Nicole Stafford

and 2 more

Individuals with transtibial amputation can activate residual limb muscles to volitionally control robotic ankle prostheses for walking and postural control. Most continuous myoelectric ankle prostheses have used a tethered, pneumatic device. The Open Source Leg allows for myoelectric control on an untethered electromechanically actuated ankle. To evaluate continuous proportional myoelectric control on the Open Source Ankle, we recruited five individuals with transtibial amputation. Participants walked over ground with an experimental powered prosthesis and their prescribed passive prosthesis before and after multiple powered device practice sessions. Participants averaged five hours of total walking time, and received no visual feedback during practice. After the final testing session, participants indicated their prosthesis preference via questionnaire. Participants increased peak ankle power after practice (powered 1.02 ± 1.09 W/kg and passive 0.3 ± 0.13 W/kg). Additionally, participants generated greater ankle work with the powered prosthesis compared to their passive device (p=0.009, 148% increase). Although peak power generation was not different, participants preferred walking with a prosthesis under myoelectric control compared to their passive device. These results indicate individuals with transtibial amputation can walk with an untethered powered prosthesis under continuous myoelectric control and generate similar magnitudes in peak power to their passive prosthesis after minimal training.

Chang Liu

and 11 more

Accuracy of electroencephalography (EEG) source localization relies on the volume conduction head model. A previous analysis of young adults has shown that simplified head models have larger source localization errors when compared with head models based on magnetic resonance images (MRIs). As obtaining individual MRIs may not always be feasible, researchers often use generic head models based on template MRIs. It is unclear how much error would be introduced using template MRI head models in older adults that likely have differences in brain structure compared to young adults. The primary goal of this study was to determine the error caused by using simplified head models without individual-specific MRIs in both younger and older adults. We collected high-density EEG during uneven terrain walking and motor imagery for 15 younger (22±3 years) and 21 older adults (74±5 years) and obtained T1-weighted MRI for each individual. We performed equivalent dipole fitting after independent component analysis to obtain brain source locations using four forward modeling pipelines with increasing complexity. These pipelines included: 1) a generic head model with template electrode positions or 2) digitized electrode positions, 3) individual-specific head models with digitized electrode positions using simplified tissue segmentation, or 4) anatomically accurate segmentation. We found that when compared to the anatomically accurate individual-specific head models, performing dipole fitting with generic head models led to similar source localization discrepancies (up to 2 cm) for younger and older adults. Co-registering digitized electrode locations to the generic head models reduced source localization discrepancies by ~6 mm. Additionally, we found that source depths generally increased with skull conductivity for the representative young adult but not as much for the older adult. Our results can help inform a more accurate interpretation of brain areas in EEG studies when individual MRIs are unavailable.