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Abstract—In this paper, we address the problem of energy 

efficient resource optimization for downlink transmission in 

user-centric ultra-dense networks enabled by wireless access 

via non-orthogonal multiple access and wireless backhaul via 

beamforming. Our objective is to maximize the system energy 

efficiency by jointly optimizing user/access point scheduling, 

subchannel assignment, and power allocation. The problem is 

formulated as a non-convex mixed-integer nonlinear 

programming problem which is NP-hard. We then transform 

it into a convex subproblem using the sum-of-ratios decoupling 

and the iterative successive convex approximation method. An 

overall algorithm is further developed to solve the subproblem 

iteratively. Simulation results show that the proposed 

algorithm has improved the system-wide energy efficiency 

significantly when compared to the benchmark scheme. 

Keywords-ultra-dense networks; user-centric cooperation; 

resource optimization; energy efficiency; NOMA; beamforming. 

I.  INTRODUCTION 

Recently, increased interest in emerging applications, e.g., 
extended reality, holographic display, tele-surgery, etc., has 
propelled the explosive growth in mobile data traffic. Such 
an 1000x traffic growth necessitates the configuration of 
ultra-dense networks (UDNs) to fulfill network capacity and 
spectral efficiency (SE) enhancement requirements for 5G 
and beyond [1,2]. Instead of relying on a macro base station 
(MBS) sending signals to users, UDNs deploy tens or 
hundreds more of small access points (APs) to provide 
wireless access service for users, which has potentials to 
enlarge cell coverage, improve spatial reuse of resources, 
enhance performance gains, etc. 

Due to the overlapped coverage for users caused by 
dense deployment of APs, traditional cell-centric architecture 
poses extra challenges on network planning and design for 
UDNs. It is vital to transform network architecture from cell-
centric to user-centric via the idea of “network serving user” 
and cell-free concept [3]. In user-centric UDNs, a user is 
simultaneously served by an AP group (APG) wherein the 
AP density is comparable to or even higher than the user 
density. Through the deconstruction of cellular structure, 

user-centric UDNs not only eliminate cell boundaries with 
entirely suppressed inter-cell interference, but also achieve 
dynamic APG configuration and flexible resource allocation 
in a user-centric manner. 

Although user-centric UDNs bring about multi-Gigabit-
per-second user experience and SE increases in access 
downlink, limited wireless resources lead to serious 
competitions among APs for massive access opportunities of 
users. Recently, non-orthogonal multiple access (NOMA) 
has been considered as an enabling technique due to its high 
SE, massive connectivity, high user fairness, and low latency 
[4]. Power-domain NOMA allows multiple signals 
multiplexed to transmit simultaneously on the same spectrum 
resource by differentiating the signals via power levels. User 
can use successive interference cancellation (SIC) to decode 
its own received signal and reduce the undesired interference 
effectively. On the other hand, for backhauling, it is 
uneconomical for every AP to be connected via fiber to core 
networks. An alternative is to use wireless backhauling that 
allows low-cost APs to employ wireless links to MBS for 
backhauling. Multiple-antenna technique has been recently 
proposed as a promising solution to obtain higher SE and 
powerful interference mitigation via beamforming. Given 
this scenario, integration of wireless access via NOMA and 
wireless backhaul via beamforming into user-centric UDNs 
is not only an extension of UDNs, but also a practical 
application incentive promoted to provide significant 
performance gains. However, such a coupling in user-centric 
UDNs raises important concerns about resource allocation 
and user scheduling, among which notably is energy 
efficiency (EE) balance. 

Several recent works are devoted to energy efficient 
resource allocation in user-centric UDNs. In [5], Park et al. 
proposed a user-centric reverse association scheme for joint 
optimization of handover and power control to maximize the 
AP’s EE. In [6], Zhang et al. developed a joint optimization 
framework of load-aware user association and power 
allocation in mmWave-based UDNs to maximize the system 
EE. Additionally, there are a few existing works that 
investigate resource optimization problem by incorporating 
either NOMA or beamforming into user-centric UDNs. Liu 
et al. [7] devised a resource optimization framework in 
NOMA-based user-centric UDNs with access and backhaul 
downlink to maximize the system EE. In [8], Qin et al. used 
matching theory to study the problem of resource allocation 
and user association under a unified NOMA framework in 
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UDNs. In [9], Kwon and Park explored the joint problem of 
radio resource allocation, user association, and hybrid 
beamforming design in mmWave UDNs to maximize the 
weighted sum rate with limited feedback. 

However, aforementioned research are mainly 
highlighted as (ⅰ) the impact of resource optimization on the 
EE balance for wireless access [5], [6], (ⅱ) joint design of 
access and backhaul downlink using NOMA [7], (ⅲ) uplink 
and downlink design for wireless access via NOMA [8], and 
(ⅳ) design of both access and backhaul downlink through 
hybrid beamforming [9]. Few consider utilizing NOMA and 
beamforming simultaneously for resource allocation in user-
centric UDNs. This research gap motivates us to pursue a 
solution for the problem of energy efficient resource 
optimization to maximize the system EE of downlink 
transmission integrating both access downlink via NOMA 
and backhaul downlink via beamforming. Main contributions 
of our work include: 

• We develop a resource optimization framework in an 
energy-efficient manner for downlink user-centric 
UDNs with a close coupling of wireless access via 
NOMA and wireless backhaul via beamforming. 

• We formulate the system EE maximization problem 
as an MINLP problem by jointly optimizing user/AP 
scheduling, subchannel assignment, and power 
allocation. 

• We transform the problem into a standard convex 
problem via the relaxation of binary variables, the 
sum-of-ratios decoupling, and the successive convex 
approximation (SCA), and solve it via Lagrangian 
dual decomposition. 

The rest of the paper is organized as follows. Section II 
introduces the system model and problem formulation. 
Section III proposes the problem transformation and 
algorithm design. Simulation results are presented in Section 
IV, followed by concluding remarks in Section V. 

II. SYSTEM MODEL AND PROBLEM  FORMULATION 

A. System Overview 

Consider the downlink of a user-centric UDN, where an 
MBS with an antenna array is located at the center with M  

APs, denoted by set  = 1,2 ,M,M , densely deployed 

within the macrocell coverage of that MBS. The macrocell’s 
radius is r. There also exist N users, denoted by set 

 = 1,2 , N,N , randomly distributed in the overlapping 

coverage area sharing the same spectrum resource with MBS 
and APs. The locations of APs follow independent 
homogeneous Poisson point processes (HPPPs) with density 
that is com-parable to or even larger than user density. The 
bandwidth of spectrum resource is equally divided to K 

subchannels, denoted by set  = 1,2 , K,K . To avoid the 

interference between access and backhaul, subchannel set K  

is separated into  = 1,2 ,,A  for access and B ={𝛿 +1, 

𝛿+2,⋯,K} for  backhaul. Moreover, densely distributed APs 
are grouped into F disjoint clusters based on the spatial 

directions, denoted by set  = 1,2 , F,F . Thus, an AP can 

only provide wireless access exactly for one or more user(s) 

on a subset of A  within the same cluster to avoid inter-

cluster interference. In cluster f, user n can be simultaneously 
associated with at most 𝑀𝑓  APs on one or more 

subchannel(s), for 𝑀𝑓 ≪ 𝑀  and f  ∈ F . As such, 𝑀𝑓 APs in 

cluster f constitute a generalized APG, denoted by set fG , to 

serve user n by concurrently transmitting independent signals 

in a user-centric fashion, for f G M . 

B. Communication Model 

1) Access Downlink via NOMA: For access downlink, a 

user in each cluster can be simultaneously served by 

multiple APs via an assigned subchannel from A  in a user-

centric way. The power-domain NOMA is adopted for 

access downlink, which enables that multiple signals from 

APs in a cluster multiplex on the same subchannel at the 

same time. According to the NOMA principle, one user can 

receive from APs in the same cluster through multiple 

subchannels, and one subchannel can be also assigned to 

multiple users. To represent the association status between 

user and AP, we introduce a binary variable 𝑎𝑓𝑚𝑛
𝑘   such that 

if users n on subchannel k associates with AP m in cluster f 

then  𝑎𝑓𝑚𝑛
𝑘 =1, otherwise 𝑎𝑓𝑚𝑛

𝑘  =0. 

We assume that all the subchannels for access downlink 
follow a quasi-static block fading, where the channel gains 
remain to be constant within the time duration. As such, we 
denote the downlink channel coefficient from AP m in 

cluster f to user n on subchannel k as ℎ𝑓𝑚𝑛
𝑘 =𝑔𝑓𝑚𝑛

𝑘 𝑑𝑓𝑚𝑛
−𝜗1 , 

where 𝑔𝑓𝑚𝑛 
𝑘 is the flat Rayleigh fading channel gain, 𝑑𝑓𝑚𝑛  is 

the distance between AP m in cluster f and user n, and 𝜗1 is 
the path loss exponent. After receiving the superposed 

signals from 𝑀𝑓
𝑘  APs on subchannel k in fG , user n 

employs the SIC technique to decode its desired messages, 

for 0≤ 𝑀𝑓
𝑘 < 𝑀𝑓. Let 𝐻𝑓𝑚𝑛

𝑘 =|ℎ𝑓𝑚𝑛
𝑘 |

2
𝜎𝑛𝑘

2⁄  be the channel to 

noise ratio (CNR) of subchannel k from AP m in cluster f to 

user n, where  𝜎𝑛𝑘 
2  is the noise variance at user n on 

subchannel k. Without loss of generality, the CNRs of the 

received signals at user n on subchannel k served by 𝑀𝑓
𝑘 

APs on subchannel k in fG  are sorted as 𝐻𝑓1𝑛
𝑘 ≤ ⋯ ≤

𝐻𝑓𝑚𝑛
𝑘 ≤ ⋯ ≤ 𝐻

𝑓𝑀𝑓
𝑘𝑛

𝑘  . With the NOMA principle, the 

achievable rate (in bps/HZ) of user n on subchannel k served 

by AP m in fG can be expressed as  

𝑅𝑓𝑚𝑛
𝑘 =log2 (1 +

𝑝𝑓𝑚𝑛
𝑘 𝐻𝑓𝑚𝑛

𝑘

1+∑ 𝑃𝑓𝑗𝑛
𝑘 𝐻𝑓𝑗𝑛

𝑘
𝑀𝑓

𝑘

𝑗=𝑚+1

),               (1) 

where 𝑝
𝑓𝑚𝑛
𝑘  is the transmit power of AP m in cluster f  to 

user n on subchannel k. 
2) Backhaul Downlink via Beamforming: For backhaul 

downlink, the MBS concurrently transmits independent 
signals to the APs in different clusters over the sharing 



subchannels. By exploiting multiple antennas at both the 
MBS and the APs, downlink beamforming is considered in 
wireless backhaul not only to increase the SE, but also to 
combat the inter-cluster and intra-cluster interference. To 
characterize the association status between MBS and AP, 

we introduce a binary variable  𝑏𝑓𝑚
𝑘

 such that if AP m in 

cluster f associates with the MBS using subchannel k then 

𝑏𝑓𝑚 
𝑘 =1, otherwise 𝑏𝑓𝑚

𝑘  =0. 

Let Q be the number of transmit antennas in the MBS’s 

antenna array. Denote 𝜙𝑓
𝑘  as the number of APs on 

subchannel k in cluster f, for 0 ≤ 𝜙𝑓
𝑘 ≪ 𝑀 ≤ 𝑄 . The 

downlink channel coefficient vector between MBS and AP 

m on subchannel k in cluster f is given by 𝐡𝑓𝑚
𝑘

=𝐡̃𝑓𝑚

𝑘
𝑑𝑓𝑚𝑛

−𝜗2 , 

where 𝑑𝑓𝑚 is the distance between MBS and AP m in cluster 

f , 𝜗2 is the path loss exponent, and  𝐡̃𝑓𝑚
𝑘   is the small scale 

Rayleigh fading channel coefficient vector that is assumed 
to be complex Gaussian distributed with zero mean and unit 
variance matrix. For downlink beamforming, let us employ 

𝐰𝑓
𝑘 = [𝐰𝑓1

𝑘 , 𝐰𝑓2
𝑘 , ⋯ , 𝐰

𝑓𝜙𝑓
𝑘

𝑘 ]
T

 to represent the beamforming 

vector for  𝜙𝑓
𝑘  APs on subchannel k in cluster f .To simplify 

analysis, we consider that the number of transmit antennas 
for beamforming at MBS is equal to the number of APs on 
subchannel k in cluster f. As such, the received signal at AP 
m on subchannel k in cluster f is corrupted by three parts, 
i.e., intra-cluster interference, inter-cluster interference, and 
AWGN. For analytical simplicity, we employ the zero-
forcing beamforming to further eliminate the inter-cluster 
interference. Thus, the achievable rate (in bps/Hz) of AP m 
on subchannel k in cluster f can be obtained by 

𝑅𝑓𝑚
𝑘 =log2 (1 +

𝑞𝑓𝑚
𝑘 |𝐡𝑓𝑚

𝑘 𝐰𝑓
𝑘|

2

|𝐡𝑓𝑚
𝑘 𝐰𝑓

𝑘|
2

∑ 𝑞𝑓𝑗
𝑘 +𝜎𝑚𝑘 

2
𝜙𝑓

𝑘

𝑗=1,𝑗≠𝑚

),             (2) 

where  𝑞𝑓𝑚
𝑘  is the transmit power of MBS to AP m 

subchannel k in cluster  f  and  𝜎𝑚𝑘 
2   is the noise variance at 

AP m on subchannel k. 

C. Power Consumption Model 

For access downlink, power consumption depends on the 
power consumed at users in receiving mode and at APs in 
transmission mode, respectively. Power consumption for 

user n in cluster f is written as 𝑃𝑓𝑛=𝑃𝑓𝑛
R +𝜓A𝑃𝑓𝑛

D , where 𝑃𝑓𝑛
R  is 

the constant circuit power consumption for received signal 

processing,  𝑃𝑓𝑛 
D   is the dynamic circuit power consumption 

for signal decoding, and  𝜓A  is correlated with the number 
of APs in every APG on each subchannel. Besides, power 
consumption for AP m in cluster f sending signal to user n 
on subchannel k is determined by transmitter circuit power 

consumption 𝑃𝑚
C  and trasmit power 𝑝𝑓𝑚𝑛

𝑘 , i.e., 𝑃𝑚 = 𝑃𝑚
C +

𝑝𝑓𝑚𝑛
𝑘 . Let 𝑁𝑓  be the number of users that are asscociated 

with APs in cluster f, for 0≤ 𝑁𝑓 ≪ 𝑁. Then the sum power 

consumption for access downlink is equal to 

( )C
A

1 1 1 1

f fM NF
k k
fmn fn m fmn

f m n k

P a P P p



= = = =

= + + .          (3) 

For backhaul downlink, power consumption is aimed at 
the power consumed at APs in receiving mode and at MBS 
in transmission mode. Power consumption for AP m in 

cluster f can be modeled as 𝑃𝑓𝑚=𝑃𝑓𝑚
R +𝜓B𝑃𝑓𝑚

D , where 𝑃𝑓𝑚
R  is 

the constant circuit power consumption for signal decoding, 
and 𝜓B is correlated with the number of APs in every cluster 
on each subchannel k in cluster f. Thus, the sum power 
consumption for backhaul downlink is expressed by 

( )B

1 1 +1

fMF K
k k
fm fm fm

f m k

P b P q

= = =

= +  .                 (4) 

D. Problem Formulation 

The energy efficient resource optimization problem for 
the downlink is to maximize the system EE metric via jointly 
optimizing user/AP scheduling, subchannel assignment, and 
power allocation. Combining the access downlink via 
NOMA and the backhaul downlink via beamforming, the 
actual overall achievable rate of system can be obtained as 

S

1 1 1 1

f fM NF
k k
fmn fmn

f m n k

R a R



= = = =

= .                    (5) 

Therefore, the system EE for downlink transmission can 

be defined by  𝜉EE =
𝑅s

𝑃Α+𝑃Β
 (in bit/Hz/Joule). Let 𝐀 =

{𝑎𝑓𝑚𝑛
𝑘 }

𝑚,𝑛,𝑘=1

𝑀𝑓,𝑁𝑓,𝛿
, 𝚩 = {𝑏𝑓𝑚

𝑘 }
𝑚=1,𝑘=𝛿+1

𝑀𝑓,𝐾
, 𝐏 = {𝑝𝑓𝑚𝑛

𝑘 }
𝑚,𝑛,𝑘=1

𝑀𝑓,𝑁𝑓,𝛿
, 

and   𝐐 = {𝑞𝑓𝑚
𝑘 }

𝑚=1,𝑘=𝛿+1

𝑀𝑓,𝐾
, for 𝑓 ∈ F . The optimization 

problem is then formulated as 

S

, , ,
A B

max
R

P P+A B P Q
                                          (6a) 

s.t. min

1 1 1

, ,

fMF
k k
fmn fmn n

f m k

a R R n



= = =

    (6b) 

1 1 1 1 1

, ,

fMF K F
k k k k
fm fm fmn fmn

f k f m k

b R a R m



= = + = = =

               (6c) 

max

1 1 +1

, , , ,

fMF K
k k
fm fm

f m k

b q P f m k

= = =

                       (6d) 

max

1 1

, , ,

fN

k k
fmn fmn m

n k

a p P f m



= =

                               (6e) 

 , 0,1 , , , ,k k
fmn fma b f m n k     ,                             (6f) 

where 𝑅𝑛
min is the minimum data rate of user n, 𝑃max is the 

MBS’s maximum power, and 𝑃𝑚
max is the maximum power 

of AP m. The user’s minimum rate constraint is shown in 
(6b). (6c) dictates that the achievable rate of backhaul should 
be larger than that of access. (6d) is the MBS’s maximum 
power constraint. (6e) denotes that AP’s power is restricted 
by its maximum limit. Lastly, (6f) is the binary constraints to 
imply the user/AP scheduling relations. Due to the existence 
of interference terms in (6a), nonlinear rate constraints in (6b) 
and (6c), and binary variables in (6f), problem (6) is a non-
convex MINLP problem. Such kind of problem is NP-hard 



and is very difficult to solve directly for the UDN scenario 
with larger numbers of densely distributed users and APs. 

III. PROPOSED APPROACH 

A. Problem Transformation 

Considering that binary variables can be interpreted as 
user association-dependent indicators for assigning 

subchannels, we relax binary variables 𝑎𝑓𝑚𝑛
𝑘  and 𝑏𝑓𝑚

𝑘  to be 

continuous real variables within the range of  [0,1] based on 
the time-sharing relaxation idea. As such, the actual power of 
AP m in cluster f to user n on subchannel k is represented 

as  𝑝𝑓𝑚𝑛
𝑘 = 𝑎𝑓𝑚𝑛

𝑘 𝑝𝑓𝑚𝑛
𝑘 , the actual power of MBS to AP m on 

subchannel k in cluster f  is given by 𝑞̃𝑓𝑚
𝑘 = 𝑏𝑓𝑚

𝑘 𝑞𝑓𝑚
𝑘 . Thus, 

we have 𝐏̃ = {𝑝𝑓𝑚𝑛
𝑘 }

𝑚,𝑛,𝑘=1

𝑀𝑓,𝑁𝑓,𝛿
, and 𝐐̃ = {𝑞̃𝑓𝑚

𝑘 }
𝑚=1,𝑘=𝛿+1

𝑀𝑓,𝐾
, for 

𝑓 ∈ F .Then problem (6) can be reformulated as 

S

, , ,
A B

max
R

P P+A B P Q
                                          (7a) 

s.t. min

1 1 1

, ,

fMF
k k
fmn fmn n

f m k

a R R n



= = =

    (7b) 

1 1 1 1 1

, ,

fMF K F
k k k k
fm fm fmn fmn

f k f m k

b R a R m



= = + = = =

               (7c) 

max

1 1 +1

, , , ,

fMF K
k
fm

f m k

q P f m k

= = =

                           (7d) 

max

1 1

, , ,

fN

k
fmn m

n k

p P f m



= =

                                      (7e) 

 , 0,1 , , , ,k k
fmn fma b f m n k     .                            (7f) 

B. Sum-of-Ratios Decoupling 

After the relaxation of binary variables, we can find that 
the reformulated problem (7) is still not a convex problem. 
To make this problem tractable, we recheck the structure of 
objective function in (7a), and observe that objective 
function in (7a) holds the structure of a nonlinear sum of 
fractional functions. To maximize a sum of fractional 
functions subject to the non-convex constraints is a sum-of-
ratios fractional programming problem, which is difficult to 
solve by conventional optimization methods [10]. To solve 
this problem, we use the sum-of-ratios algorithm by 
decoupling the numerators and denominators of objective 
function in (7a) into an equivalent parametric subtractive 
structure, which can be represented by 

( )EE S A BR P P = − + ,                       (8) 

where 𝜇  is an auxiliary parameter. Note that objective 
function in (8) is still non-concave due to the interference 

terms in non-concave function 𝑅̃S . To obtain the convex 
structure of (8), through the feature of logarithmic structure, 

we rewrite 𝑅̃S as the difference of convex structure 

S 2

1 1 1 1 1

log 1

k
f f fM N MF

k k k k k
fmn fmn fmn fjn fjn

f m n k j m

R a p H p H



= = = = = +

 
 = + +
 
 

 
 

2 1
1 1 1 1

log 1

f f k
f

M NF
Mk k k

fmn fjn fjnj m
f m n k

a p H



= +
= = = =

 
− + 

 
  .    (9) 

Based on the subtractive structure in (8) and the 
logarithmic operation in (9), problem (7) can be further 
rewritten by 

( )

, , ,
1 1 1 1

2 1

2 1
1 1 1 1

C

1 1 1 1

max

log 1

log 1

f f

k
f

f f k
f

f f

M NF
k
fmn

f m n k

Mk k k k
fmn fmn fjn fjnj m

M NF
Mk k k

fmn fjn fjnj m
f m n k

M NF
k

fn m fmn

f m n k

a

p H p H

a p H

P P p









= = = =

= +

= +
= = = =

= = = =

 
 + + 

 

 
− + 

 

− + +





 



A B P Q

 

( )
1 1 +1

fMF K
k

fm fm

f m k

P q




= = =

− +                                  (10) 

s.t.  (7b), (7c), (7d), (7e), (7f). 

C. Successive Convex Approximation 

Due to the non-convexity of problem (10) caused by 
constraints in (7b) and (7c), we resort to the iterative SCA 
method for solving it, where, in each iteration, the original 
non-convex problem is approximately converted into a 

convex problem. For notational simplicity, let 𝛾𝑓𝑚𝑛
𝑘,1 =

𝑝𝑓𝑚𝑛
𝑘 𝐻𝑓𝑚𝑛

𝑘

1+∑ 𝑝𝑓𝑗𝑛
𝑘

𝑀𝑓
𝑘

𝑗=𝑚+1
𝐻𝑓𝑗𝑛

𝑘

. As in [11], a lower bound of  𝑅̃𝑆  is 

determined by 

( )( ),1
S 2

1 1 1 1

log

f fM NF
k k k k
fmn fmn fmnfmn

f m n k

R a



  
= = = =

 + ,  (11) 

where  𝛼𝑓𝑚𝑛
𝑘  and 𝛽𝑓𝑚𝑛

𝑘 are the auxiliary approximation 

variables, respectively, which can be calculated as follows to 
tighten the lower bound in (11), i.e., 

 𝛼𝑓𝑚𝑛
𝑘 =

𝛾𝑓𝑚𝑛
𝑘,1

1+𝛾𝑓𝑚𝑛
𝑘,1 ,                               (12) 

𝛽𝑓𝑚𝑛
𝑘 = log2(1 + 𝛾𝑓𝑚𝑛

𝑘,1 ) −
𝛾𝑓𝑚𝑛

𝑘,1

1+𝛾𝑓𝑚𝑛
𝑘,1 log2(𝛾𝑓𝑚𝑛

𝑘,1 ).     (13) 

By letting  𝛾𝑓𝑚
𝑘,2 =

𝑞̃𝑓𝑚
𝑘 |𝐡𝑓𝑚

𝐤 𝐰𝐟
𝐤|

2

|𝐡𝑓𝑚
𝐤 𝐰𝐟

𝐤|
2

∑ 𝑞̃𝑓𝑗
𝑘 +σmk

2
𝜑𝑓

𝑘

𝑗=1,𝑗≠𝑚

, we can also 

obtain a lower bound of 𝑅̃𝑓𝑚
𝑘 , which can be given by 

         𝑅̃𝑓𝑚
𝑘 ≥ 𝛬𝑓𝑚

𝑘 log
2
(γ

fm
k,2) + 𝛯𝑓𝑚

𝑘 ,                  (14) 



where 𝛬𝑓𝑚
𝑘  and 𝛯𝑓𝑚

𝑘  are the auxiliary approximation 

variables, respectively, which can be expressed as follows to 
tighten the lower bound in (14), i.e., 

𝛬𝑓𝑚
𝑘 =

𝛾𝑓𝑚
𝑘,2

1+𝛾𝑓𝑚
𝑘,2,                               (15) 

𝛯𝑓𝑚
𝑘 = log2(1 + γfm

k,2) −
𝛾𝑓𝑚

𝑘,2

1+𝛾𝑓𝑚
𝑘,2 log2(𝛾𝑓𝑚

𝑘,2).       (16) 

Define 𝑝̂𝑓𝑚𝑛
𝑘 = log2(𝑝𝑓𝑚𝑛

𝑘 )  and 𝑞̂𝑓𝑚
𝑘 = log2(𝑞̃𝑓𝑚

𝑘 ) . 

Let𝐏̂ = {𝑝̂𝑓𝑚𝑛
𝑘 }

m,n,k=1

Mf,Nf,δ
and𝐐̂ = {𝑞̂𝑓𝑚

𝑘 }
m=1,k=δ+1

Mf,K
, for 𝑓 ∈ F . 

By applying the lower bounds in (11) and (14) as well as the 
logarithmic change of variables into a logarithmic 
transformation of objective and constraint functions in 
problem (10), we arrive at the following approximate 
parametric subproblem 
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( )( ) ( )

,1
2

ˆˆ, , ,
1 1 1 1

C

1 1 1 1

1 1 1

max log

exp

ˆˆexp , , ,

f f

f f

f

M NF
k k k k
fmn fmn fmnfmn

f m n k

M NF
k

fn m fmn

f m n k

MF K
k

fm fm

f m k

a

P P p

P q







  





= = = =

= = = =

= = = +

+

− + +

− + 





 

A B P Q

A B P Q

(17) 
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Note that subproblem (17) follows the log-sum-exp 
function structure. Thus, we finally convert the original 
problem (6) into a standard convex problem with logarithmic 
change variables. In fact, we only maximize a lower bound 
of objective function in (17). To effectively sole subproblem 
(17), with the SCA method, we need to the tighten bound in 

(11) by iteratively updating 𝛼𝑓𝑚𝑛
𝑘  and  𝛽𝑓𝑚

𝑘 , and also tighten 

the bound in (14) by iteratively updating 𝛬𝑓𝑚
𝑘  and  𝛯𝑓𝑚

𝑘 . Due 

to the space limitation, detailed procedure of the iterative 
algorithm via the SCA method to  tighten the bounds in (11) 
and (14) is omitted here, and readers can refer to [11] for 
detailed description. 

D. Lagrangian Dual Decomposition 

In this subsection, the standard convex problem in (17) is 
solved by using the Lagrangian dual method. The 
Lagrangian function is given by 

( ) ( )ˆ ˆˆ ˆ, , , , , , , , , ,L =A B P Q A B P Qλ     
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where λ ,  ,  , and   are the Lagrange multiplier vectors 

for the constraints except for binary constraints in (17). The 
boundary constraints for binary constraints will be absorbed 
in the KKT conditions. The Lagrange dual is given as 

( ) ( )
ˆˆ, , ,

ˆˆ, , , max , , , , , , ,g L=
A B P Q

A B P Qλ λ      .     (19) 

Then, the Lagrangian dual problem is formulated by 

( )
, , , 0
min , , ,g

λ
λ

  
   .                          (20) 

Algorithm 1  Proposed Resource Allocation Algorithm 

1: Initialize maximum number of iterations  𝐿max  and Lagrange 

multipliers 𝝀, 𝝋, 𝜼, 𝝌, set iteration index 𝑙 = 1. 
2: Obtain updated variables 𝛼𝑓𝑚𝑛

𝑘 ,  𝛽𝑓𝑚𝑛

𝑘 , 𝛬𝑓𝑚𝑛

𝑘 ,  𝛯𝑓𝑚𝑛

𝑘  via SCA in [11]. 

3: repeat 

4: for 𝑓 = 1 to 𝐹 do 

5: for 𝑚 = 1 to 𝑀 do 

6: Calculate subchannel  𝑘∗using (26) and update 𝑏𝑓𝑚𝑛

𝑘∗ ,∗
. 

7: Solve (24) to update 𝑞̂𝑓𝑚
𝑘∗ ,∗

. 

8: for 𝑛 = 1 to 𝑁 do 

9: Calculate subchannel 𝑘∗ using (25) and update 𝑎𝑓𝑚𝑛
𝑘∗ ,∗

. 

10: Solve (23) to update 𝑝𝑓𝑚𝑛
𝑘∗ ,∗

. 

11: end for 

12: end for 

13: end for 
14: Update Lagrange multipliers 𝝀, 𝝋, 𝜼, 𝝌  by [12]. 
15: Set 𝑙 = 𝑙 + 1. 
16: until convergence or 𝑙 =  𝐿max 

 

The dual variables are optimized by subgradient method 

based on the KKT conditions, which are specified as in [12]. 

According to the KKT conditions, the optimal solutions of 

the subproblem (17), denoted by{𝑝̂𝑓𝑚𝑛
𝑘,∗ } {𝑞̂𝑓𝑚

𝑘,∗ },{𝑎𝑓𝑚𝑛
𝑘,∗ },{𝑏𝑓𝑚

𝑘,∗} 

can be respectively obtained as 
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The optimal power of AP m in cluster f to user n on 
subchannel k and the optimal power of MBS to AP m on 
subchannel k in cluster f can be obtained by solving the 
equations 
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Through the partial derivative of the Lagrangian, 
subchannel  𝑘∗ is assigned to user n by AP m in cluster f such 

that  𝑎𝑓𝑚𝑛
𝑘∗,∗ = 1, and sub-channel 𝑘∗ is assigned to AP m in 

cluster 𝑓 by MBS such that  𝑏𝑓𝑚
𝑘∗,∗

=1, which can be given as 
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We use the subgradient method and update the dual 
variables by setting the step sizes for each iteration. Due to 
the space limitation, the specific updated process for dual 
variables is omitted here, and readers can refer to for [12] 
detailed description. The overall algorithm to iteratively 
realize the joint optimization of user/AP scheduling, sub-
channel assignment, and power allocation is sketched in 
Algorithm 1. 

IV. SIMULATIONS RESULTS 

In this section, we present simulations results to verify 
the performance of our proposed algorithm as compared to 
the equal-power based allocation scheme as a benchmark. 
We consider a macrocell area with radius 𝑟 = 200 m 
centered at MBS, wherein the locations of users and APs are 
randomly generated with equal possibility and deployed 
subject to the independent HPPPs, respectively. The 
minimum distance between APs is set to 3m, and the 
minimum distance between users is set to 1.2m. For 
downlink, the power consumption parameters are set as 
𝛲𝑓𝑛

R = 5 mW, 𝛲𝑓𝑛
D = 10 mW, 𝛲𝑚

C = 50 mW, 𝛲𝑓𝑚
R = 15 mW, 

and 𝛲𝑓𝑚
D = 30mW. All the APs are separated into 𝐹 = 8 

disjoint clusters based on their spatial direction to MBS, i.e., 
45° direction angle interval. As in [13], beamforming vector 
for AP on each sub-channel in a cluster is generated through 

the channel coefficient vector 𝐡̃𝑓𝑚
𝑘  between MBS and that 

AP. We assume that the number of transmit antennas for 
beamforming in antenna array of MBS is equal to the 
number of APs on each subchannel in a cluster for simplicity 
of simulations. The other simulation parameters are 
summarized in Table I. 

TABLE I 

SIMULATION PARAMETER. 

Parameter Value 

Maximum associated number of APs for user in 𝑓, 𝑀𝑓 16 

Maximum associated number of APs for MBS in 𝑓, 𝜙𝑓
𝑘  10 

Maximum number of APs on subchannel k in 𝒢𝑓, 𝑀𝑓
𝑘 12 

Path loss exponent for access downlink, 𝜗1 2 

Flat Rayleigh fading channel gain, 𝑔𝑓𝑚𝑛
𝑘  𝒞𝒩(0,1) 

Noise variance at user n on subchannel 𝑘, 𝜎𝑛𝑘
2  −174dBm/Hz 

Path loss exponent for backhaul downlink, 𝜗2 2 

Small scale Rayleigh fading channel vector, 𝐡̃𝑓𝑚
𝑘  𝒞𝒩(0, 𝐈𝑄) 

Noise variance at AP m on subchannel k, 𝜎𝑚𝑘
2  −174dBm/Hz 

 

 

Figure 1.  Convergence behavior of the proposed algorithm when 𝑅𝑛
min =

100bps/Hz, 𝑃max = 46dBm, and 𝑃𝑚
max = 32dBm 

Fig. 1 shows the convergence of the proposed algorithm 
for four cases with different combinations with the numbers 
of APs and users. It can be seen that the proposed algorithm 
converges rapidly in less than 10 iterations to reach the 



optimal points. With different combinations of APs and users, 
better system EE performance is obtained when 𝑀 = 𝑁 =
200 . From Fig. 1, we can conclude that the proposed 
algorithm has good convergence performance. In addition, 
Fig. 2 shows the performance comparison in terms of system 
EE versus the number of users between the proposed 
algorithm and the benchmark scheme. We can find that the 
system EE greatly increases with the continuous evolution of 
the number of users. It is further observed that the proposed 
algorithm significantly outperforms the benchmark scheme 
in terms of the system EE. Such an insight, to some extent, is 
aligned with the fact that the proposed algorithm fully 
achieves the joint optimization of resource allocation, and 
thereby achieves good performance. 

 

Figure 2.  System EE versus the number of users when  𝑅𝑛
min =

100bps/Hz, 𝑃max = 46dBm, and 𝑃𝑚
max = 32dBm. 

V. CONCLUSION 

This paper studied the energy efficient resource 
optimization problem for the downlink user-centric UDNs 
integrating NOMA and beamforming. The system EE 
maximization problem was formulated as a non-convex 
MINLP problem. By using the sum-of-ratios decoupling and 
the iterative SCA method, this problem was transformed into 
a convex parametric subproblem. Then the overall algorithm 
was devised to obtain the joint optimization of user/AP 
scheduling, subchannel assignment, and power allocation. 
The simulation results after comparison with the benchmark 

scheme revealed that our proposed algorithm accomplishes 
significant enhancement in the system EE. 
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