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Abstract—Recently, deformable convolutional neural network
is commonly used in computer vision tasks, achieving remarkable
results. The existing method DCNv3, focuses more on heavy-
weight models rather than lightweight ones. These heavyweight
models are not suitable for small computing devices, which are
limited by their hardware to deploy lightweight convolutional
neural networks (CNNs). In this article, we focus on applying
the DCNv3 operation to lightweight CNNs. To explore the
performance of lightweight CNNs based on DCNv3, we conduct
experiments and find that DCNv3 does not fully utilize its
advantages with lightweight CNNs due to sparse sampling.
Yet the traditional solution of increasing kernel size boosts
computational load, making it unsuitable. Based on this situation,
we solve this dilemma from two levels, the core operation and the
visual feature extraction module. At the core operation level, we
propose Deformable Strip Convolution (DSCN). As a simplified
version of DCNv3 with large kernel, DSCN has only 63.2%
computational load of the original with respect to the deformable
sampling method. DSCN further avoids a quadratic increase in
computational load with kernel size by limiting the deformation
sampling kernels to single axis. At the visual feature extraction
module level, we propose Deformable Spatial Attention (DSA)
constructed from DSCN as a replacement for DCNv3. Specifically,
we observe the similarity between the modulation mask branch
in DCNv3 and spatial attention, and use spatial attention instead
of modulation mask branch based on this similarity to reduce
parameters and memory consumption. Finally, in order to verify
the effectiveness of our improved design, we further propose
a lightweight CNN backbone named DSAN. After conducting
numerous extensive experiments, we find that DSA has an infer-
ence speed that is 2.1 times faster than that of DCNv3 with large
kernel. In dense prediction tasks such as semantic segmentation,
DSAN-S with a lightweight decoder achieves 48.8% mloU on
ADE20K, which is higher than the result of InternImage-T based
on DCNv3 with a heavyweight decoder, while the number of
parameters and computation is only 35.0% and 9.1% of its.
QOur code is available at https://github.com/MarcYugo/DSAN-
Deformable-Spatial-Attention.

Index Terms—Deep neural network, vision fundation models,
deformable convolution, spatial attention mechanism

I. INTRODUCTION

N computer vision tasks, convolutional neural networks
(CNNs) has been proven to be very important. From
the perspective of the characteristics of visual data, such as
images, target objects have three basic attributes: position, size,
and shape. These characteristics provide criteria for judging
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whether a CNN is a good neural network for vision tasks.
That is, a good convolutional neural network should have
adaptability to object position, size, and shape [1]. However,
the design of vanilla convolution operation only considers
position adaptability. Therefore, the improvement works on
convolution operations mainly focus on enhancing size and
shape adaptability.

The adaptability of models to object size changes implies
that models should extract the appropriate features from ob-
jects of varying size. For vanilla convolution operations, their
small sampling range limits their capability to handle objects
of different sizes. The mainstream improvement is enlarging
the size of sampling range on spatial domain, like using larger
kernel size. The effectiveness of increasing the convolution
kernel is confirmed by RepLKNet [2], dilation convolution [3],
LKA [4] and MSCA [5].

Unlike the method of improving the object size adaptability,
the strategy of enlarging the sampling range has a very limited
impact on the object shape adaptability of CNNs. The fact is
proved by the work Deformable Attention Transformer [6].
ViT-based deep neural networks still are constrained by the
regularly sampling, even their sampling is the whole spatial
domain. The methods of enhancing the shape adaptability of
convolution operations are mainly achieved by designing irreg-
ular convolution kernel shapes or rather changing the sampling
strategies. These works includes the Deformable Convolution
(DCN) series [1], [7], [8], DSC [9], DeBut [10], DIKS [11] and
KPN [12], etc. The recent work Internlmage [8], a backbone
based on DCNv3 has good size and shape adaptability at
the same time, achieving SOTA on several computer vision
task datasets. Still, the smallest InternImage-T in the existing
Internlmage series has near 30M parameters, lacks suitability
for lightweight CNN applications.

In this article, we find and address the challenges of apply-
ing DCNv3 to lightweight CNNs. Firstly, through experiments,
we find that DCNv3 does not fully utilize its advantages when
applied to lightweight CNNs, and the reason is sparse sam-
pling. To overcome this sparse sampling issue, we attempt to
use DCNv3 with large kernel to compensate. Yet this measure
leads to some problems, such as high memory consumption,
many parameters and slow training speed. Therefore, we
propose a deformable sampling core operation DSCN and a
feature extraction module DSA that simultaneously address the
poor performance of DCNv3 with large kernel on lightweight
CNN:gs, achieve better computational speed and fewer memory
consumption. Specifically, DSCN is a simplified version of
DCNV3 core operation, which retains the deformation sam-
pling characteristics of DCNv3 while minimizing the compu-
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Fig. 1. Illustration of regularly shaped receptive fields of the vanilla
convolution and irregularly shaped receptive fields of our proposed DSA.
The enhancement of shape adaptability can be reflected by the shape of the
receptive field. (a) and (b) show the receptive fields of a vanilla convolutional
kernel and the spatial attention implemented by two strip convolutional kernels
in MSCA [5], respectively. (c) and (d) show the receptive fields caused by
different sampling distributions of DSA, respectively.

tational load and parameters. DSCN replaces bilinear inter-
polation with linear interpolation and drops the modulation
mask. Furthermore, the deformable sampling is restricted to
a single axis to avoid the quadratic growth in parameters
and computational load that results from increasing the kernel
size. After that, we observe the similarity between modulation
mask branch in DCNv3 and spatial attention. Based on this
similarity, we design Deformable Spatial Attention (DSA) by
replacing the modulation mask branch with spatial attention
multiplication to reduce the weight of DCNv3. As a replace-
ment of DCNv3 with large kernel, DSA use a pair of DSCN
operation along the x and y axes to implement deformable
sampling in the entire spatial domain. DSA learns the irregular
sampling distribution during training, which reflects on various
receptive field shapes, as shown in Fig. 1. After deconstructing
and redesigning DCNvV3, we obtain a feature extraction module
DSA that maintains the deformable sampling while avoiding
sparse sampling. To verify the effectiveness of our design, we
further propose a lightweight CNN backbone named DSAN
based on DSA according to the principles of large kernel
convolutional network design [2]. To examine the performance
of DSAN, we evaluate it on four kind benchmark datasets.
Our experiments and analyses demonstrate the superiority of
DSAN in semantic segmentation, with DSAN-S achieving
higher mloU than InternImage-T based on DCNv3 while
having fewer parameters and memory consumption.
Our main contributions can be summarized as follows:

1) We propose Deformable Strip Convollution (DSCN)
by simplifying DCNv3, which is more suitable for
lightweight CNN than the core operation of DCNv3.
Compared to core operation of DCNv3, DSCN has
has fewer parameters and computational load, which
reflects from two perspective. First, DSCN does not
require a modulation mask, reducing the amount of
computation and parameters in this part. Second, DSCN
is stripped and has linear interpolation, avoiding the
computational complexity increases quadratically and
reducing the computational load of single pixel defor-

mation sampling.

2) We propose a new attention module named Deformable
Spatial Attention (DSA) to replace DCNv3. Since the
core part of the deformable sampling in DCNV3 is the
offset branch rather than the modulation mask branch,
we want to find an alternative to the mask branch. First,
we analyze and find the similarity between the mask
branch and spatial attention. Based on this, we use a
pair of DSCN operations along x and y axes as the
deformable sampling unit and spatial attention to form
a visual feature extraction module DSA.

3) To verify DSCN and DSA, we propose a new
lightweight CNN backbone called the Deformable Spa-
tial Attention Network (DSAN). DSAN demonstrates
performance at the intermediate to high levels across
various vision tasks, including image classification, se-
mantic segmentation and object detection. Especially in
dense prediction task semantic segmentation, DSAN-S
with a lightweight decoder outperforms Internlmage-T
with a heavyweight decoder, achieving 48.8%(+0.7%)
mloU on the ADE20K validation set, with only 35.0%
and 9.4% of its parameters and computation. On the
other vision tasks, DSAN-S achieves a top-1 accu-
racy of 82.3% on ImageNetlK [13], 81.4% mloU on
Cityscapes [14], and 46.1% mAP on COCO [15]. Com-
pared to existing deformable CNNs, our model strikes
a balance between performance and efficiency, reducing
the hardware requirements for its deployment.

The remainder of this article is structured as follows. In
Section II, we review related work including vision fundation
models, attention mechanism and deformable convolution. We
mainly illustrate the details about the proposed DSCN, DSA
and our lightweight CNN backbone, DSAN, in Section III.
In Section IV, we demonstrate ablation studies and extensive
experiments about our proposed method. We summarize our
paper in Section V.

II. RELATED WORK

A. Vision Fundation Models

For most computer vision tasks, deep neural networks used
for these tasks always adopt an encoder-decoder architecture.
The encoder part is a vision fundation model, also named
backbone, undertakening the main workload of extracting fea-
tures from input images. The encoders of this architecture have
the capability to be categorized into CNN-based models [?],
[5], [8], [16] and ViT-based models [6], [17], [18], based
on the mechanism they employ. In the early works, CNN-
based models are the mainstream for vision tasks on large
scale datasets. Then, ViT-based models appear and achieve
great reasults on many vision tasks, benefiting from their
global receptive field. Recently, the improved CNN operations
have also been combined with the ViT structure to construct
a backbone, such as Internlmage [8]. In this article, our
work focuses on modifying the attention module and builds
lightweight CNN backbones.
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B. Attention Mechanism

Attention mechanism is inspired by the perceptual behavior
of humans and has been applied to computer vision, such as
channel attention, spatial attention and self-attention mech-
anism. Early works that introduce attention mechanism to
improve CNNs include SENet [19], CBAM [20] and Non-
local [21]. SENet implements channel attention by utilz-
ing global pooling operations and linear mapping to enable
model to focus on the channel domain. Based on channels
attention, CBAM adds spatial attention to enable CNNs to
extract features on both channel and spatial domains. Non-
local introduces self-attention into CNNs, enabling them to
extract global features while potentially slowing down the
efficiency of inference. In the context of image encoders,
Large Kernel Attention (LKA) [4] combines dilation convo-
lution and separable convolution to implement channel and
spatial attention at the same time. Based on LKA, Multi-scale
Convolutional Attention (MSCA) [5] utilizes the multi-scale
strip convolutional kernels to conpensate for the shortcomings
of LKA, which lack feature extraction capabilities for multi-
scale objects. In essence, LKA and MSCA also contain spatial
attention. Spatial attention has also been widely validated in
numerous visual tasks, such as SCTFA [22], FSAD-Net [23],
GCA [24], and so on. Our work is the closest to STDAN [25].
Different from it, which directly combines DCN and spatial
attention, we find the similarity between the modulation mask
branch of the DCNv3 and spatial attention, and use this as the
basis for replacing the modulation mask with spatial attention
when constructing our deformable sampling module DSA to
reduce parameter and memory consumption.

C. Deformable Convolution

To overcome the limitations of vanilla convolution, there
are some methods that work to improve its shape adaptability.
Among the existing methods, The most widely applicable is
the DCN series. DCNvI [1] changes the regular sampling in
vanilla CNN operation based on the learned offset, or modifies
the regular receptive field. The work uses additional branch to
attain a adaptive sampling position offset covering the entire
spatial domain for each weight in sliding window, resulting in
DCN kernels have a global and irregular receptive field. Based
on DCNvl, DCNv2 [7] enhance adaptive sampling of the
DCN kernels by using modulation masks. The improvement
strategy allows DCNv2 kernels to control sampling over a
broader range of feature levels and achieve better results
than DCNvl. To apply DCNv2 to large-scale CNN-based
foundation models, DCNv3 [8] separates DCNv2 weights into
depth-wise and point-wise parts, introduces the multi-group
mechanism, and applies new modulation mask normalization.
These advancements result in stronger sparse sampling ability
and more stable training process. Though shared weights in
DCN help to reduce the number of parameters, DCNv3 still
keeps the offset and mask produced by sibling branches as
the source of the additional parameters. The DCN series
are extensively tested in a wide range of applications. For
example, Xu et al. [26] use DCNvl to construct a network
for multiview face image synthesis, making their model more

suitable for situations with large pose variations. Zhu et al. [27]
apply DCNV2 to construct the core module PDA of their model
DVSRNet and use it to eliminate the motion error targeting
high super-resolution quality, achieving better performance
than state-of-the-art methods.

In this article, we pay attention to the optimization of the
DCN core operation. Our proposed DSCN greatly reduces the
computational load while retaining the deformable sampling
ability of DCNv3, which improve the usability of DCNv3 on
lightweight CNNGs.

III. PROPOSED METHOD

In this section, we first discuss the characteristics of DCNv3
and the reasons that it fails to exhibit its inherent advantages
when applied to lightweight CNNs. We then introduce the
simplified DCNv3 operation Deformable Strip Convolution
(DSCN), the visual extraction module Deforamble Spatial
Attention (DSA), and the lightweight CNN backbone De-
formable Spatial Attention Network (DSAN) in detail.

A. Preliminaries

Parameters and memory consumption of DCNv3. On
the one hand, in design of DCNv3 , despite the efforts made
to detach weights into depth-wise and point-wise parts and
introduce multi-group machanism to reduce the parameters
of DCN, the offset and modulation mask still account for
the additional parameters and memory consumption. On the
other hand, bilinear interpolation used in DCNv3 operation
has a high computational load. The core operation of DCNv3
restricted to two axes results in a quadratic increase in the
number of deforamble sampling operations with the kernel
size, which greatly increases the computational load.

Core operation and deformable sampling. There are two
side branches in DCNv3: the offset branch and the mask
branch. The mask branch is mainly responsible for weighting
in the spatial domain. The offset branch is responsible for
learning sampling offsets and shares the ability to improve
shape adaptability with the core operation. The core operation
of DCNv3 is formulated as Eqn. 1 [8].

G K

Y(Po) = D ) Wymgrxe(po +pi + Apgr) (1)
g=1k=1

Sparse sampling. We directly use the DCNv3 (3 x 3)
as a feature extraction module to construct a lightweight
CNN based on ViT structure and train it on ImageNetlK.
On samples with poor recognition performance, we conduct
visual analysis and find that on its shallow layers, the offset
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Fig. 2. Visualization of sparse sampling. DCNv3 determines whether to
activate the central red sampling point based on the offset blue sampling
point.
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sampling of DCNv3 occurs very far from the center target
point, with relatively few sampling points within the sampling
range, i.e. sparse sampling, as shown in the Fig. 2. This sparse
sampling occurring in shallow layers can be compensated for
by the multiple groups in DCNv3 in heavyweight CNNs, but
in lightweight CNNs with small parameter sizes and shallow
layers, it increases noise and interfere with the later layers’
judgment of the target.

B. Deformable Strip Convolution

To make DCNv3 with large kernel more suitable for
lightweight CNNs, we design Deformable Strip Convolution
(DSCN). We mainly use two measures to simplify the core
operation of DCNv3. One measure is to directly constrain
irregular sampling along the x or y axis and replace bilinear
interpolation with linear interpolation. The other measure is
to remove the mask weights in the core operation. We reveal
the similarity between the modulation mask branch and use
spatial attention to replace the modulation mask branch in the
next subsection.

Firstly, a sampling process based on learned offset has the
capability to be decomposed into separate sampling along
the x and y axes. The analysis presented below provides
the justification for this idea. In Eqn. 1, Apy represents the
coordinate offset of the k-th sample point in the convolution
kernel on the spatial domain. Here, k is equivalent to (,j)
when expressed in spatial coordinates. In Eqn. 1, x, and
w, represent logical d1V1510ns of the tensor instead of actual
splitting actions. And Z __, indicates the individual sampling
based on learned offsets of per deformable group, where same
group shares one offset tensor. Considering two strip DCNv3
operations along the x and y axes, and they are formulated as
Eqn. 2a and Eqn. 2b, respectively.

G Ky,—1
Y whmgx(io jo + j + Ap)
g=1 j=0
G Kp-1

)= Z Z WQmiOyl(io + i+ ApY. jo)

g=1 =0

y' (G0, jo) = (2a)

y*(io, Jjo (2b)
The two operations successively perform irregular sampling
along the x and y axes. The K, and K}, represent the sampling
size of a DCNv3 operation on the x and y axis, respectively.
Substituting Eqn. 2a for Eqn. 2b, we get the final output
superpixel after separate sampling along the x and y axes
(Eqn. 3).

G Kp—1K,—
2(io, o) =Y Y Z w'mi x(io+i+Ap, jo+j+Ap])
g=1 i=0 j=0

3)
Due to w!,w? € RE*¢ and mé,ijzz,O € R, the product
of them has the capability to be rewritten into w'm; ; =
W2w1m12)0m[1)7j, which is similar to Eqn. 1. In essence, the
offset sampling that provides deformation capability in DCNv3
is to integrate the four pixel points around the offset position
using bilinear interpolation according to their distance. Two
successive bilinear interpolations along x and y axes also

achieve this. After the analysis and reasoning, we demonstrate

that DCNv3 sampling in the spatial domain has the capability
to be replaced by separate DCNv3 sampling along the x and
y axes.

DSCN. When offset sampling is restricted to a single axis,
there is no difference between bilinear sampling and linear
sampling in the addition and integration of pixels, but in
practical programming, it reduces the number of zero-value
operations. Hence, we use linear interpolation in the design of
DSCN. Then, according to the similarity between modulation
mask and spatial attention, it iS not necessary to contain the
mask. After all simplification measures, the design of DSCN
units along the x and y axes are formulated as Eqn. 4a and
Eqn. 4b.

G —

¥ (io, jo) Z Z X(io, jo +j +Apf)  (4a)
= =
G Kp

y* (i0, jo) Z Z (io+i+Apf,jo)  (4b)

Consistent with the symbol meanings in Eqn. 1, G represents
the number of deformable groups. Within the g-th deformable
group, w € REX¢ and x € RE*H*W denote the weights of
linear mappings and their corresponding inputs.

For the computational complexity, the parameters and com-
putational load of DSCN increase linearly with kernel size,
that O(n) instead of O(n?). An offset superpixel is obtained
by two linear interpolation operations, which reduces the
computational load to 63.2% on theory compared to a bilinear
interpolation operation. The proof is as follows.

C\ f) ,,,,,, \1\“/
NDENC, f f
[ {\\)\ :
\ : —_ - :
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Linear interpolation
on the y-axis

Linear interpolation
on the x-axis

Bilinear interpolation
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Fig. 3. The difference between bilinear interpolation and linear interpolation.
(a) shows a deformable sampling for a grid with four pixels used by bilinear
interpolation. (b) shows that two successive linear interpolation operations on
the grid.

Suppose three pixels on spatial domain, and their coordi-
nations are (zo,¥yo),(z1,y1) and (z2,y2). For bilinear inter-
polation, the pixel values f(x1,y1) and f(z2,y2) are known,
f(xo0,y0) is obtained by a bilinear interpolation operation. The
bilinear interpolation operation is formulated as Eqn. 5.

f(zo,90) =f(x1,91) (22 — 0)(y2 — vo)
+ f(@1,92)(xo — 1)(y2 — Yo)
+ f(x1,y2) (22 — 20) (Yo — Y1)

+ f(z2,y2) (2o — 1) (Yo — y1)

&)

In linear interpolation, the f’(xo,y1) and f(zo,y0) are ob-
tained through two successive interpolation operations, respec-
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tively. These two successive linear interpolation operations are
formulated as Eqns. 6.

f'(@o,y1) = f(zr,y1)(xo — 1) + flzz,y1) (w2 — x1) (6a)
f(@o,y0) = (o, y1) (o — 1) + [ (x1,y2) (Y2 — y1) (6b)

If the pixel at the coordinates (1, y2) is not obtained by offset
sampling, then f/(z1,y2) = f(x1,y2). Resume that there is
a grid with four pixels and all pixels are offset sampled, as
shown in Fig. 3. After counting the floating-point operations
(FLOPs), these are 76 FLOPs for a bilinear interpolation
operation while two successive linear interpolation operations
require only 48 FLOPs, which is 63.2% of the original amount
required for bilinear interpolation. Therefore, we use DSCN
to replace a DCNv3 with large kernel, achieving the goal of
lightweighting.

C. Deformable Spatial Attention

In this subsection, we first discuss the similarity between
modulation mask branch in DCNv3 and spatial attention.
Then, we introduce Deformable Spatial Attention (DSA).

Similarity between modulation mask branch in DCNv3
and spatial attention. In the design of DCNv3, there are
six parts of it: input linear projection, depth-wise convolution,
offset linear projection, mask linear projection, DCNv3 core
operation and output linear projection, as shown in Fig. 4a. We
believe the three flow charts shown in Fig. 4 have equivalent
functions, even though they appear different. The processing
flow shown in Fig. 4c has the capability to be derived step by
step from the one shown in Fig. 4a. The basis and analysis
are as follows.

Output Output Output
DCN op. T
e, %
i( DCN op. ]
Offset ~ Mask T ry P Offset
Mask Offset Linear
{__Linear i("Linear ]
- S 1 DWConv
( bwConv ] { DWConv i(DWConv) —
d EENNNEG T = Pre-proc
Linear ! Linear proc.
It Input Input
@ (b) (©

Fig. 4. DCNv3 and its evolution. We try to use these flow charts to reveal
the similarity between modualtion mask and spatial attention. (a) shows the
processing flow of a DCNv3 unit. (b) and (c) show processing units with
an equivalent processing flow of a DCNv3 unit. “DCN op.” represents the
core operation of DCNv3. Linear operation acts on channel domain. The
terms “DWConv” and “DPConv” represent the depth-wise convolution and
its combination with point-wise convolution, respectively. The symbol ©
represents the element-wise multiplication operation.

In Eqn. 3, w € RY*C, and x € RE*W represent
the group weight and the input features, respectively. The
modulation mask is represented by M € RUKn*Kuw)xHxW
and m; ; represents the value at spatial coordinate (i, jo) as
M((i x Ky + j,%0,70). From Eqn. 3, we observe the core
operation of DCNv3, which involves sampling based on the

learned offset, a spatial coordination (Ap?, Ap? ). In Fig. 4a,

the depth-wise convolution (DWConv) in DCNv3 is shared by
the producing both the offset and modulation mask producing
branches, which is used to reduce the number of parameters.
Therefore, a new DWConv is added to detach modulation
mask branch out from offset branch. Then, Eqn. 3 implies that
the nature of DCNv3 core operation is collecting superpixels
in the spatial domain according to learned offset and multiply
it with modulation mask value at the same time. Hence, Eqn. 3
can be reformulated as Eqn. 7.

¥(io, jo) = WO1 * (02 M’ (ig, jo) © Xy) (7

In Eqn. 7, O; € REXKnxKw and O, € RE*! denote
tensors filled with ones, respectively. The term M’ (i, jo) €
RI*(KnxKw) denotes the reshaped version M (ig, jo) with an
additional dimension while the term x,, € RE*KrxKw denotes
the corresponding element tensor of sampling grid collected
by DCNv3 core operation within the spatial domain. Symbols
* and © represent the depth-wise convolution operation and
element-wise multiplication operation, respectively.

Then, a linear operation W' € RERXEw)XHXW ¢ added
to map sliding windows to the spatial domain and Eqn. 7 is
applied to full input x, resulting in Eqn. 8. The reason for
such replacement is that the weights of modulation mask are
not spatially repeated, different from the repeated weights of
vanilla convolution.

y = wO; * (OoM'W' ©x) ()

In this equation, two terms are identified as representing
specific operations. The terms wO; * (), Oy and W' are
equivalent to a combination of depth-wise convolution and
point-wise convolution operation, and two linear operations,
respectively. After these equivalent transformation, the pro-
cessing unit shown in Fig. 4b is formed. Ultimately, upon fully
integrating the modulation mask branch into into the prefixed
processing module, a modualtion mask branch in DCNv3 unit
is transformed into a branch similar to spatial attention.
DSA. Inspired by the similarity between DCNv3 and spatial
attention, we propose to substitute spatial attention instead of
the modulation mask branch, and combining it with DSCN to
design DSA. DSA comprises a pair of DSCN operations along
x and y axes, two 1 x 1 convolution kernels, a 5 x 5 depth
separable convolution kernel, a GELU activation function,
and spatial attention element-wise multiplication, as shown
in Fig. 5b. Among these components, the pair of DSCN
operations along x and y axes is responsible for for conducting
deformable sampling within the spatial domain. The other
CNN kernels assist DSCN in feature extraction. After infor-
mation extraction by the first single-axis DSCN, the spatial
information along the other axis temporarily changes, which
results in an inaccurate offset tensor being learned by the
second DSCN. Therefore, the feature tensor should not simply
pass through two consecutive DSCN operations. To avoid this,
we add a pathway between the second DSCN and the 5 x 5
depth separable convolution, enabling the offset branch of this
DSCN to receive feature tensors that have not been processed
by the first DSCN, as depicted in Fig.5a and Fig.5b. The pair
of DSCN operations along the x and y axes work together
to achieve irregular sampling in the spatial domain, inheriting
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Fig. 5. The components and processing flow of DSCN, DSA and FFN.
(a) illustrates that two DSCN core operations (Op.) along the x and y axes,
respectively. (b) presents DSA, which is composed of a pair DSCN operations,
two linear operations acting on channel domain and a GELU activation
function. (c) shows FEN, consisting of two linear operations, a combination
of depth-wise convolution and point-wise convolution, and a GELU activation
function.

the characteristic of globally irregular sampling from DCNv3
while being lightweight.

Additionally, aking into account both the FFN module in
spatial-attention-based CNNs and the principles of designing
large kernel networks proposed in [2], the FFN module is
designed with a sequence of operations, shown in Fig. Sc.
This sequence consists of two linear operations acting on
channel domain, a combination of depth-wise and point-wise
convolution, and a GELU activation function.

D. DSAN

In this section, we introduce how the lightweight CNN back-
bone DSAN is constructed. There are two types of blocks used
to build DSAN. The first one is named the embedding block,
which is utilized to adjust the spatial size and channels of
input tensors. The second type is the basic block, responsible
for extracting visual features from input tensors. We construct
it based on the basic block structure of ViT [17], incorporating
DSA, FFN, and batch normalization. Finally, these embedding
blocks and basic blocks are stacked together to form the
lightweight CNN backbone DSAN.

DSAN has a classical structure with a sequence of four
stages. In this structure, the output spatial resolution decreases,
ie % X %, % X %, 1% X ng and 3% X S—Vg while the number
of the channels increases, which implemented by embedding
blocks, as shown in Fig. 6.

The input images are first processed by the embedding
block, which spatially splits the images into overlapping
patches. Within each stage, the layers maintain a consistent
composition, with the same input and output sizes as well
as the number of channels. To thoroughly explore the perfor-
mance potential of DSAN, we construct DSAN-T and DSAN-
S using two sets of hyperparameters. The details for both
DSAN-T and DSAN-S, including the depth of stages, the
number of channels, the output spatial size of the stages, the
sampling size of DSCN operations, and the total number of
parameters (excluding the linear head), are shown in Tab. I.

Fig. 6. Overall structure of DSAN. DSAN has a sequence of four hierarchical
stages. Each stage consists of a stack of basic blocks, where the core
visual extraction module is DSA. Each basic block is stacked by DSA,
FFN and batch normalization, utilizing the residual connections throughout.
Additionally, a embedding block consists of a vanilla convolution and a batch
normalization.

TABLE I
THE HYPERPARAMETERS FOR DSAN OF DIFFERENT SCALES

Model & #Params \ Stagel Stage2 Stage3 Stage4
Spatial size ‘ % % % X % % X % 3% X %
Cc=32 C=064 C =160 C =256

DSAN-T 1 =3 lo=3 I3=5 Iy =2

43 M K =11 K =11 K =1 K=

P=11 P=11 pP=7 P=5

G=1 G=4 G=28 G=28

C=064 C=128 C =320 C=512

DSAN-S lh=2 lp=2 l3=5 ly=3
194 M K=15 K =13 K=7 K=5
P=9 pP=7 P=5 P=5

G=4 G =8 G=16 G=16

From our perspective, the reason why DCNv3 (3 x 3)
sampling operation loses its advantage in lightweight CNNs
is due to its limited sampling coverage across the entire
spatial domain, leading to a dearth of sampling information for
effective perception and reasoning. Enhancing the sampling
capability would typically involve increasing the sampling
size or stacking more layers. However, both methods lead
to an increase in the number of parameters, thereby negating
the ‘lightweight’ attribute of the model. Due to the compact
computational requirements and reduced parameter count in
DSCN and DSA, DSAN is still considered lightweight even
with the application of large kernel sampling.

IV. EXPERIMENTS

In this section, we carry out a series of experiments
to validate our lightweight CNN backbone DSAN. These
experiments include an ablation study, image classification,
semantic segmentation, and object detection. The ablation
study is specifically designed to demonstrate the effectiveness
of the key components within DSA. Meanwhile, the other
experiments are aimed at verifying the general performance
and adaptability of DSAN across various computer vision
applications.
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A. Datasets and Implementation Details

Datasets. Our method is evaluated on multiple datasets
to validate its performance. These datasets include Ima-
geNet1K [13], ADE20K [28], Cityscapes [14] and COCO [15].
ImageNetlK is a vast image classification dataset with 1,000
categories. It consists of 1.28M images for training and 50K
images for validation. ADE20K is a popular dataset specifi-
cally designed for semantic segmentation task. It includes 150
semantic categories and consists of 20K, 2K, and 3K images
for training, validation, and testing, respectively. Cityscapes
is a dataset for semantic segmentation in the context of
autonomous driving. It consists of 19 categories and utilizes
2,975, 500, and 1,525 images for training, validation, and
testing, respectively. Lastly, COCO is a large-scale dataset for
many computer vision tasks. For object detection, it has 80
categories, including 118K and 5K images for training and
validation, respectively.

Implementation Details. To guarantee the highest possible
performance, we implement a two-stage training strategy.
Initially, we pre-train DSAN on ImageNet1K. Following this,
we proceed to fine-tune the pretrained DSAN on the datasets
of specific downstream tasks, including semantic segmentation
and object detection. The experimental implementation is car-
ried out using PyTorch [29], timm [30], mmsegmentation [31]
and mmdetection [32]. All models are trained on a node
equipped with eight nvidia RTX 3080Ti GPUs and another
node equiped with four nvidia RTX 3090 GPUs. The specific
training configurations for the different tasks are detailed as
follows.

Image classification. The dataset is ImageNet1K. The
training settings are followed in [4], [5], [33], with a total
of 310 epochs. For optimization, we use the AdamW [34] ,
setting its momentum to 0.9 and weight decay at 5x 10~2. The
maximum learning rate is configured as 1 x 10~3, and a warm-
up strategy coupled with a cosine scheduler [35] is employed
to adjust the learning rate throughout the training process.
For the training images, they are resized to a dimension
of 224 x 224. For both DSAN-T and DSAN-S, we set the
batch size to 512 x 512, which optimizes the balance between
computational efficiency and effective training performance.
At this stage, we use mixup, random clipping, random flipping
and cutmix to augment the training data. Furthermore, we
incorporate Layerscale [36] and Droppath [37] methodologies
in the training process. For performance evaluation, we utilize
the top-1 accuracy metric.

Semantic segmentation. The datasets are Cityscapes and
ADE20K. This experiment mainly refers to [5]. The optimizer

employed is AdamW, with a momentum of 0.9 and weight
decay set at 5 x 1072, The maximum learning rate is set to
6 x 1075, the minimum learning rate is set to 1 x 1076,
The training process utilizes 180K iterations for ADE20K.
Similarly, for Cityscapes, it uses 80K iterations. he input sizes
for ADE20K and Cityscapes are configured to be 512 x 512
and 512 x 1,024, respectively. For the evaluation of semantic
segmentation performance, we adopt the mean Intersection
over Union (mloU) as our primary metric.

Object detection. The dataset is COCO. This experiment
mainly refers to [8]. We employ two popular object detection
frameworks, Mask R-CNN [38] and RetinaNet [39], to validate
our backbones. The latter is utilized solely for the ablation
study purposes. In this study, we set the batch size is 32 and
configure the input image size as 1,024 x 800. For Mask
R-CNN, the training settings are followed in [8]. The input
sizes of images are 1,333 x 800, and the total number of
training epochs is set at 12. The batch size is adjusted to
16. AdamW serves as the chosen optimizer, with the learning
rate established at 1 x 10~%. We employ the mean Average
Precision (mAP) as our primary metric for evaluation.

B. Ablation Study on Attention Module

This subsection is divided into two parts. The first part
presents an ablation study focusing on the key components
within DSA, specifically the dual DSCN operations along the x
and y axes, as well as the attention multiplication mechanism.
We begin by pre-training DSAN-T that lack one of these
key components and then proceed to fine-tune them on the
semantic segmentation dataset ADE20K and object detection
dataset COCO. he outcomes of this experiment are tabulated
in Tab. IIL

TABLE III
ABLATION STUDY ON THE KEY COMPONENTS OF DSA

Op.(x) Op.(y) Atten. \ Acc (%) mloU (%) mAP (%)
X v v 75.2 422 39.5
v X v 75.4 42.8 39.6
v v X 75.8 43.0 40.1
v v v 76.4 43.5 40.7

The pair of DSCN operations along the x and y axes. In
the table, “Op.(x)” and “Op.(y)” denote the DSCN operations
along the x and y axes or DSCN 1 x K and K X 1, respectively.
The pair of DSCN operations enables DSA module to have a
globally deformable receptive field, improving its adaptability
to the irregular shape of objects and the ability to capture

TABLE I
ABLATION STUDY ON THE FEATURE EXTRACTING MODULE

Module #Params. Classification Segmetation Detection Inference
‘ ‘ Acc  Mem. Speed | mloU Mem. Speed | mAP  Mem. Speed | Mem. Speed
DSA w/ DSCN 4.3M 764 784 1993 435 68.0 166 40.7 68.8 74 23 62
DSA w/ strip DCNv3 4.™M 764 848 1606 425 68.8 158 37.8 69.7 68 2.6 50
DSA w/ strip conv. 3.9M 749  83.6 2930 41.8 67.2 187 39.3 57.5 89 1.8 95
DCNv3 (3 x 3) 3.8M 743 752 2760 42.1 67.2 158 39.9 69.7 68 1.8 81
DCNv3 (large kernel) 5.4M / OOM / / / / / / / 2.6 30
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a long range of pixel relationships. After removing DSCN
operations along the x and y axes, the accuracy of the model
on the validation set of ImageNetlK drops by 1.2% and
1.0%, respectively. And the mloU on the validation set of
ADE20K drops by 1.3% and 0.7%, respectively. The mAP
on the validation set of COCO drops by 1.2% and 1.1%,
respectively.

Attention. Attention makes the model achieve adaptive
property and replace the function of modulation masks. After
removing it, the accuracy of the model on the ImageNetl K
validation set decreases by 0.6%, the ADE20K validation set
mloU decreases by 0.5% and the COCO validation set mAP
decreases by 0.6%.

The results of this abalation sutdy imply that DSCN opera-
tions and attention multiplication have a significant impact on
DSA, which are proved to be the effective components.

Another part is the ablation study on the parts related to
deformation sampling of DSA. We substitute the pair of DSCN
operations with a pair of vanilla strip convolution operations
and another pair of strip DCNv3 operations to demonstrate
the advantage of the large deformable receptive field, as well
as the effectiveness of our proposed improvements. All strip
convolution operations have an identical kernel size for fair
comparison. We also compare DSA against a DCNv3 unit
with a smaller kernel size (3 x 3) to validate our hypoth-
esis regarding the performance limitations caused by sparse
sampling of DCNv3. Furthermore, we include performance
metrics for DCNv3 with larger kernel, where the kernel size
matches that of the strip convolution operations, in order to
provide a comprehensive evaluation.

Based on the results from this ablation study, as presented
in Tab. II, it is evident that DSCN reduces the parameter
count and memory consumption of DCNv3 while maintaining
or even surpassing its performance levels. In the table, the
metrics for memory consumption (labeled "Mem.”) and speed
are measured in GB and frames per second (FPS), respectively.
Specially, apart from DSCN, the other three convolutional
kernel configurations do not show superiority across all three
tasks. The pair of DSCN operations outperforms a pair of strip
vanilla convolutions by achieving an improvement of 1.5%
top-1 accuracy, 1.7% mloU, and 1.4% mAP. Additionally,
there is a distinction between DSA with strip DCNv3 and
the one with DSCN in that the former does not incorporate
attention multiplication. The comparison of the results from
these experiments also reveals that spatial attention plays
a similar role to modulation mask branch when employing
DCNv3 with large kernel.

From the analysis of the training process, DSA accelerates
the training process of DSAN-T. We use the FPS to evaluate
the training computitional speed of DSAN-T on a node with
eight 3080Ti GPUs. Specifically, DSCN operations leading to
a24.1% 5.1% and 8.8% training acceleration effect on image
classification, semantic segmentation and object detection,
respectively, compared to strip DCNv3. Our design is enable
to be pretrained on the same equipment while DCNv3 with
large kernel has a Out-Of-Memory (OOM) state. Furthermore,
DSCN also exhibits a 7.5% decrease in training memory
consumption when compared to strip DCNv3.

TABLE IV
THE PARAMETERS, FLOPS AND TOP-1 ACCURACY OF DIFFERENT
METHODS ON IMAGENET1K VALIDATION SET

Method #Params (M) | FLOPs (G) | Acc (%)
PVTv2-BO [18] 34 0.6 70.5
MiT-BO [40] 3.7 0.6 70.5
VAN-T [4] 4.1 0.9 75.4
MSCAN-T [5] 4.2 0.9 75.9
DSAN-T (ours) 4.5 1.0 76.4
ResNetl8 [41] 11.7 1.8 69.8
PoolFormer-S12 [42] 11.9 2.0 77.2
PVT-Tiny [43] 13.2 1.9 75.1
VAN-S [4] 13.9 2.5 81.1
MiT-B1 [40] 14.0 2.1 78.7
MSCANS-S [5] 14.0 2.6 81.2
gMLP-S [44] 20.0 4.5 79.6
RegNetY-4G [45] 21.0 4.0 80.0
ResNeXt50-32x4d [16] 25.0 4.3 77.6
MiT-B2 [40] 25.4 4.0 81.6
VAN-B [4] 26.6 5.0 82.8
MSCAN-B [5] 26.8 5.1 83.0
Swin-T [46] 28.3 4.5 81.3
InternImage-T [8] 299 4.8 83.5
DSAN-S (ours) 19.9 3.2 82.3

TABLE V
THE PARAMETERS AND RESULTS OF DIFFERENT METHODS ON ADE20K
VALIDATION SET

Method [ #Params (M) | FLOPs (G) | mloU (MS)
Segformer-BO [40] 3.8 8.4 38.0
SegNeXt-T [5] 4.3 6.6 42.2
PVTv2-BO-FPN [18] 7.6 25.0 37.2
VAN-T-FPN [4] 8.0 25.8 38.5
DSAN-T-Ham (ours) 4.6 6.8 43.5
Segformer-B1 [40] 13.7 159 43.1
SegNeXt-S [5] 13.9 15.9 45.8
ResNet18-FPN [41] 15.4 31.1 329
PoolFormer-S12-FPN [42] 16.0 31.0 37.2
PVT-T-FPN [43] 17.0 33.2 35.7
VAN-S-FPN [4] 17.6 34.6 42.9
PoolFormer-S24-FPN [42] 23.0 39.0 40.3
SegNeXt-B [5] 27.6 349 49.9
PVT-S-FPN [43] 28.2 44.5 39.8
VAN-B-FPN [4] 30.3 47.7 46.7
InternImage-T-Uper [8] 59.1 236.1 48.1
DSAN-S-Ham (ours) 20.7 23.0 48.8

From the analysis of the inference, DSA with DSCN
achieves an inference speed that is 2.1 times faster than
DCNv3 with large kernel and 1.2 times faster than strip
DCNv3. This performance comparison is based on processing
a single RGB image of size 1,024 x 1,024 pixels on a single
NVIDIA 3080Ti GPU. Additionally, the inference memory
consumption for DSA with DSCN is also notably more
efficient in this setup.

By examining the aforementioned experimental outcomes, it
becomes evident that the utilization of DSA obtains advantages
of both DCNv3 with large kernel and strip vanilla convolution.
It reduces the parameters and memory resumption of DCNv3
with large kernel and accelerates the computation. These
findings highlight the effectiveness of incorporating DSA as a
visual extraction module to enhance the shape adaptability of
lightweight CNNs.
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C. Image Classification

The model exhibits impressive performance in computer
vision task, which heavily relies on pretraining. According to
the mainstream approach, we also choose image classification
as a pre-training task for other downstream tasks.

The comparative performance of models on the Ima-
geNetlK validation set is thoroughly outlined in Tab. IV,
which includes an exhaustive comparison with a variety
of model types. These include CNN-based models such as
those proposed in [4], [5], [8], [41], ViT-based models such
as [40], [42], [43], and MLP-based models represented by [44].
Specifically, when compared to VAN-T [4] and MSCAN-
T [5], which also use spatial attention machinism and have
fewer than 10M parameters, DSAN-T achieves an top-1 accu-
racy increases of 1.0% and 0.5%, respectively. Compared to
Internlmage-T [8], which employs DCNv3 for feature extrac-
tion, DSAN-S achieves a top-1 accuracy of 82.3% with a 1.2%
performance gap, while reducing parameters and computation
by 33.4% and 33.3%, respectively. According to the above
experimental data, DSAN-S is able to outperform or closely
approach models with parameter counts around 25M even
when its own parameter count is below 20M, which attests
to the effectiveness of our optimized design.

D. Semantic Segmentation

After classification pre-training, models of different scales
are fine-tuned on semantic segmentation datasets of varying
sizes and their performance is evaluated on these datasets.
Compared to image classification, the performance in image
segmentation tasks, which requires better pixel-level classifi-
cation, more effectively demonstrates the shape adaptability of
CNNe .

ADE20K. The performance of DSAN on the ADE20K
validation set is shown in Tab. V, alongside the performances
of CNNs [4], [5], [41] and ViT-based models [40], [43]. In the
table, the floating-point operations (FLOPs) is calculated with
an RGB image of size 512x512. n the category of models with
parameters under 10M, DSAN-T achieves superior results,
demonstrating a 1.2% improvement in mloU compared to
the semantic segmentation CNN SegNeXt-T, which boasts a
substantial regular receptive field. This suggests that the large
deformable receptive field empowers DSAN-T with enhanced

shape adaptability, thus contributing to its improved perfor-
mance on segmentation tasks. At a larger parameter scale,
DSAN does not fully match the performance of SegNeXt-
B, which is specifically designed for semantic segmentation.
Nonetheless, when compared to VAN-B-FPN, DSAN-S-Ham
still delivers superior results. Semantic segmentation is a dense
prediction task, and we believe that it reflects the decrease
caused by the sparsity of using DCNv3 with small kernel.
Evidence for this idea is provided by DSAN-S with Ham
achieves 0.7% mloU higher performance than Internlmage-T
with UperNet, while its parameters and computation are only
35.0% and 9.4% of Internlmage-T with UperNet. Compared to
Hamburger, UpperNet should help the backbones to perform
better, which is proved by the next experiment.

TABLE VII
THE PARAMETERS, FLOPS AND RESULTS OF DIFFERENT ARCHITECTURES
ON ADE20K VALIDATION SET

Architecture | #Params (M) | FLOPs (G) | mloU (MS)
DSAN-T w/ PSP [50] 15.5 7.7 41.4
DSAN-T w/ Uper [51] 32.1 214.8 45.1
DSAN-T w/ Ham [52] 4.6 6.8 43.5

Different decoders. Three decoder designs for semantic
segmentation are based on a four-stage backbone, all em-
ploying multi-layer mappings to produce semantic masks. The
first design concatenates features from all stages, exemplified
by [40], [51], [53]. The second approach selectively concate-
nates and processes features of the last three stages using
specialized decoder heads, prioritizing higher-level features
over lower ones. Lastly, similar to works like [50], [54], [55],
the third design uses decoder heads only for features of the
final stage, simplifying the process but increasing dependence
on late-stage output, which can limit its efficacy in lightweight
CNNE.

In this experiment, we integrate DSAN with various de-
coders to validate its general applicability. The obtained ex-
perimental results are tabulated in Tab. VII. DSAN-T w/
PSP/Uper/Ham represents the fusion of DSAN-T with either
PSPNet [50], UperNet [51], or Hamburger [52] architectures.
Notably, UperNet and PSPNet fall under the first and third
categories of decoder designs respectively, while Hamburger
(Ham) is classified as a member of the second category.

TABLE VI
RESULTS OF MASK R-CNN WITH DIFFERENT BACKBONES ON COCO VALIDATION SET 2017

Backbone | #Params (M) | FLOPs (G) | mAP® | mAP%, | mAP%, | mAP™ | mAPZ} | mAPZ
PVTv2-B0 [47] 235 196.0 382 60.5 407 36.2 57.8 38.6
VAN-T [4] 239 187.1 40.2 62.6 44.4 37.6 59.6 40.4
DSAN-T (ours) 243 188.6 42.6 643 46.4 389 61.5 41.6
VAN-BI [5] 335 221.5 426 64.2 46.7 38.9 61.2 41.7
PVTv2-Bl [47] 33.7 243.7 418 64.3 459 38.8 61.2 41.6
ResNet50 [] 442 260.1 382 58.8 414 34.7 55.7 372
VAN-B2 [4] 46.2 272.8 46.4 67.8 51.0 418 65.2 449
Swin-T [48] 48.0 267.0 427 652 46.8 393 62.2 422
ConvNeXt-T [49] 48.1 262.1 44.2 66.6 483 40.1 63.3 428
InternImage-T [8] 489 269.8 472 69.0 52.1 42.5 66.1 45.8
DSAN-S (ours) 395 235.4 46.1 67.8 50.5 41.5 64.7 44.6
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DSAN-T, when combined with PSPNet, achieves a mloU
of 41.4%, while its collaboration with UperNet results in
a mloU of 45.1%. Consequently, our design consistently
performs well across different types of decoders as well.
The fact that DSAN with UperNet outperforms DSAN with
Hamburger, also demonstrates that UperNet, as a heavyweight
semantic segmentation decoder, can effectively enhance the
performance of the backbone.

Cityscapes. The performance of DSAN on the Cityscapes
validation set is presented in Tab. VIII, where the FLOPs
is computed based on an RGB image with dimensions of
2,048 x 1,024. This experiment was designed to contrast

TABLE VIII
PARAMETERS AND RESULTS OF DIFFERENT METHODS ON CITYSCAPES
VALIDATION SET

Method | #Params (M) | FLOPs (G) | mloU (MS)
SegFormer-B0O [40] 3.8 125.5 78.1
SegFormer-B1 [40] 13.7 243.7 80.0
DSAN-T-Ham (ours) 4.6 52.6 80.0
SegFormer-B2 [40] 27.5 717.1 82.2
DSAN-S-Ham (ours) 20.7 181.1 81.5

our approach with the self-attention mechanism, which also
possesses a global receptive field. The modified convolu-
tional neural network is able to attain comparable or iden-
tical performance while maintaining a compact model size.
Specifically, DSAN-T achieves an equivalent 80.0% mloU
as SegFormer-B1, yet has only 33.6% of its parameters and
21.6% of its computational requirements. Although DSAN-
S-Ham does not outperform SegFormer-B2, the performance
disparity is marginal at just 0.7% mloU, and notably, its
computational load constitutes only 25.3% in comparison to
that of SegFormer-B2.

E. Object Detection

To validate the versatility of our design, we also imple-
mented it as the encoder in Mask R-CNN for object detection
tasks. The details and performance metrics of various models
on the COCO 2017 validation set are presented in Tab. VI,
with the FLOPs being computed using an RGB image of
size 800 x 1,280. In this experiment, we employed the Mask
R-CNN framework to evaluate the performance of DSAN.
Remarkably, with a total model size not exceeding 30M
parameters, DSAN-T achieves a 42.6% mAP, which is a
noteworthy 2.4% mAP improvement over VAN-T that utilizes
dilation convolution as its primary operations within the large
kernel attention module. Although there is a certain gap be-
tween the performance of DSAN-S and Internlmage-T, it still
has better performance compared to VAN-B, ResNet50, and
ConvNeXt-T, which are constructed with vanilla convolution
with more than 40M parameters.

F. Visualization

The most advantage of DSA is the globally deformable
receptive field. We demonstrate this through two visualiza-
tion methods. The first method is Grad-CAM [56] based

10

DSA w/ strip
DCNv3

DSA w/ strip
conv.

Inputs DSA w/ DSCN DCNv3 (3x3)

Fig. 7. CAM visual results of DCNv3, and DSA with different strip
convolution, including strip vanilla convolution, strip DCNv3 and DSCN. The
inputs come from ImageNet1K validation set, which produced by Grad-CAM.

on gradient localization, which illustrates the better shape
adaptability of DSA compared to conventional convolutional
modules through the CAM visual results of the models in the
ablation study on the ImageNet validation set. To confirm this,
we select various categories of objects images with irregular
shapes, including natural organisms, man-made objects, and
natural landscapes. All CAM visual maps are produced by
DSAN-T and the size of a image is 256 x 256. From the
CAM maps, the more accurate location with the various shapes
of DSA with DSCN proves its various deformable receptive
fields, as shown in Fig. 7. The globally deforamble receptive
field is especially shown in the second to fifth lines, which also
confirms our judgment on the sparsity sampling of DCNv3,
such as DCNv3 with small kernel size (3 x 3) do not sample
all targets in images.

The second method is to visualize the semantic segmenta-
tion masks, anchor boxes and instance segmentation masks.
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Semantic Segmentation

TPSANT  inputs

SegNextT

DsANs
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Object Detection & Instance Segmentation

ResNet50

Inputs

Fig. 8. he visualization showcases distinct downstream tasks. The left column presents semantic segmentation masks from the ADE20K validation set, while
another column exhibits anchor boxes and instance segmentation masks of the COCO 2017 validation set.

The visualization results of these masks allow us to indirectly
judge the influence of the receptive field on the entire model
through the segmentation effect of semantic targets, such as
clearer segmentation edges. The visualizations of the segmen-
tation masks and anchor boxes are presented in Fig. 8.

Upon visualizing the semantic segmentation masks, we
observe that DSAN-T consistently exhibits superior shape
segmentation capabilities for irregular objects like candle
holders and connected desks in comparison to SegNeXt-
T, which possesses a regular receptive field. In the present
analysis, when comparing the semantic segmentation masks
produced by DSAN-S against Internlmage-T, it is clear that
using Internlmage-T based on DCNv3 with smaller kernels
alongside a compact parameter set often results in insufficient
sampling within certain complex scenes. This insufficiency
leads to incomplete segmentation, as seen with crowds not
fully segmented within railings. In the object detection and in-
stance segmentation visualization results, we find that DSAN-
S is more adaptive than ResNet50 to some confused scenarios,
such as a hand with fingers spread open and a pair of scissors
in the same picture. The visualization results show that DSCN

and DSA can effectively sample globally, improving the shape
adaptability of lightweight CNNs.

V. CONCLUSION

Our method provides a solution for using DCNv3 in
lightweight CNNs. To tackle the slow training speed and
high memory usage of DCNv3 with large kernel, we op-
timize it at two levels: core operations and visual feature
extraction units. At the core operations level, we deconstruct
the deformation sampling core operation in DCNv3 into two
strip deformable convolution core operations. We change the
bilinear interpolation calculation for deformation sampling
to linear interpolation and remove modulation mask-related
computations, leading to a reduction in computational load.
At the feature extraction unit level, we find that the mask
branch in DCNv3 is similar to spatial attention. Hence, we
replace the modualtion mask branch with spatial attention to
cut down on parameters and memory consumption. Based on
these improvements, we design DSCN and a more suitable
visual feature extraction module DSA for lightweight CNNs.
This design maintains the globally deformable receptive field
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from DCNv3 with large kernel while avoiding its drawbacks.
To validate the effectiveness of DSCN and DSA, we construct
a lightweight CNN backbone named DSAN, using DSA as
the main visual feature extraction module. Through ablation
studies, we confirm that DCNv3 does not fully demonstrate
its inherent advantages when applied to lightweight CNNs
and validate effectiveness of our designs. Moreover, we test

the

generality of DSAN across various vision tasks such

as image classification, semantic segmentation, and object
detection. Our designs improve training speed and reduce
memory consumption during training. Our work is successful
in semantic segmentation tasks, where DSAN-S can achieve
better segmentation results with fewer parameters and com-
putational requirements than Internlmage-T. The disadvantage
is that on other vision tasks, there is still a slight gap
between Internlmage-T and DSAN-S. Overall, our designs for
DSCN and DSA effectively enhance the shape adaptability of
lightweight CNNs while maintaining their lightweight state.
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