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Abstract

Identification of objects in fluorescence microscopy is a non-trivial task burdened by
parameter-sensitive algorithms, for which there is a clear need for an approach that
adapts dynamically to changing imaging conditions. Here, we introduce an adaptive
object detection method that, given a microscopy image and an image level label, uses
kurtosis-based matching of the distribution of the image differential to express operator
intent in terms of recall or precision. We show how a theoretical upper bound of the
statistical distance in feature space enables application of belief theory to obtain
statistical support for each detected object, capturing those aspects of the image that
support the label, and to what extent. We validate our method on 2 datasets :
distinguishing sub-diffraction limit caveolae and scaffold by stimulated emission
depletion (STED) super-resolution microscopy; and detecting amyloid-β deposits in
confocal microscopy retinal cross-sections of neuropathologically confirmed Alzheimer’s
disease donor tissue. Our results are consistent with biological ground truth and with
previous subcellular object classification results, and add insight into more nuanced
class transition dynamics. We illustrate the novel application of belief theory to object
detection in heterogeneous microscopy datasets and the quantification of conflict of
evidence in a joint belief function. By applying our method successfully to
diffraction-limited confocal imaging of tissue sections and super-resolution microscopy of
subcellular structures, we demonstrate multi-scale applicability.

Author summary

We introduce a novel method that is able to localize fluorescent labelled objects in
multi-scale 2D microscopy, and is robust to highly variable imaging conditons.
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Localized objects are then classified in a novel way using belief theory, requiring only
the image level label. Each object is assigned a ‘belief’ that describes how likely it is to
appear in an image with a given set of labels. We apply our method successfully to
identify amyloid-β deposits, associated with Alzheimer’s disease, and to discover
caveolae and their modular components in superresolution microscpy. We illustrate how
our approach allows the fusion or combination of models learned across markedly
different datasets. We show how we can compute the ‘conflict’, or disagreement between
the models, an insight that allows the domain expert to interpret the composite model.

Introduction 1

Fluorescence microscopy is a robust experimental tool for the study of biological 2

samples. Applications range from micrometer scale labelling of tissues to 3

super-resolution nanometer scale analysis of molecular components of cells [1]. These 4

analyses typically encompass multiple samples, diverse fluorescent markers (often 5

imaged in parallel in different fluorescent channels), and various microscopes and 6

operators. With experiments spanning multiple channels, datasets, operators, and 7

microscopes, there is a clear need for image analysis methods that adapt dynamically to 8

changing imaging conditions. 9

Given a set of microscopy images {I} from different groups (label L: e.g. normal, 10

control, treated, infected, mutation, wildtype): we identify the parts of the image that 11

show evidence for L, i.e. weakly supervised object detection (WSOD), and quantify the 12

confidence in the identification. 13

Unlike the classical WSOD problem statement where an object in nature is either, 14

say, a cat or horse, objects identified using SPECHT (Self-tuning Plausibility Based 15

Object Detection Enables Quantification of Conflict in Heterogeneous Multi-scale 16

Microscopy) can assign support for multiple labels to a single object. To overcome per 17

image variation in acquisition, we introduce an adaptive approach that detects objects 18

by thresholding the Laplacian of each image, using its kurtosis to ensure the threshold 19

scales with the distribution of each specific image. Using belief theory we then assign to 20

each identified object the support or numerical evidence it has for a set of labels, and 21

introduce how belief calculus can offer the user interpretable information on the conflict 22

and agreement of composite models learned on heterogeneous datasets. Here, we apply 23

SPECHT to two use cases of distinct scale, identification of intermediate stages in the 24

construction of more complex subcellular structures using super-resolution microscopy 25

and detection of a gradual pathology from fluorescent confocal images of tissue sections. 26

First, caveolae, subcellular structures composed of CAV1 protein complexes, are 27

∼100 nm invaginations in the cell membrane with a varied spectrum of functions [2]. 28

CAV1 forms non-caveolar scaffolds (SC), including 8S oligomers that combine to form 29

larger non-caveolar hemispherical scaffolds as well as caveolae [1,3–6]. In the absence of 30

CAVIN1, CAV1 forms non-caveolar scaffold structures that contain few CAV1 molecules 31

and those can only be distinguished from caveolae by super-resolution microscopy [1]. 32

Caveolae flattening functions as a membrane buffer, protecting cells from membrane 33

breakage in response to mechanical stress, and scaffolds have been shown to be 34

pro-metastatic in prostate cancer [7, 8]. In fixed cells, superresolution network analysis 35

identifies individual scaffolds into separate subtypes whose modular similarity suggests 36

that smaller scaffolds combine to form larger scaffolds and caveolae [1, 5]. This 37

represents an example of hierarchical modelling in cell biology in which a larger modular 38

protein structure is composed of smaller subunits, with both having distinct functions 39

and properties, e.g. the smaller structure(s) can exist as independent, functional 40

units [5]. We show that application of SPECHT to an alternate super-resolution 41

microscopy approach, STED [9], amenable to high speed live cell imaging [10], is 42
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capable of distinguishing these sub-diffraction limited sub-cellular structures. 43

Second, identification and quantification of amyloid-β (Aβ) deposits in the retina in 44

relation to Alzheimer disease (AD) is an open research problem [11]. In previous studies 45

using confocal microscopy on post-mortem donor tissues, retinal Aβ quantification was 46

performed manually by blinded raters [12] or semi-automatically with manual 47

segmentation [13]. The resulting measurement of retinal Aβ would be tested for its 48

relationship with age, AD neuropathology, retinal regions, and other measures of 49

interest. As the scarcity of postmortem retinal tissues from neuropathologically 50

confirmed AD donors often limits the size of such data, variability from acquisition and 51

manual raters can affect the quantification of retinal Aβ and pose a challenge to 52

achieving statistical significance. 53

Finally, when we present the detected and identified objects to the domain expert, 54

be they cell biologist or medical practitioner, we want to be able to report how ‘sure’ 55

our method is in its computation. With biomedical data typically scarce and acquired 56

with differently configured devices, we would like to have a method that can work across 57

these datasets, to maximize reuse and reproducibility. If models computed on different 58

dataset disagree in the identification of objects, we want to report a mathematically 59

grounded quantification of this disagreement or conflict. 60

Problem Statement We aim to model a function D that identifies subsets of 61

pixels (objects o) of the image and a function SL that assigns to each object the 62

statistical support, or evidence e, for the image label L. Statistical support is the 63

numerically quantified evidence distilled by a statistical (learning) method from feature 64

descriptors and their distribution. 65

D : I 7→ o | o ⊂ I. (1)

66

SL : (o→ L) 7→ e |e ∈ [0, 1], o ⊂ I, L ∈ L. (2)

The notation f: A 7→ B indicates that the function f has domain A and range B. In 67

the remainder of this work, we use the notation o→ L for the proposition that the 68

object o supports the label L, and SL = S(o→ L) is the function S assigning a 69

continuous (e ∈ [0, 1]) support value to the proposition in the context of belief 70

theory [14], a generalization of probability functions. In other words, if an object o has 71

high support for image label L, it can be considered likely or typical to appear in images 72

with label L. A ‘frame of discernment’ Θ = {o→ L |o ⊂ I, L ∈ L} is the set of all 73

sources of evidence for the image I and label-space L. Labels can be hierarchically 74

organized, for example where a the label disease further is specialized into specific 75

conditions, or sub-labels. An advantage of using belief theory to model this problem is 76

that it does not require each proposition to be a singleton. Belief theory allows us to 77

specify only the support we can compute. If we do not have measurable evidence to 78

compute the support an object has for a specific sub-label, then we do not need to assign 79

it an arbitrary evidence score, as long as we can assign some evidence to its superset. 80

This enables us to extend our model as more information becomes available, and lends 81

itself to hierarchical, modular, and nested labels. Given that our use cases have a nested 82

label space, this is a key advantage, yet with belief theory a superset encompassing 83

probability functions we do not lose functionality by selecting this framework. 84

Related work State-of-the-art methods tackling problems closest to our problem 85

statement are broadly divided into (i) joint segmentation and classification, (ii) 86

interpretable deep learning, (iii) multiple instance learning (MIL), and (iv) weakly 87

supervised object detection and localization (WSOD/L). However, each presents 88
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deficiencies with respect to application of the method across data sets as well as to 89

object classification. 90

Joint or hybrid segmentation and classification In joint or hybrid 91

segmentation and classification learning, the tasks of image classification and 92

segmentation at the same time higher accuracy can be obtained in the classification 93

task, while class specific priors can then be leveraged to improve segmentation [15]. 94

Similar approaches have been applied to chromosome microscopy [16], breast biopsy [17], 95

fundus images [18], and histopathology [19] to name a few. However, typically they 96

require object level annotations, which we do not have. In contrast with their object 97

level classification, we aim to capture a gradual transition between classes, e.g. discrete 98

versus continuous object level annotations. In addition, they do not always provide a 99

theoretical upper bound to the support assigned to each segment, meaning that in 100

principle the label assigned to the object can take on extreme values not warranted by 101

the data. It is unclear how to apply the same method across heterogeneous datasets, or 102

to quantify conflict between models learned from such datasets. 103

Explainable AI In explainable AI neural networks can, for example, produce the 104

regions of the image that provide the most decisive information supporting the 105

predicted image level label, are covered in more detail in recent reviews [20,21]. While 106

in such approaches the support each region has for a single label is found, it is not 107

optimized to split those regions into smaller distinct objects. In addition there are no 108

non-trivial (0,1) bounds on the support that each object is assigned, potentially leading 109

to high uncertainty. Filtering the attention maps [22] to obtain a more precise 110

delineation of which regions of an image support a label are one direction closing the 111

gap towards granular object detection folded into interpretable AI. Recent work adds 112

the computation of uncertainty to the ‘importance’ of features in interpretable AI [23], 113

however, the output for image features is still region based, rather than object based. 114

Multiple Instance Learning In MIL terminology, a label exists for a ‘bag’ of 115

instances. The ‘bag’ can refer to the image, where instances would be objects in the 116

image. The standard MIL model has it that all bags with label L− only contain 117

instances with label L−. Bags with label L+ contain instances with at least one 118

instance (‘witness’) with label L+. Alternatively, the MIL formulation can be adapted 119

to learn the distribution of labels over a bag [24]. MIL has been adopted successfully for 120

microscopy-specific tasks such as classifying and segmenting cells [25, 26] with recent 121

reviews [27,28] detailing the different approaches. We are not aware of MIL methods 122

that incorporate the explicit encoding of (conflicting) evidence and uncertainty in the 123

context of evidence theory, nor do MIL approaches feature a theoretical bound on the 124

support for each observed instance. 125

Weakly Supervised Object Detection and Localization A complete review 126

of WSOD/L methods has been presented recently [29], and is indicative by the sharp 127

rise in deep learning based WSOD/L approaches. However, subtle yet critical 128

differences are present between our problem statement and the problem statement 129

addressed in WSOD/L methods. Uncertainty, in our context, is interpreted as the 130

margin of error in assigning a certain support to an object. In WSOD/L the uncertainty 131

refers to the noise or variability induced by the human made image level label 132

annotation [29], domain shift, image noise, variability in object apperance, or imprecise 133

localization annotations (e.g. size of enclosing bounding box). In our use case we have 134

no ground truth localizations or bounding boxes to compare against. Deep learning 135

based WSOD/L methods can be sensitive to small dataset sizes with long tail 136
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distributions, which, unfortunately, matches our datasets and is common in biomedical 137

data for scientific discovery. We do have the advantage of leveraging acquistion specific 138

information to inform the object detection stage. WSOD/L methods do, to the best of 139

our knowledge, not quantify or report the evidence based on object features in the end 140

results, nor do they feature joint models across heterogeneous datasets, which we 141

require. Interestingly, it has been suggested that such refining of evidence is a key 142

attribute of biological vision systems [30], and likely to drive adoption towards 143

reinforcement learning based methods for WSOD/L. 144

Proposed Contribution We introduce here SPECHT for object detection and 145

evidence-based object labelling. SPECHT involves two stages: 146

• Adaptive and self-tuning object detection using the kurtosis of the Laplacian to 147

match distributions across channels for fluorescence microscopy. 148

• Belief theory-based labelling to quantify the non-crisp evidence each identified 149

object has for a set of image-level labels. 150

Use of kurtosis enables estimation of algorithm-specific parameters consistently across 151

heterogeneous data in the absence of object-level annotation, providing a novel, 152

self-tuning, and robust framework for analyzing images. The class of problems we 153

address here is identification of fluorescently labeled structures from background and 154

fuzzy classification of these structures from each other. The algorithm is illustrated in 155

Fig. 1-A. We use SPECHT to, first, identify and distinguish sub-diffraction limit (<100 156

nm diameter) caveolin-1 (CAV1) domains using STED [9] super-resolution microscopy. 157

Next, we show that SPECHT can automatically distinguish amyloid-deposits 158

characteristic of Alzheimer disease in retinal scans. Distinctive retinal amyloid deposits 159

are associated with Alzheimer disease, however, their identification requires expert 160

analysis [11]. These two use cases demonstrate the ability of SPECHT to provide 161

adaptive object detection and classification to multi-scale fluorescent microscopy data 162

sets. The kurtosis scaling and belief theory based object identification are not restricted 163

to microscopy use cases, or to the features we use. To the best of our knowledge we are 164

the first to employ belief theory based object identification for WSOD/L, enabling the 165

usage of belief calculus for more general applications, as well as leveraging it to span 166

heterogeneous datasets. By separating the object detection stage from the identification 167

and labelling, we ensure that our approach will detect objects that have no or weak 168

discriminative information for an image level label. This capability is important because 169

it enables a more comprehensive quantitative analysis of images by recording both rare, 170

common, unique, and distinguishing objects in a variety of images. Learning to 171

distinguish common objects in sets of images allows our models to learn to identify 172

those in new data where exactly those objects are altered by disease, dysfunction, or 173

genomic modification. Without decoupling the object detection stage, we would run the 174

risk of overfitting a learned model only on discriminative information in the current set 175

of images. The unbiased identification also enables frequency analyis, where we measure 176

the change in frequency of ‘discriminative’ objects with respect to ‘common’, rather 177

than being bound to counting of discriminitative objects alone. 178
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Fig 1. SPECHT algorithm. Adaptive identification of subcellular structures in
superresolution microscopy in tandem with belief based labelling of each object’s
support for the cell level genotype. Each image can have a set of labels, SPECHT then
computes for each identified object o the support it has per individual label.

Method 179

In this section, we outline the design of our proposed method. To help the reader 180

unfamiliar with some of the domain specific terms we have 3 glossaries of imaging ( S1. 181

Table), belief theory (S2. Table), and biology ( S3. Table) related terms to help 182

understanding of the contribution and ensure terms are unambiguously defined. 183

Adaptive kurtosis aligned object detection 184

Object detection principle 185

While simple manual thresholding can balance a trade-off between precision and recall, 186

finding the same consistent balance across images, channels, and datasets using manual 187

thresholding requires a per-image threshold and is sensitive to operator variance. The 188

image Laplacian ∇2, a measure of the second derivative of the image intensity, can be 189

used to detect edges of objects wherever ∇2 changes sign. In 2D microscopy images of 190

3D fluorescent deposits, we can leverage that connected components of V = |min(∇2, 0)| 191

(Alg. 1, line 5) coincide with the approximate outline of the objects, since the intensity 192

curve of such observations is bell-shaped (Fig. 2) when the fluorescent marker is 193

labelling complex spherical structures with a non-constant height. 194

Non-specific binding can, given its tendency to self-organise [31] in concentrations of 195

fluorescent label, can have a similar intensity profile. More formally, the domain, use 196

case, and acquisition allow us to state that the intensity profile for a single object can 197

be approximated by a generalized normal distribution with probability density function 198

β
2αΓβ−1 e

− |x−µ|
α

β

with scale α, location µ, the gamma function Γ, and 1 ≤ β ≤ 3. We 199

apply a 2-stage Gaussian (Alg. 1-line 4) smoothing before and after V to ensure 200

pixellation effects are minimized, with σ set at or below the precision of the system. 201

This is related to the Laplacian of Gaussian (LoG) approach, underlying ‘blob’ 202

detection in, for example, ‘scale-space’ object detection [32]. However, in the classical 203

computer vision formulation of ‘blob’ detection, the object representation is assumed to 204

have a constant or similar representation, not bell-shaped as is the case in our 205

fluorescent microscopy use cases. The 2nd σ is used to smooth rectilinear effects by the 206

Laplacian operator. The first can be omitted when the acquisition microscopy has a 207

specialized deconvolution operator tuned to the imaging point spread function. 208
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Object detection by thresholding Laplacian of Gaussian
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Fig 2. Object detection principle.The negative Laplacian (A.3-V, B.1)) can be
leveraged to detect Gaussian 2D observations of 3D fluorescent objects. Thresholding V
is a balance between high precision (B.2) and high recall (B.3)
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Self-tuning adaptive object detection 209

Given an object detector that gives a higher response with respect to the location of the 210

object, we need to threshold the response to obtain a binary mask serving as object 211

detection. To unburden the practitioner and improve reproducibility as well as 212

consistency across images and channels, a self-tuning approach is needed. The 213

practitioner can be given the option to express their intent in favoring precision or recall 214

(Fig. 3) , in terms of object retrieval, and expect to have that intent translated 215

consistently across heterogeneous datasets into corresponding values in the parameter 216

space of the object detection method. 217

In order to express user intent consistently, we have to find a way to translate 218

parameters across distributions of V -space (negative Laplacian). We observe that an 219

image with a few bright objects will have a long-tailed distribution in V -space, whereas 220

an image with a high frequency of faint objects will have a short-tailed distribution in 221

V -space (Fig. 3 red, green, respectively). The kurtosis of a distribution is a scalar value 222

increasing with the ‘tailedness’ of the distribution. We illustrate this by means of in 223

silico data (Fig. 3), where the threshold in kurtosis space scales with the shape of the 224

two different distributions (Fig. 3-C.2-green versus red). An increase in frequency of 225

objects in an image will lead to higher V values, an with them a change in the 226

tailedness of the distribution. Conversely, a decrease will lead to a less tailed 227

distribution, given that most V values are due to the image background. If we can find 228

a thresholding method that adapts to the tailedness of the distribution of V, then we 229

are more likely to obtain consistent across images. We next use these insights to 230

normalize V to ZV = | Vi−E(V )√
Var(V )

| ∀ Vi and then obtain an estimate E′
z ∼ E[Z] (the 231

expected z-score), as a consistent threshold, that can be scaled up or down 232

automatically across images. While we can compute E[Z] =
∫
zf(z)dz, this entails that 233

we have a probability density function, which in practice involves fitting a parametric 234

function, a process that is non-trivial to do consistently across datasets, and unless 235

corrected will have a larger error at the tails of the distribution. Due to inaccurate 236

estimation we can end up with estimates that for one image underestimate E[Z], yet for 237

another overestimate. We then have results that vary per image in precision and recall, 238

rather than being consistent in their results. If we aim for a lower bound on E[Z] then 239

we maximize consistency. If a preference for precision over recall is preferred, one can 240

weight the lower bound, while retaining consistency across images. We can derive such a 241

strict lower bound by noting that kurtosis(V ) = E[Z4
V ] [33]. By a special case of the 242

Cauchy-Schwartz inequality, we know that 243

∀xi ∈ R+
n∑

i=1

x2
i ≤ (

n∑
i=1

xi)
2 ≤ n ∗

n∑
i=1

x2
i if n <∞ (3)

from which it then follows that
n∑

i=1

Z4
i ≤ (

n∑
i=1

Zi)
4. We can then derive: 244

4
√

k(X) ≤ E(Z). (4)

We now have a lower bound approximation E′
z to E(Z) that allows us to express a 245

threshold on the normalized Laplacian that scales with the shape of the distribution of 246

the negative second derivative of the image, producing consistent results across images, 247

channels and datasets. We use the ‘excess’ kurtosis (k-3) in our implementation. 248

Moreover, by weighting the kurtosis, we can allow the user to alter the threshold in a 249

distribution-aligned space. We scale the outcome by a floating point parameter 250

‘precision-recall (PRC)’ to fulfill our aim of an intent-based self-tuning and adaptive 251

method. A value PRC > 1 leads to a distribution-aligned object extraction that favours 252
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A.1 Intensity A.2 |min(V, 0)|

B.1 Intensity B.2 |min(V, 0)|

C.1 C.2 C.3

Fig 3. Adaptive thresholding. Kurtosis based thresholding illustrated on two in

silico images. A: N=35, σ = 10+5×rand()
3 , B: N=12, σ = 15+5×rand()

1 , sources randomly
placed, with isotropic PSF. A.2 and B.2 show the negative Laplacian, and illustrate how
it is less susceptible to intensity differences. C.1: The intensity distribution of both
images. C.2: The distribution of the Laplacian of both images. C.3: The automatically
derived threshold based on kurtosis can be scaled in favor of precision (PRC < 1) or
recall (PRC > 1). The plot shows how kurtosis space thresholding follows the different
shapes of the distributions.
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recall, PRC ≤ 1 favours precision. Fig. 3 illustrates the scaling effect on in silico 253

distributions. However, our results illustrate the need for an auto-tuning approach 254

where the object detection method retrieves objects consistent with the end-user intent 255

by aligning the distributions of image differentials. 256

We note that even though we apply the kurtosis scaling on the negative Laplacian, 257

there are no constraints to extending this approach to multinomial distributions of 258

arbitrary features, as long as those have finite moments. Computing kurtosis is 259

non-parametric, e.g. does not expect a certain family of distribution, hence easily 260

generalizes to new applications. 261

Finally, we binarize the image where a pixel is 1 if and only if the corresponding 262

negative laplacian exceeds the dynamic threshold. The binarized image is then 263

decomposed by using the connected components algorithm treating the 2D image as a 264

graph. The complete algorithm to detect objects from a heterogeneous set of images is 265

listed in Alg. 1.

Algorithm 1 Adaptive kurtosis-based self-tuning object detection

1: Input Set 2D images I, parameter σ1, σ2, precision-recall ratio (PRC))
2: Output Binary object masks M
3: for Ij ∈ I do
4: ∇2

j ← Gaussianσ1
(Laplacian(Gaussianσ2

(Ij))

5: Vj ← |min(∇2
j , 0)|

6: kj ← E
(

Vj−µVj

σVj

)4

▷ Kurtosis, 4th moment

7: zj ← 4
√

kj ▷ Adaptive consistency across channels

8: Vj [Vj ≤ µg(Vj) ∗ σg(Vj)
zj

PRC ]← 0 ▷ Eq. 4
9: Mj ← connectedcomponents(Vj)

10: end for

266

Probabilistic object labelling using belief functions. 267

The previous section gives us a function D (Eq. 1) that decomposes an image I with 268

label L into objects o. Here we aim to find a function S (Eq. 2) that quantifies the 269

evidence for the proposition o→ L for each object. 270

Computing support for an image level label using belief theory 271

We model the problem of finding S for a label L ∈ L and image I: 272

SL : (o→ L) 7→ (p, q, r) |{o 7→ L} ⊂ Θ, o ⊂ I, p, q, r ∈ [0, 1]. (5)

The triplet (p, q, r) follows the notation of Dempster [34] where p expresses the belief 273

supported by probabilistic evidence that o supports the label L. q is the belief o does 274

not support L. r is the uncertainty in measuring the respective beliefs. More formally a 275

belief function on a set of propositions Θ is a function Bel : 2Θ 7→ [0, 1] such that 276

Bel(Θ) = 1, Bel(∅) = 0, and Bel

(
n⋃

i=1

Ai

)
≥

∑
I⊂{1,..,n}∧I ̸=∅

(−1)|N |+1Bel(Ai) ∀Ai ⊂ Θ. 277

Evidence can be encoded by a mass function m(A)→ [0, 1]|A ⊂ Θ, where subsets A 278

are referred to as ‘focal elements’, such that
∑

A⊂Θ

m(A) = 1. Probability functions and 279

probabilities in Bayesian inference are a special case of belief functions where all focal 280

elements are singletons. Unlike probability functions, for general belief functions 281

Bel(A) ̸= 1− Bel(A). The ‘plausibility’ function is defined as Pl(A) = 1− Bel(A), and 282

February 13, 2022 10/32



Pl(A) ≥ Bel(A)∀A ⊂ Θ. In the (p, q, r) notation, we have that 283

p = Bel(A), q = Bel(A), r = Pl(A)− Bel(A). The reader can find a graphical 284

illustration in Fig. 4. For a more in-depth review of belief theory, we refer the interested 285

reader to Yager et al. [35].

Statistical Support

Uncertainty
Plausibility
Belief

A.1
0 1

A.2

A.3 Weak evidence, maximum certainty

A.5 Strong evidence, medium certainty

A.4 Strong evidence, high certainty

A.6 No evidence, maximum uncertainty, 'ignorance'

Plausibilty and belief are each others complement

Fig 4. Belief theory. Graphical illustration of the concept of plausibility, belief, and
uncertainty in the context of belief theory and as used in the remainder of this
manuscript. A.2: Plausibility and belief can be expressed as the complement of their
respective support. A trivial, or naive, model has a plausibility of 1, belief 0, and
uncertainty 1. A3-6: Illustrates the flexibility of belief theory based modelling. Weak,
but certain evidence (A.3) occurs when belief and plausibility are equal, yet small.
Conversely strong evidence can be certain (A.5), but does not need to be (A.4). Finally,
absence of quantifiable evidence is mapped to ‘ignorance’, maximal uncertainty, where
belief is 0, plausibility1.

286

Encoding evidence 287

Given a set of images J with label LJ , and a set of images I, we want to identify objects 288

in the images and assign to each object o a tuple (p, q, r) expressing the belief, 289

plausibility and uncertainty of the proposition o→ LJ for objects in images in I. We 290

illustrate in the results section that our method can be applied to distinguish objects 291

from a nested hierarchy LJ ⊂ LB ⊂ LA. In Alg. 2, we illustrate the steps we undertake 292

to arrive at a belief based labelling of objects in images. The sets of images J and I can 293

originate from different channels. The adaptive object detection stage ensures consistent 294

results regardless of channel. After object detection (Alg. 1), we compute a feature 295

descriptor for each object; in our experiments: intensity (sum), area (pixels) and 296
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Laplacian (V , sum), a simple, low-dimensional, with non-independent features. We next 297

compute the statistical distance of any object o to the distribution of objects in images 298

J in feature space using the Mahalanobis distance (Alg. 2-line 11) which accounts for 299

co-dependent dimensions. The Mahalanobis distance range ([0,∞)) is not interpretable 300

as a mass function. 301

Inferring plausibility 302

We want to be able to quantify both relative support and support for an individual 303

label. Since the Mahalanobis distance has a range [0, ∞), we normalize the statistical 304

distance (Alg. 2, line-13) so we can leverage Cantelli’s theorem [36] 305

Pr[Zi ≥ z] ≤ 1

1 + z2
(6)

to assign a theoretical upper limit to the probability that the object in question 306

supports a label, which then becomes the plausibility qj = Pl(o→ LJ) ≥ Bel(o→ LJ). 307

From belief theory [34], we know that Bel(A) = 1− Pl(A). For o ⊂ I we can formulate 308

pi = Bel(o→ LJ) = 1− qj . When we swap I and J, we can obtain qi and pj , giving us 309

ri = qi − pi and rj = qj − pj . Fig. 7-C illustrates the application of belief theory based 310

labelling on object detection and the interplay between belief and plausibility (Fig. 4-A). 311

The resulting support function has no limiting specific priors or assumptions, is 312

continuous, has a theoretical upper bound, and requires no supervised training data. 313

When we are interested in relative support, comparing support for L1 versus L2, the 314

statistical distance can be sufficient without normalization. However, normalization 315

allows us to compute plausibility and support for individual labels. Fig. 4-A1-6 provides 316

a graphical illustration of the flexibility of the belief theory framework, and can help the 317

reader understand the definitions of ‘uncertainty’, strong versus weak ‘evidence’, and 318

‘ignorance’ or absence of information. 319

Algorithm 2 Probabilistic labelling algorithm

1: Input Images J with label LJ , Images I
2: Output PlI , plausibility labelled objects for I
3: MI ← objectdetect(I, σ1, σ2, PRC) ▷ Alg. 1
4: MJ ← objectdetect(J, σ1, σ2, PRC) ▷ Adapts to channel
5: FJ ← {features(oji) | oji ∈MJ [j], j ∈ [1, |J|]}
6: µJ ← E(FJ), ΣJ ← Cov(FJ)
7: D ← [ ]
8: for Ij ∈ I do
9: for ok ∈Mi[j] do

10: xk ← features(ok)

11: Dj [k]←
√
(x⃗k − µ⃗J)TΣ

−1
J (x⃗k − µ⃗J) ▷ Mahalanobis

12: end for
13: Zj ← Dj−E(Dj)√

Var(Dj)
▷ Z-normalization

14: for ok ∈Mi[j] do
15: Pl[ok → LJ ]← 1

1+Zj [k]2
▷ Eq. 6

16: end for
17: end for

Next we apply our method to 2 use cases. First, we show how to apply our method 320

on a hierarchical problem formulation where we differentiate between 3 nested labels 321

{o ∈ LCAV 1KO} ⊂ {o ∈ LPC3} ⊂ {o ∈ LPC3−CAV IN1} where a subset label is more 322
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specific as illustrated in Fig. 7-B). We validate our results with independent biological 323

ground truth and previous art. We offer a parameter sensitivity study to quantify 324

robustness. Second, we illustrate how to extend our method across heterogeneous small 325

datasets and compute a joint belief function while quantifying the conflict between the 326

composite belief functions. While belief theory based combination has been used for 327

histopathology classification [37], our usage for individual object detection in 328

microscopy is to the best of our knowledge novel. 329

Using belief calculus to express joint models spanning heterogeneous data 330

Especially in the case of human tissue data of patients, data is sparse and usually 331

acquired by different institutions, with operators, acquisition, and protocols varying. 332

Using a single sparse dataset degrades statistical power. Here we show how a 333

practitioner can leverage belief calculus to compute an interpretable joint model over 334

such datasets. We use Dempster’s combination rule [38]: 335

m(A) =

∑
m1(B)m2(C)|B ∩ C = A∑
m1(B)m2(C)|B ∩ C ̸= ∅

, |A ⊂ Θ. (7)

to define a joint belief function that combines the evidence from both sources to support
a proposition A (o→ L), while allowing the expression of the disagreement. Dempster’s
rule uses probability mass functions, which we can obtain from our belief functions by
observing that our propositions (o→ L) are singleton focal elements, therefore in our
case Bel(A) = m(A) (m(A) =

∑
B⊆A

(−1)|A\B|Bel(B)). We enumerate in Table 1 the

intermediate results needed to compute the joint mass function for our use case. Let for

B ∩ C → [0, 1] mH1(A) = t mH1(A) = 1− t

mH2(A) = s A → ts ∅ → s(1− t)

mH2(A) = 1− s ∅ → (1− s)t A → (1− s)(1− t)

Table 1. Dempster combination enabling the expression of a joint model. A,B,C ⊂ Θ

a proposition A = (o→ L) the probability mass mH1(A) = t and mH2(A) = s
respectively. The table is indexed by subsets of all propositions (Θ) on which the belief
functions are defined. An entry in the table on row B, column C represents
mH1

(B ∩ C) ∗mH2
(B ∩ C). The joint mass function mH′(A) is then given by:

mH′(A) =
ts

1− ((1− s)t+ (1− t)s))
.

(8)

Combining sources of evidence should be accompanied by a quantification of their 336

disagreement or conflict to allow a practitioner transparency in the construction and 337

usage of the joint model. The weight (W) of conflict of the joint mass function, an 338

expression of the disagreement between the two models, is given by the logarithm of the 339

normalisation term W = − log(1− ((1− s)t+ (1− t)s))). Combination is not 340

meaningful when both sources are in complete contradiction, that is 341

(t, s) = (0, 1) ∨ (1, 0). In such cases, W is infinite, allowing the practitioner a sanity 342

check for combination. By formulation of a closed form expression for the joint model, 343

allows us to span heterogeneous data. Using Dempster’s combination rule to combine 344

models has been shown to be a robust method to combine multiple heterogeneous 345

object detector models on natural images (‘Dynamic Belief Fusion’) [39], where it 346

outperformed both Bayesian fusion and weighted sum approaches. In addition, the 347

application was detection of discrete classes of objects in a supervised setting, e.g. 348
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detecting a ’chair’ in a natural image. More importantly, the computation and reporting 349

of conflict was not leveraged, as is the application across heterogeneous datasets. These 350

are an important distinctions with respect to applications in microscopy, where object 351

types are fuzzy or continuous, and heterogeneous data adds further complexity to the 352

fusing of models, as well as necessitating the reporting of conflict to the end user. 353

In the following section, we will apply our method to two distinct use cases to 354

illustrate more advanced usage, in addition to validating the method. 355

Results 356

Next, we evaluate SPECHT on in silico, and real world data. The full description of the 357

real world datasets used in this section is listed in the Appendix (Sec. S5 Text). Each 358

subsection has a detailed breakdown of dataset structure, as this differs per use case. 359

The use cases share that each is composed of 2D image / label pairs, where each image 360

is a 2D observation of 3D fluorescent labelling. 361

Evaluation of object detection on in silico data 362

363

Consistency across datasets 364

In order for the belief labelling stage to function with minimal bias, it is critical that 365

the object detection stage performs consistent, and predictable across datasets. It is 366

indeed possible to design or train a method to perform optimal on a single chosen 367

dataset, but compromise performance to an unknown extent on future datasets. A 368

major source of variance across datasets, in fluorescence microscopy, is the distribution 369

in size and brightness of labelled objects. Variance of fluorescence is not only a common 370

obstacle across datasets, but also appears in multiple channel analysis, given that two 371

fluorescently marked targets are rarely exhibiting the same distribution, even in the 372

same cell. We need this consistency, given that we have high variance both across cells 373

and channels, in our real world datasets. We simulate images of 512 × 512 pixels, with 374

a Gaussian and Poisson noise model [40] of respectively σ and λ set to 0.062 (in 8-bit 375

grayscale). In each image, k bright and j dim objects are randomly placed, where k 376

∈ [1, 25, 50], and j ∈ [50, 25, 1]. Bright objects are modelled with a Gaussian PSF 377

(σ = 3), whereas dim objects have σ = 6 and with their intensity reduced by a factor of 378

4. For our specific use case, where no ground truth is available and little domain 379

knowledge can be exploited, we compare against 2 tried and true approaches: automatic 380

scale space detection [32,41], and Otsu thresholding [42]. More advanced object 381

detection methods have become available for fluorescence microcoscopy [43,44], but 382

these invariably require parameters related to the objects of interest, e.g. scale range. In 383

our use case we do not have that information, and estimating it would risk propagating 384

size-based biased information to the belief based labelling. The scale space algorithm is 385

pre-configured with the range of σ’s of objects to detect, which in our real data is not 386

available. In addition, the output of the scale space detection is filtered by an 387

Otsu-filtering stage to remove false positives. SPECHT’s PRC is set to 2, with σ set to 388

the PSF σ. Figure 5 illustrates the results. Objects are considered correctly 389

reconstructed when the detected object overlaps with the ground truth (green). False 390

positives are marked in red. False negatives in blue. Under these varying conditions, 391

SPECHT is not always optimal (middle row, Otsu), but is very consistent in object 392

retrieval. In contrast, the two reference methods can be optimal for a given distribution, 393

but vary markedly. If domain specific information is available, or ground truth data, 394
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more targeted object detection stages can be used in place of our adaptive method. 395

However, reliance on a consistent, adaptive object detection stage provides the 396

capability to obtain similar results on future unseen datasets, without having to worry 397

about potential parameter sensitive bias.
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Fig 5. Consistency compared to existing methods. We simulate 3 markedly
different in silico scenarios where light sources are either dominated by bright, dim, or
are a mixture of both. Note that SPECHT is not always optimal, but does produce
consistent results accross these variable conditions.

398

399

Robustness to noise 400

Noise from different sources in unavoidable in fluoresonce microscopy data. The 401

Laplacian operator is sensitive to noise. The classical sequence of 402

Gaussian-Laplacian-Gaussian mitigates noise amplification by smoothing. However, at 403

severe noise levels the smoothing step itself can introduce artifacts, that then lead to 404

false positives or skew the Laplacian operator output. By pruning SPECHT’s output 405

with a local maxima heuristic, we can mitigate introduction of false positives. Recovery 406

of signal that is below background noise is infeasible. To measure the effectiveness of 407

our algorithm under increasingly noisy conditions, we simulated a mixture of bright and 408

dim light sources (Gaussian PSF), then added both Gaussian and Poisson noise. In 409

Figure 6 we see that at severe levels of noise (σ = λ = 96/255, or 0.37 in 8 bit grayscale 410

images), SPECHT starts to introduce false negatives and omit faint light sources. 411

However, note that even at intermediate values (σ = λ = 64/255), recovery of faint 412

objects is not compromised. Robust object detect is highly relevant to our application, 413

given that fluorescence labelling can vary across targets, channels, and datasets. In ideal 414
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settings, one would preprocess data with specifically developed denoising algorithms, 415

but it is nonetheless important to measure SPECHT’s sensitivity to low signal-to-noise 416

ratios (SNR). 417

λ  = σ = 16/255 λ  = σ = 32/255 λ  = σ = 64/255 λ  = σ = 96/255

Fasle Psotive
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S
P

E
C

H
T

R
aw

 N
oi

sy
 I

m
ag

e

True Positive (object correctly localized)

Fig 6. Sensitivity to noise. SNR decreases rapidly as the parameters of both noise
sources (Gaussian, Poisson) are increased, yet SPECHT’s recovery of faint objects
remains stable under moderate noise conditions. At severe noise levels, as is expected,
artifacts appear, while sources with intensity lower than background intensity can no
longer be recovered.

Capturing the gradual construction of complex protein 418

structures in STED 419

CAV1-labelled fluorescent deposits are identified in STED microscopy images and 420

assigned a belief label describing where the identified concentration is on the spectrum 421

between non-specific background labelling (BG, Fig. 7-C), scaffolds (SC), or caveolae 422

(C). BG deposits are fluorescent markers not associated with their biological target 423

CAV1 molecules. BG can be considered background signal, but is differing from signal 424

perturbing noise. BG fluorescent marker can have remarkable self-organising properties 425

similar to free floating proteins [31]. Identifying BG allows us to exclude it from our 426

biological targets. We study 3 cell lines: CAV1 CRISPR/Cas KO MDA-MB-231 cells 427

with genetically disabled expression of CAV1, PC3 with genetically disabled expression 428

of CAVIN1, and PC3-CAVIN1 with CAVIN1 and CAV1 enabled [45]. In CAV1 KO we 429

can only observe BG, in PC3 only SC and BG, in PC3-CAVIN1 the SC, BG and C are 430

present (Fig. 7-B). Our label space L is then {BG, SC, C}, with subsets PC3={BG,C} 431

and PC3-CAVIN1=PC3 ∪ {C}. 432

Experimental procedure 433

We detect fluorescent deposits (Alg. 1) in CAV1 KO and PC3 cell images and apply 434

the belief function labelling (Alg. 2) to obtain qx = Pl(o→ Lx) and 435

px = Bel(o→ Lx) = 1− qx, where x is BG, PC3 respectively. Next, we process 436

superresolution images of fluorescence labelled CAV1 deposits in PC3-CAVIN1 437

(shorthand P3) cells. PC3 cells contain both BG and SC objects, or more formally 438

qPC3 = qSC + qBG, therefore qSC = max(qPC3 − qBG, 0). The max formulation ensures 439

the correct assignment to 0 plausibility when for outlier objects qPC3 < qBG. The 440

subtraction of plausibility functions represents the elimination of the maximum support 441
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Fig 7. Visualization of results on CAV1 datasets. A: Object detection results on
the 3 cell lines with a markedly different intensity profile. B.1: A Venn diagram
illustrating how we differentiate between different genotypes. B.2 SPECHT labelling
function assigning each object 3 values representing the belief that the object is evidence
for either of the 3 object types. C: Illustration of the results on a PC3-CAVIN1 cell.
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of a subset (BG) from a superset (PC3) to correctly bracket the maximum support of 442

the subset SC = PC3 \ BG. 443

We know that objects unique to PC3-CAVIN1 cells are (formations of) caveolae (C), 444

therefore pC = Bel(oP3 → LC) = Bel(oP3 → LBG) ∧ Bel(oP3 → LSC) = pBG ∗ pSC. We 445

visualise the results for a single PC3-CAVIN1 cell in Fig. 7-C where blue, green, and red 446

gradients correspond with qBG, qSC and pP3, respectively. From visual inspection, we 447

see correlation of colocalized CAVIN1 with objects labelled with a high pP3 value, as 448

expected (Fig. 7-C.3.a, d). More interestingly, we can now identify objects that are 449

transitioning between SC and C (Fig. 7-C.3.c). To confirm this, we next perform 450

extensive validation. 451

Validation 452

Given that there is no object-level ground truth available, a direct evaluation is 453

impossible, nor is there to the best of our knowledge a method that discriminates 454

between caveolae and scaffolds in 2D STED. Therefore, the only feasible validation is 455

using previous work on caveolae detection in dSTORM, and colocalization of CAVIN1, 456

essential for formation of caveolae, two independent sources of information, not 457

leveraged during the design of the method. First, we know from previous art that the 458

frequency of caveolae in the PC3-CAVIN1 cell line has been reported at ∼20% [5], when 459

compared to other CAV1 structures. SPECHT computes a belief (pC) for each detected 460

object that it likely caveolae. In Fig. 8-A, we show the cumulative distribution function 461

(cdf) of that belief function. We observe a tri-modal distribution, as expected for each of 462

the 3 labels (C, SC, BG). The label distribution shows a long left tail, corresponding 463

with 20% of the data, demarcated at the sudden rise of the cdf (pC ∼ 0.32), matching a 464

transition into the 2nd mode of the trimodal distribution. In other words, if we 465

threshold the belief label at 0.32, the point where the belief function splits into major 466

and minor part, we find the exact same frequency of caveolae-like objects as previously 467

reported. Second, we know that caveolae can only form in the presence of CAVIN1. 468

Therefore, we expect to see an increasing correlation of CAVIN1-CAV1 colocalization as 469

pP3 increases. We compute CAVIN1 colocalization P by measuring the mean CAVIN1 470

colocalization intensity for each CAV1 object. The regression computes a linear model 471

between pP3 and P for all objects, for all cells, per replicate (Fig. 8-B, replicate is a 472

repeat experiment to ensure consistency). CAVIN1 colocalization increases markedly 473

when pP3 increases. In Fig. 8-B a LOWESS-regression [46] is computed to discover a 474

more nuanced behavior in the correlation with CAVIN1 association. All cells show a 475

consistent pattern across replicates. More importantly, the belief value where the 476

colocalization of CAVIN1 suddenly increases, matches the threshold found when 477

comparing to previous work (0.32), confirming the belief function is consistent with 478

biological ground truth and prior work. The SPECHT color legend is overlayed for ease 479

of interpretation. In conclusion, SPECHT’s label indicating an object is likely to be 480

caveolae is consistent with the expected frequency of caveolae in PC3-CAVIN1, and the 481

colocalization of CAVIN1. 482

Parameter sensitivity study 483

Our method has 2 parameters: the Gaussian σ (std, Alg. 1) used in the smoothing and 484

the precision-recall balance. Sigma should be at or below system precision to avoid 485

creating artificially joined objects. For the CAV1 dataset, we omit the first Gaussian 486

filter (σ1, Alg. 1), the sigma reported here is σ2. In superresolution microscopy, a 487

deconvolution operation tuned to the acquisition specific point spread function is more 488

accurate in restoring the signal. PRC is set at the user’s discretion; it is nonetheless 489

important to document what its exact impact on the result can be. In Fig. 8-B.2 we 490
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compute the results for replicate 1, Cell 5, the median of the trend (Fig. 8-B1.1). A 491

lower PRC (1.5) results in fewer, brighter objects dominating the selection. Fewer spots 492

similar to non-specific CAV1 binding will be included, explaining the upward shift of the 493

curve while retaining the trend. When PRC is high (2.5) the inverse process occurs with 494

BG spots driving the mean CAVIN1 association lower. A larger sigma (2 ↔ 1) can lead 495

to low intensity borders being included into the mask of an object. When those pixels 496

are outside the actual caveolae structure the expected CAVIN1 association is not that of 497

caveolae but of background, reducing the mean CAVIN1 association, resulting in lowered 498

correlation. We conclude that our parameter space does not invalidate our results with 499

the two independent sources of information. Our method is therefore capable of 500

extracting and identifying CAV1 structures in STED superresolution microscopy. 501

Identifying retinal amyloid-β deposits associated with Alzheimer 502

disease 503

We illustrate how we can extend our method for measuring Aβ across three 504

heterogeneous sparse datasets of fluorescence confocal microscopy images of retinal 505

cross-sections after Aβ-specific immunohistochemistry, acquired using two different 506

microscopes each operated by a different researcher. Rather than counting objects in 507

the image, we use the belief function to identify which fluorescent marker deposits are 508

more likely to be present in an AD image. 509

Applying belief functions to identify AD across heterogeneous data 510

We collected the following sets of images and labels: 511

• IH1 , LH : retinal tissue from healthy donors, microscope 1, n=2 512

• IH2
, LH : retinal tissue from healthy donors, microscope 2, n=3 513

• ID1
, LAD: retinal tissue from AD-confirmed donors, microscope 1, n=3. 514

We show an example AD+ image in Fig. 9-B.1. We identify fluorescent objects in all 515

healthy images using Alg. 1 and obtain qxLH
= Pl(o→ LH) where x indicates which set 516

of healthy images is used (1,2). Next, for each object detected in each AD image, we 517

obtain as before pxLH
= 1− qxLH

= pxLAD
. 518

In Fig. 9 we illustrate the idea and visual results as well as the quantification of 519

conflict that is offered to the end user. The individual belief functions are consistent in 520

their results with respect to each other and the visually easily observable AB-deposits. 521

The joint belief function combines both models to offer a weighted combination of the 522

evidence provided by each model. In Fig. 9-C we plot the weight of conflict of the joint 523

belief function for all 3 AD images. The weight of conflict is the smallest at both 524

extrema of the joint belief function, indicating that the models from the two different 525

microscopes agree the most for the objects that are strongly believed to be from in a 526

healthy or AD retina by the joint belief function, while there is a greater disagreement 527

for the objects without strong belief. A practitioner can use the weight of conflict for 528

each object-prediction pair to quantify the agreement between multiple sources of 529

evidence along with the output of joint evidence based on the joint belief function. 530
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Fig 8. Results on CAV1 dataset. A: Validation with respect to previous art (A.1)
and biological ground truth (A.2). A: The distribution of SPECHT’s label (A.1, x-axis:
P[object] = caveolae) shows a distinct long left tail, containing 20% of the data. The
frequency division matches previous art in dSTORM analysis. Caveolae only form in
the presence of CAVIN1, therefore the probability of an object being Caveolae should
correlate with the colocalization of CAVIN1 (A.2), which is what we observe. B.1: The
detection threshold (∼0.35, A.1-2) matches the sudden rise in colocalization when we
use a LOWESS regression, rather than a linear regression, and results are consistent
across 3 replications (30 cells total, each line represents a single cell). B.2: Varying
hyperparameters does not alter the consistency of the result with respect to biological
ground truth (colocalization CAVIN1).
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Fig 9. Results on Alzheimer data. A: Belief calculus enables the combination of
models learned data originating from different microscopes. B: We visualize how the
joint model operates on a single image of retinal tissue stained for amyloid-β, sourced
from an AD+ positive patient. Object marked in red express a high belief in being AD+
specific. C: We offer the end user a per-object expression of the conflict between the 2
models that create the joint model. An increased weight of conflict (Y-axis) indicates
the models disagree on the labelling for a specific object. We illustrate the visualization
here for 3 AD+ images. Observe that for objects where both models are uncertain
(∼ .5) their minimal conflict is higher than it is for objects that have a higher support
for being either AD+ specific or healthy.
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Discussion 531

The motivation for this work was the need for a robust, adaptive, and self-tuning 532

unsupervised probabilistic object detection method applicable to heterogeneous 533

multi-scale superresolution microscopy. While it is feasible to use a larger number of 534

more elaborate features to describe objects, e.g. deep learning, during development we 535

found using simple low-dimensional features and statistical modelling obtained results 536

validated by biological ground truth. We note that our formulation of belief functions 537

makes them separable (A ∩B is a focal element) and consonant (A ⊂ B or B ⊂ A) 538

support functions [14]. As a result, our p and q functions are equivalent to ‘necessity’ 539

and ‘possibility’ functions from possibility theory [47]. We note that the joint model can 540

also be formulated when objects from 2 different models overlap, for example, when we 541

run our method with different σ and PRC values to obtain two models, one with high 542

recall, one with high precision. In such a joint model, we now have for each object o an 543

inner, smaller object o’. One formulation for focal elements then can be: 544

A = {(o→ L) ∧ (o′ → L)}, B = {(o→ L) ∧ ¬(o′ → L)}, leading to a more complex 545

formulation for a joint model. A more interesting use case is when the object detection 546

is fuzzy and allows for non-empty intersections. Due to space constraints we discuss the 547

computation of uncertainty in Appendix S6 Text. The belief theory framework allows 548

us to work with nested or hierarchical labels, as well as leverage the mathematically 549

sound concepts of conflict and joint models. The object detection stage is designed to 550

be robust to long tail distributions and high variations in density. 551

Limitations 552

When the intensity profile of the fluorescence diverges from a generalised normal 553

distribution, our object detection will increasingly fail and split objects into parts; a 554

different detection method is then warranted [48]. In addition, when image quality 555

degrades to low signal to noise values (SNR), the intensity distribution can cause 556

negative adjusted kurtosis values. In this case raising such a negative value to a 557

fractional power is a domain error. A deconvolution or task specific denoising is 558

recommended to recover or improve SNR before analysis, and will typically be part of 559

an image processing pipeline. The Mahalanobis distance can be uninformative in 560

high-dimensional space due to the ‘curse’ of dimensionality, however, this is only the 561

case if the increase in dimensions is due to non-discriminatory features [49]. While the 562

joining of belief functions by Dempster’s rule is not without criticism [50], we note that 563

the preconditions [50] for its use are satisfied in our case with independent evidence 564

sources and exclusive exhaustive hypotheses. In future work, we aim to adopt advances 565

in evidence combination [51] to enable quantification of reliability of individual sources 566

and make the joint model robust against unreliable sources. 567

Conclusion 568

We introduced a novel adaptive self-tuning method for object detection in 2D 569

microscopy images of fluorescent labelled proteins that enables consistent results across 570

channels, and a novel method to assign each object a belief that expresses numerically 571

the evidence encoded. We validated our method on superresolution data of CAV1 572

deposits, where we showed agreement with related work and biological ground truth. 573

We showed we are able to identify and characterize CAV1-labeled caveolae and scaffolds 574

by STED superresolution microscopy, setting the stage for robust, reproducible 575

temporal live cell analysis where consistency across images and channels is essential for 576

scientific discovery. We applied our method on an Alzheimer pilot study, illustrating the 577
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multiscale applicability. We illustrated with a closed form expression the capability to 578

formulate a joint model spanning heterogeneous datasets while recording the conflict of 579

evidence between the separate models as a reliability measure. 580
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Supporting information

S1. Table Imaging terms glossary.

Term Description

I 2D fluorescence microscopy image

L Image level label (e.g. image of patient with Alzheimer positive diagnosis:
L = AD+)

L The complement of the label L, for example if L=AD+, then L expresses
that the patient is healthy.

L The label space, superset of all labels, defined by the domain.

a
□
̸= b Mathematical operator denoting that a ’is not necessarily equal to’ b.

D(I) Function decomposing an image into objects (o ⊂ I) based on their fluores-
cent marker

o Detected object, a set of adjacent pixels, in image I (I = {∪o | ∀o ⊂ I})
∇2 Image Laplacian, measure of the second derivative of image intensity.

V The absolute value of the negative part of the image Laplacian:
V=|min(∇2, 0)|

σ The standard deviation of a normal (Gaussian) distribution, used here as a
parameter of Gaussian (smoothing) filter.

ZV Normalized negative Laplacian ZV = | Vi−E(V )√
Var(V )

| ∀ Vi

PRC Precision ReCall, parameter used to scale object detection in our algorithm
consistently across channels. A higher value (>1) favors recall, a lower
value favors precision

STED Stimulated Emission Depletion, a superresolution microscopy technique,
amenable to live cell imaging.

PSF Point Spread Function, the measured response or intensity distribution in
2/3D of an imaging system to a light source (point). A common mathe-
matical model, in absence of device specific information, is the Gaussian
function.

Deconvolution In our context, using precise knowledge of the imaging system’s PSF in
combination with a deconvolution restores (improves) image quality.
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S2. Table Statistics and belief theory glossary.

Term Description

k(X) Kurtosis of the distribution of a random variable X: k(X) = E[(X−µ
σ )4].

Kurtosis of a normal distribution is 3, “excess” kurtosis is k-3. k(X)
increases as outliers are more extreme and frequent (longer tail of the
distribution)

L Categorical label assigned to an image. A single image can have
multiple labels assigned.

L Set of all subsets of all labels.

L Set-complement of the label L, with respect to a label space L. L = L\L.
E.g. in the AD+ use case, AD+ = healthy, however for more complex
label spaces the complement is not equal to the negation.

SL(o) Function computing the statistical support, or evidence e the object o
has for the image level label L (o ⊂ I)

Bel(o→ L) The minimum statistical support, or belief, an object o has for the
image level label L.

pL(o) Shorthand for the belief function Bel(o→ L)

Pl(o→ L) The maximum statistic support, or plausibility, an object o has for the
image level label L

qL(o) Shorthand for the plausibility function Pl(o→ L)

rL(o) The uncertainty in evidence based support of object o for label L:
rL(o) = qL(o) − pL(o). See Fig. 4 for graphical illustration of the
relation of uncertainty to evidence.

Θ ’Frame of discernment’ Θ = {o→ L |o ⊂ I, L ∈ L}
Focal element Subset f ⊂ Θ such that f does not contain any smaller subsets of Θ.

cdf/pdf The cumulative distribution function (cdf) of a random variable X:
F (x) = P (X ≤ x) and the probability density function (pdf) as the

derivative of F(X):
∫ b

a
f(x)dx.

Evidence Statistical information that can be leveraged to compute statistical
support. See Fig. 4 for graphical illustration of strong versus weak
evidence, in the context of uncertainty.

Conflict The disagreement the statistical measures (e.g. belief functions) have
on the support that an object o has for an image level label L.

Weight of conflict
(W)

A numerical value measuring the disagreement (conflict) between mul-
tiple belief functions.

Combination Given 2 or more belief functions, computing the joint (combined)
support as well as conflict that a single object o has for image level
label L.

Separable sup-
port function

Support function where for all focal elements A, B holds that A ∩B is
a focal element.

Consonant sup-
port function

Support function where for all focal elements A, B holds that A ⊂ B
or B ⊂ A.
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S3. Table Biology glossary.

Term Description

CAVIN1 Cavin-1 protein, necessary to form Caveolae.

PC3 Human prostate cancer cell line, here we use the shorthand PC3 to refer to
the cells with CAVIN1 expression disabled.

PC3-
CAVIN1

PC3 with expression of CAVIN1 enabled.

CAV1 Caveolin-1 protein, main component of Caveolae.

Caveolae (C) Sub-cellular structures composed of CAV1 protein complexes, ∼100 nm
invaginations in the cell membrane.

Oligomer Molecule consisting of a few identical units, in our contexts proteins, e.g.
CAV1 oligomer contains several CAV1 proteins.

Scaffolds
(SC)

Non-caveolar scaffolds (SC), including 8S oligomers that can combine to
form larger non-caveolar hemispherical scaffolds as well as caveolae.

Non-specific
labelling
(BG)

Fluorescent marker that is not marking its intended target, contributing to
semantic “noise”.

KO ’KnockOut’, a cell line where a particular gene’s expression is disabled
using the CRISPR/Cas technique.

CAV1 KO
MDA-MB-
231

MDA-MB-231 is a breast cancer cell line, here with CAV1 expression
disabled (KO).

Amyloid-β A protein whose excess deposits in neuron cells have a complex role in
expression of neurodegenerative disease, such as Alzheimer.

S4 Text Code and datasets SPECHT is written as a Julia module leveraging the
high level features this scientific programming language offers in combination with high
performance. Datasets and code are released under open source license (CC By SA 4.0,
Affero GPLv3 respectively) at https://github.com/bencardoen/SPECHT.jl.

S5 Text Data acquisition and cultures. PC3, PC3-CAVIN1 and CRISPR/Cas
CAV1 KO MDA-MB-231 cells [1, 45,52,53] were cultured in RPMI-1640 medium
(Thermo-Fisher Scientific Inc.) complemented with 10% fetal bovine serum (FBS,
Thermo-Fisher Scientific Inc.) and 2 mM L-Glutamine (Thermo-Fisher Scientific Inc.)
at 37 Celsius in a 5% CO2/95% air incubator. Cells grown on 1.5H coverslips (Paul
Marienfeld) were fixed with 3% paraformaldehyde (PFA), 15 min at room temperature,
rinsed with PBS, permeabilized with 0.1% Triton X-100 in PBS plus 0.1 mM Ca2+ and
1 mM Mg2+ (PBS-CM) and blocked with 10% Goat Serum (Thermo Fisher Scientific,
Waltham, MA) and 1% bovine serum albumin (Sigma, St. Louis, MO) in PBS-CM.
Cells were incubated with the primary antibody (12h, 4 Celsius) and the secondary
antibody (1h, room temperature). The primary and secondary antibodies were diluted
in SSC (saline sodium citrate) buffer containing 1% BSA, 2% goat serum and 0.05%
Triton X-100. Coverslips were mounted with Prolong Gold (Life Technologies, Thermo
Fisher Scientific). Cells were washed after antibody incubations using SSC buffer
containing 0.05% Triton X-100. Images were acquired with a 100x/1.4 Oil HC PL APO
CS2 STED White objective of a Leica TCS SP8 3x STED microscope (Leica, Wetzlar,
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Germany) equipped with a white light laser, HyD detectors, time-gated fluorescence
detection and Leica Application Suite X (LAS X) software. Acquisition was done at a
scan speed of 600 Hz with a line average of 5. Pixel size is 20nm and resolution
(precision) is around 70nm for the CAVIN1 channel and 50nm for the CAV1 channel.
GFP was excited at 488 nm and depleted at 592 nm. Alexa Fluor 647 was excited at
653nm and depleted at 775 nm. Huygens Professional software (Scientific Volume
Imaging, Hilversum, NL) was used to deconvolve STED images, chromatic aberration
correction was applied on CAVIN1 images using the CAV1 channel as reference channel
using the ‘correlation full’ method. Confocal microscopy images of retinal cross-sections
after immunohistochemistry staining for amyloid-β. Tissues were obtained from control
eyes from Eye Bank of BC, and AD eyes from donors with post-mortem
neuropathological diagnosis of Alzheimer’s disease from UBC Department of Neurology.
Tissues were processed as paraffin embedded cross-sections (5 um). BA4 primary
antibody was used for specific binding for the first 2 amino acids of the AB peptide
amino terminus, Cy3 secondary antibody was used to label BA4 in red fluorescence.
Samples imaged at 543 nm wavelength using Zeiss LSM 510 at 0.44 um x 0.44 um pixel
dimension over 450 um x 450 um area, and Zeiss Axio Imager M2 at 0.454 um x 0.454
um pixel dimension over 624.70 um x 501.22 um area. LSM 510 images were resized to
match the pixel dimension of those from Axio Imager M2. Images were manually
segmented for the retinal layers, the vitreous and the region posterior to the outer
nuclear layer were masked to reduce artefactual signals.

S6 Text Discussion on uncertainty in context of belief theory. In this section,
we briefly discuss the computation of ‘r’ (Eq. 5), the uncertainty in measuring the
belief. For an object o, label x we have the plausibility qx = Pl(o→ Lx) and belief
px = Bel(o→ Lx) = 1− qx. Uncertainty, in this context, is defined as rq = qx − px
Intuitively this makes sense, one can interpret belief as the measurable support, whereas
plausibility is the maximum potential support. When we divide the label space L into
‘supports x’ versus ‘does not support x’, we have that L is composed of two focal
elements, x and x. N ote that while here x is a single label, x is not. Examples where
|x| == |x| are when x is ‘healthy’ versus ‘disease’. Given qx, and our division of label
space (and frame of discernment) into x and x we can compute px. Finally, we compute
rx = qx − px, and rx = qx − px. Our contribution gives us a way to compute both qx
and qx, therefore we can derive the belief functions, and with them the uncertainty, in
essence a ‘top-down’ computation of belief functions. It is helpful to reflect what this
‘uncertainty’ actually means for the practitioners. Let us explore the most uncertain
scenario, qx = 1, and px = 0, with rx = 1. Uncertainty increases with the inability of
the belief function to obtain evidence (px → 0). An inability to find evidence for a
negative (px → 0), leads to qx → 1 and uncertainty increases. Let us now consider the
converse, a scenario where uncertainty is minimal. Then it must be that px = qx, and
px = qx. This can occur when the information measured is never neutral, the features
always support or negate a label, but never both, and our capability to measure those
features is perfect. In theory it is possible to obtain such a scenario, by increasing the
dimensions of the feature space to infinity. However, one must ensure that the added
dimensions (features) are maximizing information (support), otherwise we invoke the
‘curse’ of dimensionality [49]. A final analogy that can help is that of the balance
between precision and recall. Inability to discern (believe in) the true support for a label
would lead to low precision, and thus a belief tending to zero for label x. Low recall,
conversely, is a belief function unable to discern support for a true negation of the label
(x). Uncertainty informs on both (rx, rx, but in our setting is able to infer this without
the need for annotation. If this is surprising, consider that quite often objects in an
image support both the label x and its negation. When we label an image as ‘healthy’,
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versus ‘diseased’, we can be sure that both labels are supported by a confounded label
of ‘tissue’, and perhaps the label of ‘background’ or non-tissue acquisition. The capture
of the support for ‘healthy’ will include statistical support that is shared with ‘disease’,
because not all tissue is affected equally, and before tissue is diagnosed as ‘diseased’ it
has undergone a transition towards ‘diseased’. What we intuitively mean by ‘healthy’, is
‘healthy’ and never seen in ‘diseased’ and vice versa. In practice, this is not expressed in
the labels, nor do we tend to encode this in the statistical learning methods employed.
In these conditions, uncertainty can help to quantify exactly what we can capture. Due
to space limitations and given that it is challenging to validate uncertainty, we have
omitted empirical results on computing uncertainty on our datasets as they would be
illustrative, rather than quantitative support for our method.

S8 Deploying SPECHT in heavily degraded SNR conditions While the
kurtosis scaling already guards the object detection stage against perturbations in the
presence of noise, in certain acquisition conditions a SNR nearing 1 cannot be avoided
due to, for example, non-specific labelling filling the cell, or capturing labelling that is
sensitive to the health of its target. In such conditions the error margin of object
detection methods diverges quickly leading to large numbers of false positives or false
negatives. Achieving consistency under these conditions is non-trivial. Here we
document a heuristic that can be used to deploy SPECHT in such conditions. We note
that recovering missed objects is not feasible, so the first stage is ensuring maximal
recall, by setting the PRC parameter to e.g ¿ 4. In order to then screen out false
positives, we can make use of the observation that labelled object in fluorescence
microscopy will likely contain a local intensity maxima. In very low SNR conditions we
note that the intensity distribution will be dominated, by definition, by the noise values.
We can then use these two observations to define a heuristic that detects false positives.
We first compute all local maxima on the raw image, optionally preprocessed with a
small smoothing factor to reduce an excessive number of local maxima. Given that
noise now forms the mass of the intensity distribution, by elimination the local maxima
of signal will be found in the outliers of the distribution. We can detect such outliers by
computing the interquantile range and setting an intensity threshold
TH ← Q1 + 1.5× IQR. We then verify that each detected object contains a local
intensity maxima > TH. Objects that do not, are removed. As SNR tends to 0 all
object detection will fail, but we show that with this heuristic we can use SPECHT on a
wider range of SNR values. In addition, consistency across channels is still ensured
because the IQR based threshold will scale with SNR. The entire procedure is listed in
Algorithm 3.

S9 Text Numerical stability. The closed form expression for combination rule in
the Alzheimer use case (Eq. 8) is sensitive to loss of precision due to catastrophic
cancellation (loss of significance) when t, s are close to 0, we therefore correct t and s
values to max(x, ϵ) with ϵ the machine epsilon. Computing the 4th root of the kurtosis
can be numerically unstable. However, we note that the alternative, for example, the
geometric mean of V , more appropriate compared to the arithmetic mean given that V
is a ratio, has similar issues in that it uses similar operations.
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Algorithm 3 False positive filtering heuristic for use in severely degraded SNR images.
This is an optional postprocessing step using the output of Algorithm 1

1: Input Raw image I, object mask M, σ)
2: Output Binary object mask OM
3: Ig ← Gaussianσ(I)
4: Q1, Q3← quantile(Ig, [0.25, 0.75])
5: TH ← Q3 + 1.5(Q3−Q1)
6: MI ← localmaxima(Ig)
7: OM ← copy(M)
8: C ← connectedcomponents(M)
9: for Mi ∈MI do

10: x, y ← index(Mi)
11: if Mi > TH then
12: if M [x, y] > 0 then
13: cj ← C[x, y] ▷ Component id
14: OM [C == cj ]← 1
15: end if
16: end if
17: end for

February 13, 2022 32/32


