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Fourier theory is one of the most important tools used ubiquitously for understanding the spectral content of a
signal, extracting and interpreting information from signals, and transmitting, processing, and analyzing the signals
and systems. Undergraduate engineering students are exposed to these concepts, usually in their second year, to
build their foundation in the areas of signal processing and communication engineering. However, the popular signal
processing literature [1–4] does not offer a clear explanation regarding the convergence or the existence of Fourier
representations for certain well-known signals. Because of this subtle gap, it becomes hard for young students to
assimilate the Fourier theory with clarity, and they are forced to be familiar with some of these concepts without
understanding them. To bring clarity to the existence and the convergence of Fourier representation, including Fourier
series and transform, lecture notes were published recently in IEEE Signal Processing Magazine’s September 2022
issue [5]. This lecture note is in the continuation with technical details added from yet another mathematical topic of
distribution theory that connects delta Dirac functions with the Fourier theory.

The distribution theory by Schwartz in 1945 is one of the great revolutions in mathematical function analysis. It
is considered as a completion of differential calculus, similar to how the revolutionary measure theory or Lebesgue
integration theory proposed in 1903, is considered as a completion of integral calculus. Both these theories unlocked
new paradigms of mathematical development. Although distribution theory is a powerful tool for understanding
Fourier theory, it is ignored in engineering textbooks. In this lecture note, we utilize the concepts of this theory to
show how some signals that fail to exhibit FT in the conventional sense can have FT in the distributional sense.

Fourier representation is the most important mathematical tool. It has been used in almost all fields of science,
mathematics, and engineering since its inception in 1807. Many studies present recent advancements and applications
of the Fourier representation [6–21]. In fact, wavelet transform that emerged as a generalization of the Fourier theory
to capture joint time-scale relationship also finds umpteen applications in signal processing [22–28].

Relevance

It is well known that the Fourier transform (FT) is defined for (i) the functions of at most polynomial growth (i.e.,
tn for n ∈ {0, 1, 2, 3, · · · }) in the sense of tempered distributions, and (ii) the functions of at most exponential growth
(i.e., exp(at) for a ∈ C) in the sense of distributions corresponding to the space of Gauss functions [29]. These aspects
can be easily understood with the help of distribution theory. In this lecture note, we provide a lucid description
of the existence and convergence of Fourier representations using the concepts of the distribution theory that may
benefit the entire signal-processing community. Suitable examples have been presented to support the text. The main
contributions of this work are as follows:

1. We present a comprehensive summary of the convergence of Fourier series (FS) and Fourier transform (FT) as
available in the communication, signal processing and other literature.

2. We extend the theory of FT by proposing the space of Gauss–Schwartz functions and the corresponding tempered
super-exponential distributions. Thus, we define the FT for the functions of at most tempered super-exponential
growth, i.e., exp

(
αt2
)
, where α ∈ C such that the real part Re(α) < π.
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Prerequisites

Definition 1 The Lp([a, b]) space is defined as

Lp([a, b]) = {x : [a, b] → C | ∥x∥p < ∞} , (1)

where ∥x∥p denotes the Lp-norm of the function x and is computed as

∥x∥p =

(∫ b

a

|x(t)|p dt

)1/p

where 1 ≤ p < ∞. (2)

Definition 2 Let x : [a, b] → C be a function and let Pn = {a = t0 < t1 < · · · < tn = b}, n ∈ N, be a finite partition
of [a, b]. The total variation of x(t) for t ∈ [a, b] for all such partitions Pn for any n ∈ N is defined as

V (x, [a, b]) = sup
Pn

{
n∑

i=1

|x(ti)− x(ti−1)| : Pn is a partition of [a, b]

}
. (3)

A function x(t) is defined to have bounded variation (BV) on [a, b], denoted as x(t) ∈ BV ([a, b]), if V (x, [a, b]) < ∞.

Fourier Series–Representation and Convergence

The FS representation for a periodic signal x̃(t), with period T0, is defined as:

Synthesis equation: x̃(t) =

∞∑
k=−∞

x̂k exp(jkω0t), (4)

Analysis equation: x̂k =
1

T0

∫
T
x̃(t) exp(−jkω0t) dt, (5)

where T = [t0, t0 + T0] with t0 ∈ R. The FS representation (4) is guaranteed for x̃(t), if it satisfies the Dirichlet
conditions [5], i.e., x̃(t) ∈ L1(T) ∩ BV (T). Further, according to the Carleson–Hunt theorem [30, 31], if x̃(t) ∈ Lp(T)
for p > 1, then its FS converges at almost all points. The convergence is understood as how the sum [32]

SN (t) =

N∑
k=−N

x̂k exp(jkω0t) (6)

converges to the original signal x̃(t) while N → ∞, i.e., whether it converges uniformly, point-wise, or in norm sense.
Further details regarding the convergence of FS, along with some suitable examples, can be found in [5].

Fourier Transform–Representation and Convergence

The FT can be obtained from a limiting case of FS (5) with the period T0 → ∞. Thus, the FT and inverse FT (IFT)
can be defined as

Analysis Equation: x̂(ω) = c1

∫ ∞

−∞
x(t) exp(−jωt) dt, for x ∈ L1(R) (7)

Synthesis Equation: x(t) = c2

∫ ∞

−∞
x̂(ω) exp(jωt) dω, for x̂ ∈ L1(R) (8)

respectively, where ω = 2πf and c1 × c2 = 1
2π . The literature popularly considers c1 = 1 and c2 = 1

2π because it
corresponds to the following symmetric FT and inverse FT (IFT) representations

x̂(f) =

∫ ∞

−∞
x(t) exp(−j2πft) dt and x(t) =

∫ ∞

−∞
x̂(f) exp(j2πft) df, (9)
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respectively. We denote FT as F{x} = x̂, IFT as F−1{x̂} = x, and FT pair as x(t) ⇌ x̂(f). One can obtain the
duality property of FT (9) as x̂(t) ⇌ x(−f), which is very useful because it can provide FT that may be difficult to
compute directly. From (9), we can write

x̂(0) =

∫ ∞

−∞
x(t) dt and x(0) =

∫ ∞

−∞
x̂(f) df. (10)

Also, we observe that

|x̂(f)| =
∣∣∣∣∫ ∞

−∞
x(t) exp(−j2πft) dt

∣∣∣∣ ≤ ∫ ∞

−∞
|x(t)|dt = ∥x∥1 and (11)

|x(t)| =
∣∣∣∣∫ ∞

−∞
x̂(f) exp(j2πft) df

∣∣∣∣ ≤ ∫ ∞

−∞
|x̂(f)| df = ∥x̂∥1. (12)

Therefore, if x ∈ L1(R), the FT x̂ is uniformly continuous, vanishes at infinity (i.e., |x̂(f)| → 0 as |f | → ∞), and
is bounded by the L1-norm of the function (Riemann–Lebesgue lemma). Similarly, if x̂ ∈ L1(R), the function x is
uniformly continuous, vanishes at infinity, and is bounded by the L1-norm of the FT. The FT and IFT of a function
x are guaranteed if either the Dirichlet condition of x ∈ L1(R) ∩BV (R) is fulfilled, or x ∈ L1(R) ∩ L2(R).

Fourier Transform in L2(R)
The FT of a typical function, x ∈ L2(R) but x /∈ L1(R) may not converge. Therefore, FT of any function x ∈ L2(R)
is defined using an extension-by-continuity from the following results (refer [33,34] for more details and proofs).

Theorem 1 L1(R) ∩ L2(R) is dense in L2(R).
This implies that for any x ∈ L2(R), one can find a sequence of functions {xn}∞n=1 in L1(R) ∩ L2(R), such that
limn→∞∥x − xn∥22 → 0. In fact, it is easy to find such a sequence of functions xn(t) = x(t)χ[−n,n](t) using indicator
functions, where an indicator function is defined as

χ[−n,n](t) =

{
1, −n ≤ t ≤ n

0, otherwise
(13)

for every n ∈ N. This implies that {xn}∞n=1 is a Cauchy sequence in L2(R), which converges to the function x ∈ L2(R).

Theorem 2 Let x ∈ L1(R) ∩ L2(R). Then x̂ ∈ L2(R). Furthermore, ∥x∥22 = ∥x̂∥22 (Parseval–Plancherel identity).

Remark 1 The space L2(R) is a Hilbert space, and every Cauchy sequence in L2(R) converges to some function
in L2(R). Thus, for any x ∈ L2(R), one can obtain a sequence of functions {xn}∞n=1 ⊂ L1(R) ∩ L2(R), such that
limn→∞∥x − xn∥22 → 0. This implies that {xn}∞n=1 is a Cauchy sequence in L2(R) and hence, for any m,n ∈ N,
xm − xn ∈ L1(R)∩L2(R). According to Theorem 2, ∥xm − xn∥22 = ∥x̂m − x̂n∥22 because F{xm − xn} = x̂m − x̂n. This
implies that {x̂n}∞n=1 is also a Cauchy sequence in L2(R) and hence, there is a function x̂ ∈ L2(R), such that sequence
{x̂n}∞n=1 converges to x̂ under the norm of L2(R). Moreover, for x, y ∈ L1(R) ∩ L2(R), if x̂ = ŷ, then x = y.

Remark 2 It has been shown in the literature [5, 33,34] that the FT can be defined on

1. L1(R) in which F : L1(R) → L∞(R) with ∥x̂∥∞ ≤ ∥x∥1.

2. L2(R) in which F : L2(R) → L2(R) with ∥x̂∥2 = ∥x∥2.

3. Lp(R) for 1 ≤ p ≤ 2 from the Riesz-Thorin Theorem F : Lp(R) → Lq(R), 1
p +

1
q = 1, 1 ≤ p ≤ 2 with ∥x̂∥q ≤ ∥x∥p

which is Hausdorff–Young inequality.

4. Lp([a, b]) for p ∈ (1,∞] from Fourier series F : Lp([a, b]) → Lq(R), with ∥x̂∥q≤ ∥x∥p where −∞ < a < b < ∞,
i.e., x has compact support on [a, b] where x(t) = 0 for t /∈ [a, b].

This is to note that there is equality only for p = q = 2, for which FT is an isometry and the FT is invertible. In
fact, FT is invertible only for the finite energy signals (x ∈ L2(R)) in the normal sense of integration as defined in (9).
If a signal is not an energy signal, then the FT integral (9) does not converge in the normal sense. We know that FT
of many signals such as sin(ω0t), cos(ω0t), δ(t), u(t), and

1
πt are defined, well known, ubiquitous, and are widely used.

However, these are not energy signals. We would like to emphasize that the FT of these functions is defined only in
the distributional sense [35], which we present in the next section.
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Schwartz Distributions and Fourier Transform in Distributional Sense

Definition 3 Let D = C∞
c (R) denotes the space of test functions that are infinitely differentiable and compactly

supported.

Definition 4 Let S = S(R) = {ϕ ∈ C∞(R) | tk dm

dtmϕ(t) → 0 as |t| → ∞∀k,m ∈ N0} denotes the space of Schwartz
functions, where ϕ and all its derivatives are of rapid decay, and N0 = N

⋃
{0} = {0, 1, 2, 3, . . . }.

Definition 5 Let E = C∞(R) denotes the space of smooth functions.

This is to note that D ⊂ S ⊂ E . This lecture note considers one-dimensional functions, although the theory is also
valid for higher dimensions. Some properties of Schwartz space S are: (1) S is a linear vector space; (2) S is closed
under multiplication; (3) S is closed under multiplication by polynomials; (4) S is closed under differentiation; (5) S is
closed under convolution; (6) S is closed under translations and multiplication by complex exponentials; and (7) The
functions of S are integrable:

∫
R |ϕ(t)|dt < ∞ for ϕ ∈ S.

Definition 6 A distribution T is a continuous linear functional on the space of test functions, i.e., T : D → C such
that for all ϕ1, ϕ2 ∈ D and c ∈ C: (i) T (ϕ1 + ϕ2) = T (ϕ1) + T (ϕ2), (ii) T (cϕ1) = cT (ϕ1), and (iii) If ϕn → ϕ, then
T (ϕn) → T (ϕ). In general, the distribution of a test function T (ϕ) is denoted by ⟨T, ϕ⟩.

Definition 7 The dual space of D is denoted as D′ which is a vector space of continuous linear functionals from
D → C. It is a space of distributions or a set of distributions. One may observe that the space D′ is a linear space
because for all T1, T2 ∈ D′, ϕ ∈ D and c ∈ C: (i) ⟨T1 + T2, ϕ⟩ = ⟨T1, ϕ⟩+ ⟨T2, ϕ⟩, and (ii) ⟨cT1, ϕ⟩ = c⟨T1, ϕ⟩.

Definition 8 A tempered distribution is a continuous linear functional on the space of Schwartz functions, i.e., a
mapping from S → C. The dual space of S is denoted as S ′, which is a space of tempered distributions. A tempered
distribution refers to a distribution of temperate growth, meaning thereby a growth that is at most polynomial.

Definition 9 A compactly-supported distribution is a continuous linear functional on the space of smooth func-
tions, i.e., a mapping from E → C. The dual space of E is denoted as E ′, which is a space of compactly-supported
distributions.

These spaces follow the inclusions as D ⊂ S ⊂ E , while there is an inclusion-reversing containment of dual spaces:
E ′ ⊂ S ′ ⊂ D′. Therefore, a tempered distribution is a kind of distribution, and a compactly-supported distribution is
a kind of tempered distribution. Furthermore, the space S is dense in L2(R) [35]. Hence, the chain of containment
can be refined as D ⊂ S ⊂ L2(R) ⊂ S ′ ⊂ D′, i.e., Compactly supported functions ⊂ Rapidly decaying functions ⊂
Energy functions ⊂ Tempered distributions ⊂ Distributions.

Every locally integrable function is a distribution, but a distribution is not necessarily a function. A locally
integrable function x can be identified with a particular distribution, namely, the distribution Tx : D → C, defined as:

Tx(ϕ) = ⟨Tx, ϕ⟩ =
∫ ∞

−∞
x(t)ϕ(t) dt < ∞, ∀ϕ ∈ D, (14)

where Tx ∈ D′. In general, a function x determines a distribution Tx by (14). The distributions like Tx that arise
from functions in this way are prototypical examples of distributions that are called regular distributions. T ∈ D′

would be referred to as a regular distribution if there exists a locally integrable function x such that T = Tx. Since
⟨x, ϕ⟩ is equal to ⟨Tx, ϕ⟩ for any test function ϕ ∈ D, Tx is linear with respect to x, i.e., Tx+y = Tx + Ty and
Tcx = cTx. Therefore, ⟨Tx, ϕ⟩ is usually denoted by ⟨x, ϕ⟩, which is very useful. With x as a function, a particular
t maps to a particular x(t). Similarly, T is a distribution, and for a particular x, there is a distribution Tx as
defined in (14). In other words, Tx is a distribution induced by x, characterized by x, or corresponding to x. Let
x be a continuous function, then ⟨x, ϕ⟩ = 0 for all ϕ ∈ D implies that x = 0. Moreover, one can observe that
Tx = Ty ⇔ ⟨x, ϕ⟩ = ⟨y, ϕ⟩ ⇔ ⟨x− y, ϕ⟩ = 0 ⇔ x− y = 0 ⇔ x = y.

There are many distributions that cannot be defined by integration with any function. Examples include the Dirac
delta function and distributions defined to act by integration of test functions against certain measures. Delta is not
a regular distribution because there is no locally integrable function x (that could be considered as delta) fulfilling
Tx(ϕ) = ⟨x, ϕ⟩ = ϕ(0) for all ϕ ∈ D. In other words, for a locally integrable function, x, limϵ→0

∫ ϵ

−ϵ
x(t) dt = 0.

However, δ(ϕ) = ⟨δ, ϕ⟩ = ϕ(0), and with the abuse of notation in the literature, it is defined as
∫ ϵ

−ϵ
δ(t) dt = 1 for

ϵ > 0, which is widespread and very convenient for understanding and exploring the properties of δ function.
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Definition 10 Dirac delta is a singular distribution defined as δ : S → C such that δ(ϕ) = ⟨δ, ϕ⟩ = ϕ(0) for all
ϕ ∈ S and δ ∈ S ′. Moreover, δµ(ϕ) = ⟨δµ, ϕ⟩ = ϕ(µ) where δµ is shifted delta function concentrated at a point µ.

As an approximation to δ using functions in S, one can consider the family of Gaussians g(t, σ) = 1√
2πσ2

exp
(

−t2

2σ2

)
,

and observe that

lim
σ→0

∫ ∞

−∞
g(t, σ)ϕ(t) dt =

∫ ∞

−∞

(
lim
σ→0

g(t, σ)

)
ϕ(t) dt (15)

=

∫ ∞

−∞
δ(t)ϕ(t) dt = ϕ(0) = ⟨δ, ϕ⟩, (16)

where limσ→0 g(t, σ) = δ(t) is concentrated at t = 0. Similarly, one can define δµ concentrated at µ as

δ(t− µ) = lim
σ→0

1√
2πσ2

exp

(
−(t− µ)2

2σ2

)
. (17)

From the above discussions, it is clear that (i) δ(t − µ) = 0 for t ̸= µ, (ii) δ(t − µ) = ∞ for t = µ, and (iii)∫∞
−∞ δ(t−µ) dt = 1. On using (17) in (16), we observe that the limiting function of (17) exhibits convolution operation
in (16) as (δ ∗ ϕ)(t) = ϕ(t).
The derivative of a distribution or the distributional derivative of a function is defined as:

⟨x′, ϕ⟩ =
∫ ∞

−∞
x′(t)ϕ(t) dt = x(t)ϕ(t)|∞−∞ −

∫ ∞

−∞
x(t)ϕ′(t) dt,

= −
∫ ∞

−∞
x(t)ϕ′(t) dt = (−1)⟨x, ϕ′⟩, (18)

because ϕ(±∞) = 0 with ϕ(t) being a function of rapid decay. This result can be generalized as

⟨x(n), ϕ⟩ = (−1)n⟨x, ϕ(n)⟩ for ϕ ∈ D (19)

where d
dtx(t) = x′(t) and dn

dtnϕ(t) = ϕ(n)(t). Thus, a distributional derivative is defined as

⟨T (n), ϕ⟩ = (−1)n⟨T, ϕ(n)⟩ =⇒ T (n)(ϕ) = (−1)nT (ϕ(n)). (20)

Therefore, every distribution has a derivative which is another distribution. On the other hand, every function may
not have a derivative, but all functions have derivatives which are distributions.

Example 1 Let us consider the derivative of a unit step function defined as

u(t) =

{
1, t ≥ 0

0, t < 0.
(21)

This function is not differentiable at the point of discontinuity in the normal sense. Therefore, one can obtain the deriva-
tive of u in the distributional sense using (19) as ⟨u′, ϕ⟩ = (−1)⟨u, ϕ′⟩ = (−1)

∫∞
∞ u(t)ϕ′(t) dt = (−1)

∫∞
0

ϕ′(t) dt =
(−1)[ϕ(∞)− ϕ(0)] = ϕ(0) = ⟨δ, ϕ⟩ which implies u′ = δ. Since u is a tempered distribution, u′ = δ is also a tempered
distribution because the derivative of a tempered distribution is always a tempered distribution due to the following
lemma [35].

Lemma 1 If T ∈ S ′, then T (n) ∈ S ′ for all n ∈ N0.

Tempered distributions and Fourier transform

A nice property of tempered distributions contained in S ′ is that the FT F : S ′ → S ′ defined on S ′ is a linear
isomorphism because FT F : S → S defined on S is a linear isomorphism [35]. However, in general, one cannot
compute the FT of a regular distribution.
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If x, ϕ ∈ S, then using Fubini’s Theorem:

⟨x̂, ϕ⟩ =
∫ ∞

−∞

(∫ ∞

−∞
x(t) exp(−j2πft) dt

)
ϕ(f) df,

=

∫ ∞

−∞
x(t)

(∫ ∞

−∞
ϕ(f) exp(−j2πft) df

)
dt,

= ⟨x, ϕ̂⟩. (22)

The pairing ⟨x̂, ϕ⟩ = ⟨x, ϕ̂⟩ provides a way to realize the definition of FT in general.

Definition 11 Let T ∈ S ′, then its FT, T̂ , is defined by ⟨T̂ , ϕ⟩ = ⟨T, ϕ̂⟩ for ϕ ∈ S.

Theorem 3 Fourier transform maps the class of tempered distributions onto itself: Tx ∈ S ′ ⇔ T̂x ∈ S ′, ⟨T̂x, ϕ⟩ =

⟨Tx, ϕ̂⟩, which implies ⟨x̂, ϕ⟩ = ⟨x, ϕ̂⟩, where FT: F{Tx} = T̂x = Tx̂, F{x} = x̂ and F{ϕ} = ϕ̂.

This theorem is true because ϕ ∈ S ⇔ ϕ̂ ∈ S. Some typical examples of Schwartz function are ϕ1(t) = exp
(
−a

√
1 + t2

)
and ϕ2(t) = exp

(
−at2

)
for all a > 0, which can be easily observed to satisfy this theorem. However, the above theorem

is not true for ϕ ∈ D because ϕ̂ is not in D due to the uncertainty principle of FT that states that if a signal is limited
in the time-domain, its FT is unlimited in the frequency-domain and vice-versa.

Since the space S is dense in L2 [35], the FT S → S extends by continuity to a map F : L2 → L2. Since S is
mapped to itself by FT, this gives a way to define FT on S ′ by duality and by extending the Plancherel theorem:
T̂ (ϕ) = T (ϕ̂) for ϕ ∈ S and T ∈ S ′. The FT on S ′ defined via duality agrees with the integral definition on S ⊂ S ′.

In other words, T̂ (ϕ) = T (ϕ̂) for ϕ ∈ S, and ⟨x̂, ϕ⟩ = ⟨x, ϕ̂⟩ =
∫∞
−∞ x(t)ϕ̂(t) dt < ∞.

Considering FT ϕ̂(f) =
∫∞
−∞ ϕ(t) exp(−j2πft) dt, its n-th derivative, ϕ̂(n)(f) =

∫∞
−∞(−j2πt)nϕ(t) exp(−j2πft) dt,

IFT ϕ(t) =
∫∞
−∞ ϕ̂(f) exp(j2πft) df and its n-th derivative, ϕ(n)(t) =

∫∞
−∞(j2πf)nϕ̂(f) exp(j2πft) df , we can write

the FT and IFT of the n-th derivative as

(−j2πt)nϕ(t) ⇌ ϕ̂(n)(f), (23)

ϕ(n)(t) ⇌ (j2πf)nϕ̂(f), (24)

|ϕ̂(f)| = |F{ϕ(n)(t)}/(j2πf)n| ≤ ∥ϕ(n)∥1/(2π|f |)n, (25)

and observe that the greater differentiability or smoothness of ϕ leads to a faster decay of the FT.

Example 2 The FT of delta function using (10) can be obtained as: ⟨δ̂, ϕ⟩ = ⟨δ, ϕ̂⟩ = ϕ̂(0) =
∫∞
−∞ ϕ(t)dt = ⟨1, ϕ⟩

which implies δ̂ = 1 and thus, δ(t) ⇌ 1. Similarly, The FT of 1 can be obtained as: ⟨1̂, ϕ⟩ = ⟨1, ϕ̂⟩ =
∫∞
−∞ ϕ̂(t)dt =

ϕ(0) = ⟨δ, ϕ⟩ which implies 1̂ = δ and thus 1 ⇌ δ(f). Moreover, FT of exp(j2πf0t) can be obtained as follows:〈
̂exp(j2πf0t), ϕ

〉
=
〈
exp(j2πf0t), ϕ̂

〉
=
∫∞
−∞ exp(j2πf0t)ϕ̂(t)dt = ϕ(f0) = ⟨δf0 , ϕ⟩ which implies that ̂exp(j2πf0t) =

δf0 and thus, exp(j2πf0t) ⇌ δ(f − f0). Therefore, cos(2πf0t) = 1
2

(
exp(j2πf0t) + exp(−j2πf0t)

)
⇌ 1

2

(
δ(f − f0) +

δ(f + f0)
)
and sin(2πf0t) =

1
2j

(
exp(j2πf0t)− exp(−j2πf0t)

)
⇌ 1

2j

(
δ(f − f0)− δ(f + f0)

)
.

The above examples show that the pairing ⟨x̂, ϕ⟩ = ⟨x, ϕ̂⟩ provides a way to realize the definition of FT in general.

Example 3 FT of a polynomial in the distributional sense: The FT of tn can be obtained using the distributional
theory as 〈

(̂tn), ϕ
〉
=
〈
tn, ϕ̂

〉
=

∫ ∞

−∞
tnϕ̂(t) dt =

ϕ(n)(0)

(j2π)n
=

〈(
j

2π

)n

δ(n), ϕ

〉
=⇒ tn ⇌

(
j

2π

)n

δ(n)(f) and (26)

δ(n)(t) ⇌ (j2πf)n for alln ∈ N0. (27)

Here, we have used
〈
δ(n), ϕ

〉
= (−1)nϕ(n)(0) and ϕ(n)(0)/(j2π)n =

∫∞
−∞ fnϕ̂(f) df from (24). Therefore, one can

easily obtain the FT of a polynomial: pn(t) = a0 + a1t + a2t
2 + · · · + ant

n as Pn(f) = a0δ(f) + a1
(

j
2π

)
δ(1)(f) +

a2
(

j
2π

)2
δ(2)(f) + · · ·+ an

(
j
2π

)n
δ(n)(f).
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Example 4 FT of 1
tn+1 for n ≥ 0 in the distributional sense: A signum function is defined as

sgn(t) =


1, t > 0

0, t = 0

−1 t < 0

(28)

and its derivative can be obtained as ⟨sgn′, ϕ⟩ = (−1)⟨sgn, ϕ′⟩ = (−1)
∫∞
−∞ sgn(t)ϕ′(t) dt =

∫ 0

−∞ ϕ′(t) dt −
∫∞
0

ϕ′(t) dt
= (ϕ(0)− ϕ(∞))− (ϕ(∞)− ϕ(0)) = 2ϕ(0) = ⟨2δ, ϕ⟩ which implies sgn′ = 2δ. Using the FT of derivative of a function
(24) and delta function, we can write F{sgn′} = F{2δ} =⇒ (j2πf)ŝgn(f) = 2. Thus, FT of sgn can be written as

sgn(t) ⇌ ŝgn(f) =
1

jπf
. (29)

Using the duality of FT, we can write 1
πt ⇌ −j sgn(f) and using the differentiation property of FT from (24), we can

write (−1)n

π
n!

tn+1 ⇌ −j sgn(f)(j2πf)n. This implies that

1

tn+1
⇌

π

n!
(−j)n+1 sgn(f)(2πf)n, n = 0, 1, 2, . . . , (30)

π

n!
jn+1 sgn(t)(2πt)n ⇌

1

fn+1
, n = 0, 1, 2, . . . (31)

Since sgn(t) ∈ S ′, it implies that ŝgn(f) = 1
jπf ∈ S ′ and hence, (30) and (31) are the FT pairs in the sense of tempered

distributions. Unit step function and its FT can be obtained as u(t) = 1
2

(
1 + sgn(t)

)
=⇒ û(f) = 1

2

(
δ(f) + 1

jπf

)
.

From these results, one may observe that (i) the FT of an even function is a real-valued function, (ii) the FT of an
odd function is an imaginary function, and (iii) the FT of neither an even nor an odd function is a complex-valued
function.

Example 5 Let us consider signals x(t) and y(t) that are differentiable even and differentiable odd functions, re-
spectively. This implies that x′(t) and y′(t) are odd and even functions, respectively. Mathematically, it is easy
to show that x(−t) = x(t) =⇒ x′(t) = −x′(−t), and y(−t) = −y(t) =⇒ y′(t) = y′(−t). However, if the
differentiation of x(t) is an even function, then it does not imply that x(t) function is an odd function. For ex-
ample, if x(t) = 1 + t, then x′(t) = 1, which is an even function, yet x(t) contains both even and odd part func-
tions. This can also be observed from Example 1 and Example 4 as u′ = δ and sgn′(t)/2 = δ, where delta is an
even function, signum is an odd function, and unit step function is neither an even nor an odd function. Further,∫
δ(t) dt = sgn(t)/2 + c = x(t). Now, if x(0) = 0 =⇒ c = 0 and x(t) = sgn(t)/2, and if x(0) = 1/2 =⇒ c = 1/2

and x(t) = sgn(t)/2 + 1/2 = u(t). That is why FT of unit step is computed from u(t) = 1
2 (1 + sgn(t)) and generally

not from u′ = δ. Because differentiation kills the DC information present in a function, we have to add cδ(f) in the
result corresponding to FT of DC component while computing the FT of x from x′, i.e., x(t) + c ⇌ x̂(f) + cδ(f) and
x′(t) ⇌ (j2πf)x̂(f) + c(j2πf)δ(f), where c(j2πf)δ(f) = 0 providing x′(t) ⇌ (j2πf)x̂(f). Therefore, FT of u from
u′ = δ can be obtained as follows: (j2πf)û(f) + c(j2πf)δ(f) = 1 =⇒ û(f) = 1

j2πf − cδ(f). Now, in order to obtain

the value −c we use u(0) =
∫∞
−∞ û(f) df = −c, and by taking u(0) = 1/2 =⇒ −c = 1/2. This provides us the final

result û(f) = 1
2

(
1

jπf + δ(f)
)
.

Example 6 Here, we consider the example of a train of delta functions, which is well-known and is widely used in
signal processing applications:

x̃(t) =

∞∑
n=−∞

δ(t− nT0). (32)

Let us compute both the FS and FT representations in the sense of distribution. Using (5), one can obtain Fourier
coefficients x̂k = 1/T0. Hence, its FS representation and the corresponding FT can be written as

x̃(t) =
1

T0

∞∑
k=−∞

exp(jkω0t) ⇌
1

T0

∞∑
k=−∞

δ(f − kf0), (33)
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where ω0 = 2πf0 and f0 = 1/T0. One can also compute the FT of (32) as

∞∑
n=−∞

δ(t− nT0) ⇌
∞∑

n=−∞
exp(−j2πfnT0). (34)

Thus, using the theory of distributions, we obtain

∞∑
n=−∞

exp(−j2πfnT0) =
1

T0

∞∑
k=−∞

δ(f − kf0). (35)

Example 7 The next logical question would be to explore the way to obtain the FT of exp(t) in the distributional
sense using (27) because

exp(t) =

∞∑
n=0

tn

n!
⇌

∞∑
n=0

1

n!

(
j

2π

)n

δ(n)(f), (36)

∞∑
n=0

1

n!

(
j

2π

)n

δ(n)(t) ⇌ exp(−f) =

∞∑
n=0

(−f)n

n!
, (37)

exp(−t) =

∞∑
n=0

(−1)ntn

n!
⇌

∞∑
n=0

1

n!

(
−j

2π

)n

δ(n)(f), (38)

∞∑
n=0

1

n!

(
−j

2π

)n

δ(n)(t) ⇌ exp(f) =

∞∑
n=0

fn

n!
. (39)

Since the growth of exp(t) is more than a polynomial, these FTs are not valid in the sense of tempered dis-
tributions. Corresponding to the function x(t) = exp(t), Tx is not a tempered distribution because ∃ϕ ∈ S
such that

∫∞
−∞ x(t)ϕ(t) dt =

∫∞
−∞ exp(t)ϕ(t) dt = ∞. For example, ϕ(t) = exp

(
−
√
1 + t2

)
. One can observe that

exp(t) exp
(
−
√
1 + t2

)
̸→ 0 as t → ∞. In fact, exp(t) exp

(
−
√
1 + t2

)
→ 0 as t → −∞, and exp(t) exp

(
−
√
1 + t2

)
→ 1

as t → ∞.

Now, the main questions are: Can we make FTs (36)–(39) valid in some sense? Can we define the bigger space
than tempered distributions where FT is valid in the distributional sense? We answer these questions by proposing
the space of Gauss functions in the next section.

The proposed space of Gauss functions in the theory of distributions

The FT of a Gaussian function is again a Gaussian function: exp
(
−αt2

)
⇌
√

π
α exp

(
−π2f2/α

)
or 1√

2πσ2
exp
(
−t2/2σ2

)
⇌ exp

(
−2σ2π2f2

)
for α > 0, and exp

(
−πt2

)
⇌ exp

(
−πf2

)
when 2σ2 = 1/π. From this observation, we define the

space of Gauss functions as follows.

Definition 12 Let G = G(R) = {ϕ ∈ C∞(R) |
(
c1t

k + c2 exp(at)
)
ϕ(m)(t) → 0 as |t| → ∞∀k,m ∈ N0, c1, c2, a ∈ C}.

This is the space of Gauss functions, where ϕ(t) = c exp
(
−σ(t− t0)

2
)
with t0 ∈ R, c ∈ C, σ > 0, and all its derivatives

have Gaussian type decay.

One can easily observe that the set of Gaussian-type decay functions is a subset of the set of rapidly decaying
functions. This G space is obtained by excluding many functions from the space S such as (i) all functions having
a lower decay than Gaussian, e.g., ϕ(t) = exp

(
−
√
1 + t2

)
∈ S, but exp

(
−
√
1 + t2

)
̸∈ G, and (ii) all other functions

which have a higher decay than Gaussian type decay, e.g., exp
(
−t4

)
, and compactly supported functions. Thus, the

space G has a linear combination of set of functions {tk exp(at) exp
(
−σt2

)
} for k ∈ N0, a ∈ C and σ ∈ (0,∞). We can

also consider σ ∈ C such that its real part Re(σ) > 0.
Thus, the space of test functions G, with ϕ(t) = c exp

(
−σt2

)
for c ∈ C and σ > 0, is a linear subspace of S

such that the FT can be defined for its dual space G′. Since G ⊂ S, it implies that S ′ ⊂ G′. From a test function,
ϕ(t) = exp

(
−σt2

)
, we can generate infinitely many test functions by (i) shifting ϕ(t − t0), ∀ t0 ∈ R, (ii) amplitude
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scaling ci ϕ(t), ∀ ci ∈ C, (iii) time scaling ϕ(λt) for λ ∈ R \ {0}, (iv) forming linear combinations
∑

i ciϕi(t), ∀ ci ∈ C,
and (v) considering products ϕ(t1, · · · , tm) = ϕ(t1) · · ·ϕ(tm) to obtain examples in higher dimensions.

Clearly, G is a linear vector space because (i) ϕ1+ϕ2 ∈ G for all ϕ1, ϕ2 ∈ G, and (ii) c ϕ ∈ G for all c ∈ C and ϕ ∈ G
and satisfies the properties of a vector space. The properties of space G are summarized as: (1) G is a linear vector
space; (2) G is closed under multiplication; (3) G is closed under multiplication by polynomials and exponentials; (4) G
is closed under differentiation; (5) G is closed under convolution; (6) G is closed under translations and multiplication
by complex exponentials; and (7) The functions of G are integrable, i.e.,

∫
R |ϕ(t)|dt < ∞ for ϕ ∈ G.

Definition 13 An exponential distribution is a continuous linear functional on the space of Gauss functions, i.e.,
a mapping from G → C. The dual space of G is denoted as G′, which is a space of exponential distributions.

An exponential distribution refers to a distribution of at most exponential growth, meaning thereby a growth
that is at most exp(at) with a ∈ R. This is to note that G ⊂ S =⇒ S ′ ⊂ G′. Since a test function ϕ ∈ G and its

FT F{ϕ} = ϕ̂ ∈ G, ⟨T̂x, ϕ⟩ = ⟨Tx, ϕ̂⟩ =⇒ ⟨x̂, ϕ⟩ = ⟨x, ϕ̂⟩ for all Tx ∈ G′, where ϕ(t) = c exp
(
−σt2

)
for c ∈ C and

σ > 0. A nice property of exponential distributions, G′, is that the FT is a linear isomorphism for the dual space G′,
i.e., F : G′ → G′ because FT is a linear isomorphism for the space of Gauss functions, i.e., F : G → G. Thus, we can
obtain FT of exp(at) with a ∈ R in the distributional sense as

exp(at) =

∞∑
n=0

antn

n!
⇌

∞∑
n=0

an

n!

(
j

2π

)n

δ(n)(f). (40)

Example 8 Similarly, we can obtain FT of sin(1/t), cos(1/t) and exp(j/t) using (30) as

sin

(
1

t

)
=

∞∑
n=0

(−1)n

(2n+ 1)!

1

t2n+1
⇌

∞∑
n=0

j(−1)n

(2n+ 1)!

π

(2n)!
sgn(f)(2πf)2n, (41)

cos

(
1

t

)
=

∞∑
n=0

(−1)n

(2n)!

1

t2n
⇌ δ(f) +

∞∑
n=1

1

(2n)!

π

(2n− 1)!
sgn(f)(2πf)2n−1, (42)

exp

(
j

t

)
=

∞∑
n=0

jn

n!

1

tn
⇌ δ(f) +

∞∑
n=1

1

n!

π

(n− 1)!
sgn(f)(2πf)n−1. (43)

The next logical question is: Can we further expand the scope of the FT for a larger class of signals? Can we define
a larger space of distributions such that the FT is valid in that space? The answers to these questions are explored in
the next section.

Tempered superexponential distribution

Let us consider a test function ϕ(t) = exp
(
−σt2

)
for σ > 0, and x(t) = exp

(
αt2
)
such that exp

(
αt2
)
ϕ(m)(t) → 0 as

|t| → ∞ for all α < σ, and m ∈ {0, 1, 2, · · · }. We observe that

⟨x̂, ϕ⟩ = ⟨x, ϕ̂⟩ =
√

π

σ

∫ ∞

−∞
exp
(
αt2
)
exp
(
−π2t2/σ

)
dt =

√
π

σ

∫ ∞

−∞
exp
(
−t2((π2/σ)− α)

)
dt < ∞, (44)

which is finite for only α < (π2/σ) and α < σ =⇒ α < min(σ, π2/σ). This is to note that α < π for σ = π is the
optimum value of σ. Based on these observations, we propose and define a linear space of Gauss–Schwartz (GS)
functions as presented next.

Definition 14 Let Gs = Gs(R) = {ϕ ∈ C∞(R) |
(
c1t

k + c2 exp(at) + c3 exp
(
αt2
))

ϕ(m)(t) → 0 as |t| → ∞∀k,m ∈
N0, c1, c2, c3, a ∈ C, α < π}. This is the space of GS functions, where ϕ(t) = c exp

(
−π(t− t0)

2
)
with t0 ∈ R, c ∈ C,

and all its derivatives have Gaussian type decay.

Thus, the space Gs has a linear combination of the set of functions {tk exp(at) exp
(
−σt2

)
} for k ∈ N0, a ∈ C and σ = π.

We can also consider σ ∈ C such that its real part Re(σ) = π. Here, a function of maximum decay is exp
(
−πt2

)
. It

is well-known that S is the largest subspace of L1(R). Similarly, the space of test functions Gs is the smallest linear
subspace of S, where FT can be defined for its dual space G′

s. Since Gs ⊂ G, it implies that G′ ⊂ G′
s. The space Gs is
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smallest in the sense that its dual space G′
s is the largest linear space over which FT can be defined by duality. From

a test function ϕ(t) = c exp
(
−πt2

)
for c ∈ C, we can generate infinitely many test functions (i) by shifting ϕ(t− t0),

∀ t0 ∈ R, (ii) by amplitude scaling ci ϕ(t), ∀ ci ∈ C, (iii) by forming linear combinations
∑

i ciϕi(t), ∀ ci ∈ C, and (iv)
by considering products ϕ(t1, · · · , tm) = ϕ(t1) · · ·ϕ(tm) to obtain examples in higher dimensions.

Clearly, Gs is a linear space because (i) ϕ1 + ϕ2 ∈ Gs for all ϕ1, ϕ2 ∈ Gs and (ii) c ϕ ∈ Gs for all c ∈ C and ϕ ∈ Gs.
Some properties of the GS space Gs are: (1) Gs is a vector space and is closed under linear combinations; (2) Gs is not
closed under multiplication. For example, c1 exp

(
−πt2

)
∈ Gs and c2 exp

(
−πt2

)
∈ Gs. However, c1c2 exp

(
−2πt2

)
̸∈ Gs;

(3) Gs is closed under multiplication by polynomials and exponentials; (4) Gs is closed under differentiation; (5) Gs is
closed under translations and multiplication by complex exponentials; and (6) The functions of Gs are integrable, i.e.,∫
R |ϕ(t)|dt < ∞ for ϕ ∈ Gs.

Example 9 Let us consider a function ϕ(t) = exp
(
−πt2

)
∈ Gs. The time shifting of this function by t0 corresponds to

amplitude scaling and multiplication by an exponential because ϕ(t−t0) = exp
(
−πt20

)
exp(2πt0t) exp

(
−πt2

)
. Similarly,

the time shifting along with n-times differentiation (ϕ(n)(t− t0)) corresponds to amplitude scaling, multiplication by

an exponential, and an nth degree polynomial. The FT of these functions are (i) ϕ(t− t0) ⇌ exp(−j2πft0) ϕ̂(f), (ii)

ϕ(n)(t − t0) ⇌ (j2πf)n exp(−j2πft0) ϕ̂(f), where ϕ(t) ⇌ ϕ̂(f) = exp
(
−πf2

)
. Therefore, the proposed GS space is

closed under multiplication by only functions of polynomial and exponential growth and decay. Thus, the product of
functions in Gs is not in Gs because the decay of the resulting function after multiplication will be faster than that
defined for functions in Gs.

Definition 15 A tempered superexponential distribution is a continuous linear functional on the space of GS
functions, i.e., it is a mapping from Gs → C. The dual space of Gs is denoted as G′

s, which is a space of tempered
superexponential distributions.

A tempered superexponential distribution (TSE) refers to a distribution of temperate superexponential
growth, meaning thereby a growth that is at most exp

(
αt2
)
with α < π. One can observe that the linear spaces

follow the following containment: D ⊂ S ⊂ L2 ⊂ S ′ ⊂ G′ ⊂ G′
s ⊂ D′ and Gs ⊂ G ⊂ S ⊂ L2 ⊂ S ′ ⊂ G′ ⊂ G′

s ⊂ D′

as shown in Figure 1. Moreover, D ̸⊂ Gs and D ̸⊂ G. Since a test function ϕ ∈ Gs and its FT F{ϕ} = ϕ̂ ∈ Gs,

⟨T̂x, ϕ⟩ = ⟨Tx, ϕ̂⟩ =⇒ ⟨x̂, ϕ⟩ = ⟨x, ϕ̂⟩ for all Tx ∈ G′
s, where ϕ(t) = c exp

(
−πt2

)
for c ∈ C. A nice property of

TSE distributions belonging to G′
s is that the FT is a linear isomorphism, i.e., F : G′

s → G′
s because FT is a linear

isomorphism for space of GS functions, i.e., F : Gs → Gs. Thus, we can obtain FT of exp
(
αt2
)
with α < π in the

distributional sense as

exp
(
αt2
)
=

∞∑
n=0

αnt2n

n!
⇌

∞∑
n=0

αn

n!

(
j

2π

)2n

δ(2n)(f), (45)

∞∑
n=0

αn

n!

(
j

2π

)2n

δ(2n)(t) ⇌ exp
(
αf2

)
=

∞∑
n=0

αnf2n

n!
. (46)

Summary

Fourier Series

FS exists if any one or more of the following conditions are fulfilled:

1. x̃(t) ∈ L1(T) ∩BV (T).

2. x̃(t) ∈ BV (T).

3. x̃(t) ∈ Lp(T) for p > 1.
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D

S

G

Gs

L2

S ′
G′

G′
s

D′

Figure 1: Venn diagram representation of the linear spaces wherein D ⊂ S ⊂ L2 ⊂ S ′ ⊂ G′ ⊂ G′
s ⊂ D′ and

Gs ⊂ G ⊂ S ⊂ L2 ⊂ S ′ ⊂ G′ ⊂ G′
s ⊂ D′. Moreover, D is neither a subset of Gs nor a subset of G.

Fourier Transform

FT exists if one or more of the following conditions are satisfied:

1. x(t) ∈ L1(R) ∩BV (R).

2. x(t) ∈ L1(R) ∩ L2(R).

3. x(t) ∈ L2(R).

4. x(t) ∈ Lp([a, b]) for p > 1, where x(t) = 0, t /∈ [a, b].

5. If x(t) ∈ S ′(R) has at most polynomial growth, FT exists in the sense of tempered distribution.

6. If x(t) ∈ G′(R) has at most exponential growth, FT exists in the sense of exponential distribution.

7. If x(t) ∈ G′
s(R) has at most superexponential growth, FT exists in the sense of tempered superexponential

distribution.

What we have learned

This lecture note provided a detailed description of the various conditions that guarantee the existence of Fourier
representation for a given signal, along with some suitable examples. A brief discussion is presented to understand the
basics of distribution theory. The space of Gauss–Schwartz functions and corresponding distributions are proposed.
The distribution theory has been leveraged to show that FT can be defined for distributions of at most tempered
superexponential growth. We have also elaborated on the interpretation of FT for some popular signals because these
clarifications are lacking in the popular signal processing literature. The findings from this discussion can help in
building a clear and complete understanding of Fourier theory for both the students and researchers working in the
related areas.
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[33] M. Stéphane, A Wavelet Tour of Signal Processing, Third Edition, Academic Press, Boston, 2009.

[34] L. Grafakos, Classical Fourier Analysis, Graduate Texts in Mathematics, 249, Third Edition, Springer, New York,
2008.

[35] R. S. Strichartz, A guide to distribution theory and Fourier transforms, World Scientific Publishing Company,
1994. doi:https://doi.org/10.1142/5314.

13

https://doi.org/https://doi.org/10.1016/j.bspc.2019.101741
https://doi.org/10.1109/LCOMM.2020.3041722
https://doi.org/10.1016/0022-247X(92)90162-7
https://doi.org/10.1007/BF02392815
https://doi.org/https://doi.org/10.1142/5314

