshold values t ∈ v and t′ ∈ v′.D′ is formally defined
in Equation 18.

D′ = {(a, a′)|(a, a′) ∈ D ∧ a ≥ t ∧ a′ ≥ t′} (18)

Equation 18, defines D′ as the set of all value pairs
(a, a′), where a ≥ t and a′ ≥ t′. Here, a ∈ domain(v) and
a′ ∈ domain(v′).

Fig. 4: Threshold Correlations for 15 × 15 samples
for TCorr(D,Temperature,Relative Humidity, t, t′) and
Support.

Figure 4 shows the behaviour of the Threshold Correla-
tion for the dataset D = THHouston. Temperature variable
in THHouston was measured in Fahrenheit and relative hu-
midity percentages are reported as an integer value between
0% to 100%. Open Weather Map data were used to create
the dataset. THHouston contains 8760 temperature-humidity
pairs. The number of unique temperature values is 3104 and
the number of unique humidity values is 80. The correlation
between the two variables in D is -0.11. Figure 4 shows the
behaviour of TCorr function for 15 sample thresholds from
each attribute.

Similar to interesting CVT patterns, interesting threshold
correlation indicates variable threshold pairs where the in-
terestingness measure is above a user defined threshold; e.g.
the absolute value of the threshold correlation is above 0.7.
We claim that a lot of the algorithms we introduce in Section
3 can be used to mine interesting threshold correlation. More
on threshold correlation analysis has been reported in a
paper published in GeoAI’23 [10].

3 COMPUTATIONAL METHODS TO FIND STRONG
CVT ASSOCIATIONS

This section discusses different key algorithms to generate
CVT associations.

3.1 Grid Based Hotspot Growing Algorithm
In this paper, we propose a grid-based hotspot growing
algorithm for identifying hotspots above a continuous vari-
able threshold t. Our algorithm bears resemblance to the
DBSCAN clustering algorithm [11] and utilizes a common
graph traversal strategy to discover connected sets of loca-
tions above the threshold t for hotspot conversion.

In our approach, we relies on sampling and create a (n×
n) equidistant sample location matrix G within OA, where
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Fig. 5: An illustration of sample grid points over anOA. Red
points indicates value ≥ t, blue points indicates value < t.
Red cells indicates hotspots. dr is the distance between two
row and dc is distance between two column. The red cells
indicates hotspots and red points not in red cell are points
above t that are not part of any hotspot.

Algorithm 1: Grid Based Hotspot Discovery
Input : grid coordinate matrix G,threshold t,

point-wise function ψv

Output: A set of hotspot polygons F

1 Create empty Queue Q and empty hotspot polygon
list F ;

2 for location l ∈ G do
3 Initialize Connected Location list CP ;
4 if ψ(l) ≥ t and l is not visited then
5 Add l to Q;
6 end
7 while Q is not empty do
8 Target Location Tp = pop(Q);
9 Find four Neighbour Locations Np of Tp;

10 for each neighbour N ∈ Np do
11 if N ∈ G and ψ(l) ≥ t and N not visited

then
12 Add N to Q;
13 end
14 end
15 Mark Tp visited;
16 Add Tp to CP
17 end
18 Mark p visited;
19 Find list of cell Lc of G from CP ;
20 Calculate union polygon f from Lc;
21 Add f to F ;
22 end
23 return F

each location maintains a distance of dr in the row direction
and dc in the column direction with neighboring locations
(defined in the Definition 3.1). Next, for a variable v with
respective pointwise function ψv , we find all disjoint sets of
connected locations (defined in the Definition 3.2) within G,
where each location have pointwise function value ψv ≥ t.

Finally, from each connected set of locations (defined in the
Definition 3.3), we find all grid cells and return their union
polygon as hotspot polygon.

Definition 3.1. Neighbours: Two locations l1 and l2 in a
matrix of sample locations G are neighbours if, for a
distance threshold τ : distance(l1, l2) ≤ τ .

Definition 3.2. Connected Locations: For a variable v with
respective pointwise function ψv and a continuous vari-
able threshold t, two locations l1 and l2 in a matrix of
sample locations G are connected if:

• l1 and l2 are neighbours.
• ψv(l1) ≥ t and ψv(l2) ≥ t.

Definition 3.3. Connected Set of Locations are the transi-
tive closure of connected locations where for any two
locations l1 and ln within the set there exist a chain of
locations {l1, l2, ..., ln}, where li and li+1 are Connected
locations.

In this study, within the matrix G, for an index [i, j],
the connected locations (defined in the Definition 3.2) are
located at indexes [i+1, j], [i− 1, j], [i, j +1], and [i, j − 1].

Figure 5 illustrates our complete approach. In this figure
we have created a (10×10) sample location matrix from the
continuous part of USA, where two neighbouring locations
maintains dr distance for longitude and dc distance for
latitude. The red points indicates value of the point-wise
function ψv on that location is ≥ t and blue point indicates
ψv < t. Each red rectangles within the figure represents
a hotspot. In our approach, if all locations of a grid cell
is present in a connected set of locations it is included in
a hotspot. As a result some locations, such as location on
index (3,8) in Figure 5 is not part of any hotspot. This pro-
cedure maintains the shape of the hotspot to some extent.
Moreover, retaining solely the cells simplifies the generation
of hotspot polygons by obviating the need for employing
additional, intricate polygon generation mechanisms, such
as the convex hull. The detailed procedure of extracting such
hotspots are explained in the algorithm 1.

Algorithm 1 outlines the whole grid based hotspot dis-
covery procedure. From step 1 to 17, the algorithm finds a
set of connected locations above t using a queue Q. For each
connected locations list CP , the algorithm iterates through
all locations from the matrix G, adds a location to the Q
if the location is not visited and corresponding pointwise
function returns a value above t. Next, from line 7 to 14, it
iterates through all the neighbors of the location appended
in Q. In this continuous process, the algorithm extracts a
location from the Q, finds its neighbors, and appends each
neighbor to the Q if they are not previously visited and
pointwise function value is above t. As a result, after each
iteration, the Q grows if more neighbor locations above t are
available. When the Q is empty, a set of connected locations
is already added to CP . The neighbor locations indicate
the locations dr or dc distance away from the location.
In line 18 it marks the current traversed location visited
to avoid repeated checking, in case it is below t. Then,
the algorithm converts each set of connected location CP
into a polygon from lines 19 to 20 using a cell-to-polygon
conversion technique. The algorithm first finds all cells list
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(a) H(ψCovid−19 Infection Rate, 0.14). Area coverage is 90%.

(b) H(ψCovid−19 Infection Rate, 0.25).Area coverage is 25%.

Fig. 6: Hotspots using algorithm 1 for the variable Covid-19
Infection Rate with two different thresholds.

Lc, based on the condition that all four of the cell corners
need to be within the CP . A polygon f is then generated
using the cells within Lc at line 20. Finally, at line 21, the
generated polygon f is added to the hotspot polygon set F ,
and the set is returned as the output of the algorithm at line
23.

The figure 6 represents the hotspots for contiguous USA
for the COVID-19 Infection Rate variable. In Figure 6.a, the
threshold t = 0.14 is set too low, which results in the hotspot
covering almost the entire observation area. However, when
the threshold is increased to 0.25 as shown in Figure 6.b, the
area coverage decreases significantly (90% to 25%).

Numerous grid-based hotspot growing algorithms have
been proposed in the literature, including methods by
Akdag et al. [12], Deng et al. [13], Wang et al. [14], and
Darong et al. [15]. These methods typically operate on
density-based principles, expanding hotspots based on cells
with densities above a threshold. These cell density are
typically depends on counting the number of event locations
such as accident within each cell. It’s important to note that
these methods calculates cell density based on points that
lack associated values. In contrast, our approach centers
around pointwise functions that provide an associated value
for each location, which can itself be a representative of
density for a location. To better align with this characteristics
of our pointwise functions, we adopt a representative-based
approach. In this approach, we use only the four corner
points of a cell to determine whether it is dense, and then we
grow the hotspot accordingly. This approach is particularly
well-suited for our current study, as the point-wise functions
operate over polygons, and points within the same polygon
yield the same associated value.

3.1.1 Computational Complexity of Hotspot Discovery Pro-
cedure
During each iteration, the algorithm evaluates four neigh-
boring locations from N sample locations, where neigh-
bours are defined within a given matrix. Consequently, it
exhibits a worst-case time complexity of O(4 × N), accom-
panied by an additional space complexity of O(N).

The polygon generation process in Norma undertakes
a linear search to identify all hotspot cells, for N sample
locations within a connected set of locations. The total num-
ber of possible disconnected cells are ( ⌊

√
N⌋
2 )2, which, in the

worst-case scenario, simplifies to N
5 . This can be understood

using the Figure 5, if we consider a hotspot cell, surrounded
by not hotspot cells. This results in the complexity of O(N).

3.2 Hotspot Discovery in the Threshold Space
The hotspot discovery algorithm, delineated in Section 3.1,
can be further utilized to identify hotspots exceeding an
interestingness threshold of θ. In this revised search pro-
cedure, the geographic location matrix G will be substituted
with a sample threshold pair matrix, the location l will be
replaced by a threshold pair (t, t′) from that matrix, and the
pointwise function will be replaced by the interestingness
measure I . The threshold pair (t, t′) indicates a location
within the threshold space formed from domain(v), do-
main(v’). The definition of new neighbourhood is defined
based on the distance threshold pairs (∆t,∆t′), where any
point falls within the radius drawn by (∆t,∆t′) from the
point (t, t′) is the neighbour of (t, t′). The search procedure
has been formally defined in Equation 19.

Z = {(t, t′)|g(t, t′) ≥ θ} (19)

We can discover interesting hotspots above a certain
interestingness threshold-value θ from the interestingness
space abstracted by the function g(t, t′) in form of smaller,
disjoint polygons. Specifically, our objective is to iden-
tify a set of n non-overlapping hotspot polygons R =
{r1, r2, ..., rn} from the threshold space, where all threshold
pairs (t, t′) within a given hotspot polygon r ∈ R are
expected to generate interestingness values above a prede-
fined threshold θ, as formally defined by Equation 20.

∀t∀t′((inside((t, t′), r) → I((v t), (v′ t′)) ≥ θ)) (20)

In Equation 20, the inside function checks if a threshold
pair (t, t′) is inside polygon r.

Figure 7 depicts two examples of hotspot polygons
observed on a grid intersection points for CVT patterns
{(COVID-19 Infection Rate t),(Bachelor Degree Rate t’)} shown
in Figure 2.a.1 and {(COVID-19 Infection Rate t),(Median
Income t’)} shown in Figure 2.b.1, with θ ≥ 0.3. Figure 7.a
shows two separate polygons, while Figure 7.b shows only
one polygon above the interestingness threshold of 0.3,
which is consistent with the patterns shown in Figure 2.a.1
and Figure 2.b.1.

3.3 Implementation of Computational Methods to Mea-
sure CVT Association Relatedness
In this study, the computational approach for related metrics
has been deliberately kept straightforward, solely employ-
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(a) I({(COV ID − 19 Infection Rate, t)

(Bachelor Degree Rate, t′)}).

(b) I({(COV ID − 19 Infection Rate, t)(Median Income, t′)}).

Fig. 7: Hotspots polygons on the search space for patterns
illustrated in Figure 2.a.1 and Figure 2.b.1, with θ ≥ 0.3

ing a sampling technique. The implementation procedure
applied for each relatedness measure is discussed below:

Maximum CVT Association (MA) is identified based on
the peak value among N sample locations.

To compute AUC of CVT Association for a Variable
Pair, for computational efficiency, we approximated AUC
by calculating the average interestingness for n× n sample
thresholds, where n equidistant thresholds are sampled
from the interval [tlow, thigh] and another n equidistant
thresholds are sampled from the interval [t′low, t

′
high].

PIT can be implemented using the hotspot polygons
discussed in the Section 3.2 using the following equation:

PIT (θ) =

∑
r∈R area(r)

area(TS)
(21)

In Equation 21 PIT is defined as a function of θ that
measures what fraction hotspot set R covers within the
whole threshold space TS. Every hotspot in hotspot set R
is always above θ.

However we can further simplify the computation using
the following measure. Let, we have a set S of n thresholds
pair from variables v and v′. We define PIT as follows:

PIT (θ) =
Count({y|y = I({(v t), (v′ t′)}) ≥ θ ∧ (t, t′) ∈ S})

n
(22)

In Equation 22 we measure fraction of sample threshold
pairs that are above the threshold θ.

3.4 Computational Complexity of the Norma Frame-
work
Complexity of Agreement Calculation: Considering two

sets of hotspots, each containing n hotspots, where n << N ,
the intersection operation exhibits a worst-case complexity
of O(n2), while the union operation demonstrates a time
complexity of O(2n). Consequently, the comprehensive
complexity for agreement calculation aligns with O(n2). It
is pertinent to clarify that the inherent computational com-
plexity associated with polygonal intersection and union
operations is beyond the scope of this discussion and thus
is not explored in detail within this paper.

Complexity for CVT Patterns from a Variable Pair:
The collective complexity for a single pattern is encapsu-

lated as O(N)+O(N)+O(n2)) based on the complexity of
hotspot and agreement calculation. Considering n << N ,
the overarching computational complexity attains a linear
time order of O(N) and, while the space complexity is
represented as O(N).

When incorporating an additional N sample thresholds
for each variable pair, the computational complexity esca-
lates to O(N2).

4 CASE STUDY

In this section, we conduct experiments to investigate the
characteristics of CVT association patterns within variable
pairs and relatedness across variable pairs. Our objective is
to address the following questions:

• What knowledge CVT association analysis can ex-
tract that traditional methods like correlation analy-
sis ignores?

• How similar are the CVT association analysis mea-
sures to the traditional frameworks such as correla-
tion analysis?

• How CVT association analysis can be used to rank
associations among different variable pairs?

4.1 Dataset Description
This study gathered twenty county-level variables from the
John Hopkins Covid-19 data repository [16] and the New
York Times COVID-19 data repository [17]. The variables
from the John Hopkins dataset are, the percentage of the
population with a Bachelor’s Degree until 2018 (Bachelor
Degree Rate), daily precipitation and temperature in 2019,
population and household density compared to land area
in 2010, unemployment rate in 2018 (Unemployment Rate),
employment rates in various industries (agriculture, mining,
construction, manufacturing, trade, transportation, informa-
tion technology, fire services, and service providing) in 2018,
median household income in 2018 (Median Income), and
poverty rate in 2018 (Poverty Rate). Yearly average temper-
ature and precipitation were calculated from the daily data.
From the New York Times dataset, total COVID-19 cases
and deaths until April 2022 were obtained. The variables
COV ID − 19 Infection Rate and COV ID − 19 Death
Rate were computed by dividing the respective variables
using county-wise population. Despite the variables being
collected at different time-frames, they are assumed to rep-
resent the socio-economic and climatic conditions of specific
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Variable Mean Standard
Deviation

Minimum Maximum 25th
Percentile

50th
Percentile

75th
Percentile

COV ID − 19 Infection Rate 0.25 0.06 0.03 1 0.215 0.25 0.28
COV ID − 19 Death Rate 0.004 0.002 0 0.012 0.0026 0.0037 0.005
Average Temperature 54.35 9.22 34 78 47 55 62
Average Precipitation 3.18 1.32 0 6 2 3 4
Bachelor Degree Rate 21.08 9.42 0 78 15 19 25
Unemployment Rate 3.64 1.43 1 18 3 3 4
Poverty Rate 14.95 6.27 3 56 10.5 14 18
Median Income 50942.99 13416.07 22679 136191 42232 48711 56521.5
Government Employment Rate 5.02 3.07 0 32 3 4 6
Fire− service Employment Rate 4.1 1.9 0 21 3 4 5
Transportation Employment Rate 4.96 2 0 24 4 5 6
Technology Employment Rate 0.91 0.87 0 17 0 1 1
Service− provider Employment Rate 42.38 6.97 5 82 38 42 47

TABLE 1: County level variable value distribution

geographic regions and are unlikely to vary greatly over
a few years. Results from twelve variables among twenty
is presented in this paper, along with their higher-level
value distribution presented in Table 1. This will aid in
understanding the stands of different thresholds from each
CVT association in their respective value ranges.

4.2 Tools
Python is used for all implementation aspects related to
the Norma framework. The Shapely polygon library is
employed to manage spatial objects and compute spatial
area coverage, while the Geopandas library is used for the
visualization of shape objects. Additionally, the Scipy library
is leveraged to measure correlations. The entire framework,
encompassing both code and data, is publicly available at
https://github.com/mmahin/ThresholdOptimization.git.

4.3 Comparative Study of Binary Correlation and CVT
Association
4.3.1 Experimental Procedure
In this study, we conducted an analysis involving 190
variable pairs derived from twenty continuous variables.
To analyze patterns from each variable pair, we created a
maximum of 100 sample thresholds from each variable’s do-
main, resulting in maximum (100× 100) number of sample
thresholds for each variable pair. However, due to many
variables not having 100 unique thresholds, we restricted
the number of thresholds to the actual number of unique
values for those variables. Consequently, from 190 variable
pairs, we analyzed a total of 234,694 patterns.

Furthermore, to ensure the selection of interesting pat-
terns, we constrained the observation area coverage for each
variable to a range of at most 50% down to a minimum of
1% using parameters α = 0.5 and β = 0.01 as discussed in
Section 2.5.

In this study, we conducted analysis using both Equa-
tion 2, Equation 17 and reported a subset of the results in
Table 2. For each variable pair, we reported the Pearson
correlation in column 2, maximum CVT association MA
along with the respective thresholds in column 3 , to bet-
ter understand the support for each MA, we additionally
reported expected CVT association EI for the thresholds on
the maxima under the assumption of independence, along
with the area coverage for the hotspots in column 4 and Lift

for the maxima on column 5; additionally we reported area
under the curve (AUC) for CVT association in column 6
and maximum threshold correlation MaxTCorr along with
respective thresholds in column 7. MaxTCorr represents
the maximum threshold correlation among all threshold
correlation pattern within a variable pair. Furthermore, to
compare the measures, we ranked each of the four mea-
sures: Pearson correlation, MA, AUC, and MaxTCorr based
on their respective values among the 190 variable pairs, and
the rankings are presented along with the CVT pattern in
column 1.

4.3.2 Result Interpretation:

From Table 2, it is observable that CVT patterns pro-
vides a more detailed insights about relations among val-
ues within a variable pair. For example, based on Pear-
son correlation it can be interpreted that the variable
pair (Population Density,Household Density) has a very
strong positive linear relationship within the value domain.
However using CVT association we can further deduce re-
lations specific to spatial domain, such as amount of spatial
overlap for certain group of values. For example, based
on MA, this variable pair has maximum spatial overlap of
100% for values above thresholds (267,111). These relation
can be found even when correlation measure does not find
any apparent linear relation. For instance, for the vari-
able pairs (Average Precipitation,Household Density),
(Trade Employee Rate,Household Density), the correla-
tion measure is showing almost no apparent linear relation,
but CVT association measure have found strong overlap of
71% and 56% on the thresholds that generates maximum
CVT association.

We can further deduce how much these maxima de-
viates from any random settings using EI and Lift. For
example, {(Mining Employee Rate t),(COVID-19 InfectionRate
t)} has an expected EI of 0.17 resulting in a Lift of
1.8, almost twice than the random settings.The most high
Lift of 1189.8 is observed for the maxima of pattern
{(Population Density,Household Density)}, indicating
very high difference from a totally non-related, random
event. Additionally, we can say values above all presented
maxima’s are strongly associated as per discussion from
section 2.6.2 (I > EI and Lift > 1).

The AUC measure gives average association
strength based on all CVT association patterns
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Pattern and Ranking within 190 Variable Pairs
Rank Order:{Pearson Correlation, MA, AUC, MaxTCorr}

Pearson
Corre-
lation

MA on
(t,t’)

EI on MA
(area(H(v,t)),
area(H(v’,t’)))

Lift
on
MA

AUC MaxTCorr

{(Population Density t),(Household Density t′)}
Ranks:{190,190,190,190}

0.99 1 on (267,
111)

0.0008 (0.03,
0.03)

1189.8 0.38 0.99 on
(34, 21.3)

{(Average Precipitation t),(Household Density t′)}
Ranks:{122,189,172,9}

0.04 0.72 on (3,
4.3)

0.21 (0.41, 0.5) 3.5 0.14 0.04 on (3,
112)

{(Average Precipitation t),(Population Density t′)}
Ranks:{125,188,166,12}

0.04 0.71 on (3,
10.1)

0.21 (0.41, 0.5) 3.45 0.13 0.05 on (3,
237)

{(Manufacturing Employee Rate t),(PopulationDensity t′)}
Ranks:{67,187,113,42}

-0.08 0.64 on (6,
10.1)

0.25 (0.49, 0.5) 2.6 0.08 0.13 on
(21, 94)

{(Manufacturing Employee Rate t),(Household Density t′)}
Ranks:{69,186,121,30}

-0.07 0.64 on (6,
4.3)

0.25 (0.49, 0.5) 2.6 0.09 0.1 on (21,
108)

{(Trade Employee Rate t),(Household Density t′)}
Ranks:{81,183,138,65}

-0.04 0.56 on
(12, 4.3)

0.25 (0.5, 0.5) 2.22 0.1 0.18 on
(16, 77)

{(Poverty Rate t),{(COV ID − 19 Death Rate t)
Ranks:{184,182,181,93}

0.44 0.55 on
(12, 0.003)

0.27 (0.54, 0.5) 2.06 0.16 0.25 on
(12, 0.006)

{(Mining Employee Rate t),(COV ID−19 Infection Rate t)}
Ranks:{130,11,51,189}

0.06 0.17 on (2,
0.22)

0.09 (0.2, 0.48) 1.8 0.04 0.73 on (6,
0.31)

{(COV ID − 19 Death Rate t),(Population Density t)}
Ranks:{49,107,39,188}

-0.13 0.39 on
(0.003,
0.2)

0.25 (0.5, 0.5) 1.6 0.04 0.69 on
(0.005,
289.8)

TABLE 2: Two Threshold CVT association patterns {(v t), (v′ t′)} in normal and spatial settings, while area(H(v, t)) and
area(H(v′, t′)) is restricted between α = 0.5 and β = 0.01. Results are presented with Pearson correlation. Column 1
presents pattern name along with pattern ranking when all patterns are ranked based on the high to low values.

within a variable pair. For instance, the variable pair
(Population Density,Household Density) has an AUC
of 0.38, substantially higher than the 0.04 from the variable
pair (COV ID − 19 Death Rate, Population Density),
indicating stronger spatial association among all values
from the first pair.

Even in non-spatial environments, threshold correla-
tion is able to find strong linear relation within the
subset of values from the domain of two variables,
which is overlooked when correlation is computed us-
ing the whole domains. For instance, for variable pairs
(Mining Employee Rate, COV ID − 19 Infection Rate)
and (COV ID − 19 Death Rate, Population Density) ,
there is no apparent strong linear relationship. However,
threshold correlation have found strong subset level positive
linear relationship of 0.73 for values above the thresholds
6 for the variable Mining Employee Rate and 0.31 for
the variable COV ID − 19 Infection Rate from variable
pair (Mining Employee Rate, COV ID − 19 Infection
Rate). Similarly another strong subset level positive linear
relationship of 0.69 is found for values above the thresholds
0.005 for the variable COV ID − 19 Death Rate and 289.8
for the variable Population Density from variable pair
(COV ID − 19 Death Rate, Population Density).

Measure1, Measure 2 Spearman
rank cor-
relation

Significance

Pearson Correlation, MA 0.45 1.15e−10

Pearson Correlation, AUC 0.74 7.7e−35

Pearson Correlation, MaxTCorr 0.22 2e−3

MA, AUC 0.65 6.4e−24

MA, MaxTCorr 0.12 0.09
AUC, MaxTCorr 0.22 0.003

TABLE 3: Spearman Correlation Test among the four mea-
sures.

4.3.3 Rank Correlation:
To compare different measures we ranked 190
variables pairs based on four measures and found
dissimilarity in ranking. For example, the pattern
{(Mining Employee Rate t){(COV ID − 19 Infection
Rate t) ranked 130th for Pearson Correlation, 11th for MA,
51th for AUC , 189th MaxTCorr, as shown in column 1 of
the Table 2.

To further analyze relation among the association results
we have applied Spearman rank correlation test on the ranks
for 190 associated patterns.

Table 3 delineates the outcomes of the Spearman rank
correlation test among the four measures. Observably, all
measures exhibit positive correlations, with the majority
also demonstrating strong linear relationship. The correla-
tions range from a low of 0.12 to a high of 0.74, underscoring
that while there is some agreement in the rankings provided
by the measures, but they are not absolute. For example,
correlation of 0.74 among Pearson correlation and AUC
indicates both measures finds identical relationship with
some low disagreements. Given that even the highest cor-
relation does not approach perfect agreement (r = 1), and
considering the variations across different measure pairings,
we can infer that none of the measures render the others
redundant.

5 CONCLUSION

This research introduced ”Norma,” a novel framework
for association mining of continuous spatial variables.
The framework introduces a new type of spatial pattern,
Continuous Variable Threshold (CVT) pattern, which uti-
lizes point-wise functions and measures spatial association
among the values above two thresholds from two spatial
continuous variables. The framework proposes a grid-based
hotspot growing algorithm to find such association and
introduces three measures MA, AUC , PIT to measure
relatedness of variables based on mined CVT associations.
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Additionally, it provides extension of CVT association for
non-spatial environment. Furthermore, a case study demon-
strated the knowledge discovery capacity of CVT asso-
ciations by utilizing twenty county-level variables (span-
ning socio-economic, meteorological, and disease infection
parameters) across the contiguous United States. Findings
from the study reveal that CVT associations not only ex-
tracts more detailed summary of the relation among the
values of two continuous variables when contrasted with
traditional correlation measures but also offer a panoramic
view of spatial associations among all values from two
spatially continuous variables. This posits CVT association
analysis as a potent alternative to correlation within the geo-
spatial domain. Furthermore, another study involving rank
correlation indicates that while the measures derived from
CVT association analysis bear some similarities to those of
the correlation measure, they are not redundant.

6 FUTURE WORK

The current CVT association framework is analyzed based
on a single dataset with twenty variables, where the vari-
ables has values from polygons. On the other hand, most
variables do not have high number of unique values, lim-
iting the number of possible thresholds for the analysis.
As a result, in future to find effectiveness of the CVT
association framework, we need to analyze datasets that
requires different pointwise functions other than polygons
and where variables have large domain of values. Addition-
ally, in this study we have employed grid-based sampling
based techniques to compute CVT associations. However
this method might not be very accurate for variables with
very high number of thresholds. Consequently, we would
need to develop optimization procedure that can handles
very large number of thresholds. Moreover, we need to
apply CVT pattern analysis to more dataset to establish its
merit.
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