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Abstract: This paper deals with cell ID estimation in narrowband-internet of things (NB-IoT) system. The cell ID value is carried by
the narrowband secondary synchronization signal (NSSS). We suggest a low-complexity sub-optimal estimator, based on the auto-
correlation of the received observations. It is up to thirty times less complex than the optimal maximum likelihood (ML) estimator
based on cross-correlation. In addition, we present three methods allowing the receiver to take advantage of the different repetitions
of the NSSS. They are based on a hard decision after every estimation, a soft combination of the different observations of the NSSS,
and an hybrid mix between the two firsts, respectively. The advantages and drawbacks of the presented techniques are stated, and a
performance analysis is proposed, which is further discussed through simulations results. It is shown the that different methods reach
the performance of ML after several repetitions for a lower overall complexity.

1 Introduction

The machine-type communication market is growing rapidly
due to the high utilization of connected devices. The usage
of these devices is continuously growing with the expansion
of the applications proposed to individuals and industries.
Predictions indicate that 1.5 billion of connected devices will
be deployed within the next few years, where 70 % of them are
for wide area applications [1]. However, even for only wide-
area applications, various and different requirements may be
needed depending on the design objective of each internet of
things (IoT) network.

To follow the needs of the IoT market, the 3rd generation
partnership project (3GPP) has introduced a new cellular
technology standard called narrowband-internet of things
(NB-IoT) to provide IoT services through wide-area cellular
networks. This new system was designed to take into account
a maximum number of requirements for the IoT services. In
particular, a very good indoor coverage, support for a very
large number of low-speed connected devices, low latency,
very low cost of connectivity, low power consumption and
optimized network architecture.

The narrowband-internet of things NB-IoT system is inher-
ited from long term evolution (LTE) system [2], with a
reduction of complexity for several features in order to respect
the low-cost and low-power constraints of NB-IoT user equip-
ment (UE) modules. The system was conceived to occupy a
frequency band of 180 KHz (this corresponds to one resource
block in LTE system), and the number of channels and sig-
nals was reduced. However, the essential channels and signals
remain unchanged, but they were adapted to fit the new
NB-IoT frame structure [3–5].

The attachment procedure between a UE and an evolved
Node B (eNB) starts with the synchronization process. In
NB-IoT, it is split into two successive steps: the UE physically
synchronizes with the eNB in time and frequency thanks to
the narrowband primary synchronization signal (NPSS) [6–9],
and then estimates the eNB’s cell ID carried by the narrow-
band secondary synchronization signal (NSSS) [10–12]. Only
few paper deal with the cell ID estimation in NB-IoT. An
exhaustive cell ID search (among 504 possible values) is pre-
sented in [10], and simplifications are provided in [11, 12],
dividing by four and sixteen the number of operations com-
pared with the exhaustive search. However, it remains that

these methods are based on maximum likelihood (ML), lead-
ing to a cross-correlation between the observation of the NSSS
and a reference signal.

In this paper, we suggest to use auto-correlation of the
NSSS instead of cross-correlation to reduce the complexity
of the cell ID estimation process. The method is based on
the symmetry of the NSSS samples. It is up to thirty times
less complex than the exhaustive ML search. In addition,
we describe three methods to take advantage of the NSSS
repetitions. The first consists in making estimation attempts
every NSSS repetitions until good cell ID estimation. The sec-
ond one softly combines successive observations of the NSSS
before the estimation step. The third one is an hybrid tech-
nique that combines the principles of the two firsts techniques.
All these methods are compared through simulations, and it is
shown that they can reach the performance of the exhaustive
ML search after few repetitions of NSSS.

The rest of this paper is organized as follows: in Section 2
we describe the NSSS model and we present the exhaustive
cell ID search. Section 3 introduces the proposed estimation
method based on the auto-correlation, and Section 4 presents
the three techniques to take advantage of the NSSS rep-
etitions. We present and discuss the simulations results in
Section 5. Finally, Section 6 concludes this paper.

2 System Model

2.1 NSSS Model

This section is dedicated to the description of the NSSS model
[2]. It is assumed that the time-frequency synchronization has
been properly performed thanks to NPSS [6–9], in such way
that the residual synchronization errors are negligible. Fur-
thermore, since the signal is narrowband, it can be reasonably
supposed that the frequency response of the channel is con-
stant over the NSSS resource block of 12 subcarriers. Thus,
after demodulation and inverse mapping from resource ele-
ments, the N =132 samples that compose the received NSSS
sequence can be expressed as

yn = αdn + wn, (1)

where n = 0, 1, .., 131, α is the complex channel coeffi-
cient, wn ∼ CN (0, σ2) is the additive white Gaussian noise

IET Research Journals, pp. 1–8

c© The Institution of Engineering and Technology 2015 1



(AWGN), and dn is the transmitted NSSS sequence, which is
defined in [2] as

dn = bq(m)e−2jπθf n
e

−j
πun′(n′+1)

131 . (2)

where {bq(m) ∈ {−1, 1}} is one of the four Hadamard
sequences defined in Table 10.2.7.2.1-1 in [2]. The table has
been reproduced in Table 1 in the present paper. Moreover,
we have

θf =
1

4
(
nf

2
) mod 4, (3)

where nf is the frame number. Note that, nf takes only
even values since NSSS is only transmitted in even frames.
Furthermore, we have:

n
′ = n mod 131

m = n mod 128

u = N
Ncell
ID mod 126 + 3

q = ⌊
NNcell

ID

126
⌋,

with NNcell
ID the cell ID of the eNB.

It must be emphasized that θf in (3) can be simply rewrit-

ten as θf ∈ {0, 1
4 , 1

2 , 3
4 } according to nf value. Therefore, the

sequence {e−2jπθf n}, n = 0, .., 131 in (2) is chosen among the
following ones:

θ =







o132, if θf = 0

o33 ⊗ [1, −j, −1, j], if θf = 1
4

o66 ⊗ [1, −1], if θf = 1
2

o33 ⊗ [1, j, −1, −j], if θf = 3
4

, (4)

where oL is the 1 × L vector composed of one, and ⊗ is
the Kronecker product. We can rewrite (1) in vector form
as follows:

y = αd + w

= α bθ
︸︷︷︸

X(q,θf )

E(u) + w, (5)

where E(u) is the N × 1 vector containing the Zadoff-Chu

sequence En(u) = e−j
πun′(n′+1)

131 [13, 14]. b and X(q, θf ) are
the N × N diagonal matrices composed of the elements bq

and bq(m)e−2jπθf n respectively, and w is the N × 1 vector of
white Gaussian noise such as wn ∼ CN (0, σ2). In this respect,
the estimation of the cell ID results in finding the parameters
(u, q, θf ) from the observation y.

2.2 Exhaustive Cell ID Search Through ML Estimator

The exhaustive search of the optimal parameters u, q, and θf

through ML estimator can be expressed as

(û, q̂, θ̂f ) = arg max
u,q,θf

Ce
− 1

σ2 ‖y−αX(q,θf )E(u)‖2

, (6)

where C is a constant that can be omitted in the follow-
ing since it does not depends on (u, q, θf ), and ‖.‖ is the

Euclidian norm. Since |Xn|2 = 1 and |En(u)|2 = 1 for any
Xn ∈ {±1, ±j}, we can develop (6) as

(û, q̂, θ̂f ) = arg max
u,q,θf

e
− 1

σ2 ‖y‖2

e
−

|α|2N

σ2

e
1

σ2 Re{yH αX(q,θf )E(u)}

= arg max
u,q,θf

Re{y
H

αX(q, θf )E(u)}. (7)

We conclude from (7) that the optimal parameters u, q, and
θf are those that maximize the cross-correlation as follows:

(û, q̂, θ̂f ) = arg max
u,q,θf

Re
{ 131∑

n=0

y
∗
nαXn(q, θf )En(u)

}

. (8)

This exhaustive search is the optimal solution in the ML sense
but is also the most complex as it requires Nm = 16 × 126 ×
132 = 266112 complex multiplications, where 16 corresponds
to q × θf possible values, ans 126 corresponds to u possible
values. Furthermore, it requires the a priori knowledge of the
channel coefficient α. In order to bypass the latter constraint,
it can be either assumed that the channel has been estimated
by means of NPSS signal, or the ML estimator in (8) can be
substituted by a sub-optimal one as

(û, q̂, θ̂f ) = arg max
u,q,θf

∣
∣
∣

131∑

n=0

y
∗
nαXn(q, θf )En(u)

∣
∣
∣

= arg max
u,q,θf

∣
∣
∣

131∑

n=0

y
∗
nXn(q, θf )En(u)

∣
∣
∣. (9)

Once q and u are estimated, then the cell ID is in turn
estimated as

N̂
Ncell
ID = 126.q̂ + û − 3. (10)

In the following, we suggest an alternative sub-optimal ML-
based solution where u and (q, θf ) are sequentially estimated.
This will allows to greatly reduce the complexity of cell ID
estimation compared with the exhaustive search (8).

3 Suggested Cell ID Estimation

3.1 Description of the Algorithm

The algorithm generally breaks down into two main stages:
estimating (q, θf ) and then u using the estimates of (q, θf ).
The originality of the suggested method consists in taking
advantage of the symmetry property of the ZC sequence
E(u) [13, 14] to estimate the parameters (q, θf ) thanks to
a sub-optimal auto-correlation function. Thus, for any u =
3, 4, .., 128 and n = 0, 1, .., 130 the symmetry of the sequence
E(u) with respect to the 66-th sample can be expressed as

En(u) = E130−n(u). (11)

Furthermore, it can be noted that E131(u) = E130(u) =
E0(u). This property is illustrated in Fig. 1 which separately
shows the real and the imaginary parts of the ZC sequence
En(u) for u = 85 in Fig. 1-(a) and (b). The symmetry axis
in dashed line is shown in order to highlight the symmetry
between the elements En(u).

The first step of the suggested method is to recover the
symmetry property of the ZC sequence from the observation
yn to estimate (q, θf ). To this end, we define zn(q′, θ′

f ) as
follows:
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Table 1 Definition of bq(m).

q bq(m)
0 [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]

1 [1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 1 -1 -1 1 -1 1 1 -1 1 -1
-1 1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1
-1 1 1 -1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1
-1 1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 1]

2 [1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 1 -1 -1 1 -1 1 1 -1 -1
1 -1 1 -1 -1 1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 1 1 -1 -1
-1 1 1 -1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 1 -1
-1 1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 1]

3 [1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 1 -1 -1 1 -1 1 1 -1 -1
1 -1 1 -1 -1 1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1
1 -1 -1 1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 1 1 -1 -1 1 -1 1
1 -1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 1 -1 -1 1 -1 1 1 -1]
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(a) Real part.
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(b) Imaginary part.

Fig. 1: Real and imaginary parts of ZC sequence E(u), u = 85.

zn(q′
, θ

′
f ) = ynXn(q′

, θ
′
f )∗

. (12)

It must be noted that in absence of noise, the substitution of
yn = αdn from (1) into (12) yields

zn,0(q′
, θ

′
f ) = αEn(u)Xn(q, θf )Xn(q′

, θ
′
f )∗

, (13)

where the subscript 0 indicates the absence of noise. We
deduce from (13) that:

• The symmetry property of zn,0(q, θf ) for Xn(q′, θ′
f ) =

Xn(q, θf ) is independent of the channel coefficient α.
• The symmetry property of zn,0(q, θf ) exists for two couples
of parameters (q, θf ) and (q, θf2) such that

θf2 = θf ±
1

2
mod 1.

In fact, it can be straightforwardly proved that

En(u)Xn(q, θf )Xn(q, θf2)∗ =

e
−2jπ(θf −θf2)n

e
−j

πun′(n′+1)
131 = (−1)n

e
−j

πun′(n′+1)
131

︸ ︷︷ ︸

En(u)

,(14)

where the right hand side of the equality is still a ZC sequence,
which has therefore the symmetry property. Furthermore, it
can be noted that the sequence {e−2jπ(θf −θf2)n} is equal to
either o132 or o66 ⊗ [1, −1], both sequences being symmetric
with respect to the 66-th sample. Hence either every sample
of zn,0(q′, θ′

f ) are of the exact sign, or every other sample

of zn,0(q′, θ′
f ) in (13) is of opposite sign, but zn,0(q′, θ′

f ) is
symmetric in both cases.

We suggest to estimate (q, θf ) thanks to the auto-correlation
of the sequence zn(q′, θ′

f ) based on the fact that zn,0(q′, θ′
f )

is symmetric. Thus, the estimator can be expressed as

(q̂, θ̂f ) = arg max
q′,θ′

f

Re
{ 64∑

n=0

zn(q′
, θ

′
f )∗

z130−n(q′
, θ

′
f )

}

. (15)

We have q′ ∈ {0, 1, 2, 3}, and θ′
f ∈ {0, 1

4 }, i.e. it is neces-
sary to compute (15) only 8 times to estimate (q, θf ). In

fact, thanks to the uncertainty ± 1
2 on θf value, i.e. θf ∈

{{0, 1
2 }, { 1

4 , 3
4 }}, we can limit the tests in (15) to θ′

f ∈ {0, 1
4 }

without effect on the estimation of q. The second step of the
method consists in estimating u thanks to ML similarly to
(8) or (9), by taking into account the two possible values θf

as

û = arg max
u,β

Re
{ 131∑

n=0

y
∗
nα(−1)nβ

Xn(q̂, θ̂f )En(u)
}

, (16)

where β ∈ {0, 1} highlights the two possible estimated values
of θf . If α is not known nor estimated, we can use

û = arg max
u,β

∣
∣
∣

131∑

n=0

y
∗
n(−1)nβ

Xn(q̂, θ̂f )En(u)
∣
∣
∣. (17)

Thus, the suggested method can be summarized in four steps:

1. Recover the symmetry property of E(u) from y by
means of (12), where q′ ∈ {0, 1, 2, 3}, and θf can be limited

to θf ∈ {0, 1
4 }. A group of 8 sequences zn(q′, θ′

f ) is obtained.
2. Estimate (q, θf ) as in (15). Note that there is still

an uncertainty θ̂f ∈ {0, 1
2 } or θ̂f ∈ 1

4 , 3
4 }, but this is not

mandatory for cell ID estimation as it does not impact the
estimation of q.
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3. Estimate u thanks to (16) or (17) according to the
a pirori knowledge or not of the channel coefficient α,
respectively.
4. Estimate the cell ID using (10).

The total number of complex multiplications involved in
the suggested method is reduced to 8 × 65 + 132 × 128 =
17416, where 8 × 65 corresponds to (15), and 132 × 128 cor-
responds to (16) or (17). Thus, it is of order 15 times less
complex than the exhaustive cell ID search through (8) or
(9). Moreover, we can still reduce the complexity by using
the symmetry of En(u) allowing us to factorize elements in
the sum in (16) and (17). Therefore, let us consider (16),
which can be rewritten as

û = arg max
u,β

Re
{ 64∑

n=0

En(u)
[
y

∗
nα(−1)nβ

Xn(q̂, θ̂f )

+ y
∗
130−nα(−1)(130−n)β

X130−n(q̂, θ̂f )
]

+ E65(u)(y∗
65α(−1)65β

X65(q̂, θ̂f ))

+ E131(u)(y∗
131α(−1)131β

X131(q̂, θ̂f ))
}

. (18)

With this new form, the number of multiplications is
divided by two, and thus the complexity is reduced to 8708
operations, i.e. thirty times less complex than the exhaustive
ML search. However, the suggested technique should feature
a reduced performance compared to the exhaustive search,
since (15) is a sub-optimal technique in the ML sense due
to the auto-correlation. As a consequence, it is interesting to
take advantage of the repetitions of NSSS such as designed
in NB-IoT. In Section 4, we present different methods that
combines the successive observations of NSSS to improve the
performance of the suggested cell ID estimation technique.

3.2 Probability of Error of the Estimator

This section investigates the error probability of estimation of
the cell ID by means of the suggested method. For a sake of
conciseness, we define the events A = (q̂ 6= q ∩ û = u), B =
(q̂ = q ∩ û 6= u), and C = (q̂ 6= q ∩ û 6= u). We denote by P
the error probability, which can be defined as

P = P(N̂Ncell
ID 6= N

Ncell
ID )

= P(A ∪ B ∪ C), (19)

which can be reduced thanks to the inclusion-exclusion
principle as

P = P(A) + P(B) + P(C), (20)

since the probability of any intersection of events (e.g. P(A ∩
B)) is equal to zero. Furthermore, since the estimation of u
follows that of q, it can be reasonably assumed that the prob-
ability of the event û = u conditionally to q̂ 6= q is zero. This
mathematically highlights the fact that u cannot be properly
estimated if q is not. We then deduce that

P(û = u|q̂ 6= q) = 0

⇔ P(û = u ∩ q̂ 6= q) = 0. (21)

We assume that the events in B and C are independent, i.e.

u can be badly estimated for any good or bad estimation of
q (this assumption will further discussed afterward). Then,
with the substitution of (21) into (20), we obtain

P = P(B) + P(C)

= P(q̂ = q)P(û 6= u) + P(q̂ 6= q)P(û 6= u)

= P(û 6= u), (22)

since P(q̂ = q) + P(q̂ 6= q) = 1. On one hand, we deduce from
(22) that is sufficient to know P(û 6= u) to evaluate the per-
formance of the cell ID estimator. Otherwise, it could be
misinterpreted that the performance of the estimator only
depends on the performance of estimation of u in (16) or
(17). However, it must be emphasized that the estimators
in (16) and (17) also depend on Xn(q̂, θ̂f ), and are there-
fore implicitly linked to the performance of estimation of q.
On the other hand, it is not possible to derive an analytical
closed-form expression of P because it involves the multiple
integrals of multivariate Gaussian distribution.

4 Taking Advantage of NSSS Repetitions

In this section, we suggest three methods to take advantage
of the repetitions of NSSS signal in order to improve the esti-
mation of the cell ID. The first one is based on the decision
of the cell ID estimator and is qualified as "hard decision"
method. The second one is based on the combination of suc-
cessive observations of the NSSS signals and is qualified as
"soft combination". The last one is an hybrid method that
combines both soft combination and hard decision.

4.1 Hard Decision

The principle of the method is straightforward: the UE con-
tinues estimating the cell ID from successive observations of
NSSS while NNcell

ID is not properly estimated. The way the
UE verifies if the cell ID is correctly estimated is not detailed
in this paper, but it can be reminded that the cell ID is used
to generate the scrambling sequence of the broadcast signal.
Thus, if the UE is not able to properly decode this signal
(the cyclic redundancy check is false), then it decides that the
estimated cell ID is false, and tries again to estimate NNcell

ID
during the next NSSS opportunity.

It is possible to evaluate the probability of error for the
hard decision method from (22). Thus, we assume that all
consecutive cell ID estimation attempts are independent.
Then, the new error probability for a UE to properly esti-
mate the cell ID at the NR-th attempt (knowing that the
previous NR − 1 ones are unsuccessful), denoted by PH(NR)
is defined as

PH(NR) = P(û 6= u)NR . (23)

It must be noticed that, although the process of the hard
decision method is very simple, it may be actually compu-
tationally expensive, since it requires the demodulation of
the broadcast signal in order to verify if the cell ID has been
well estimated. Moreover, it may require a large latency, since
NSSS signal is transmitted every 20 ms. This will be further
illustrated and discussed in Section 5.

4.2 Soft Combination of Observations with Maximum
Likelihood

This method softly combines the successive observations of
the NSSS signal in order to improve the estimation per-
formance. In order to derive the best way to combine the
successive observations, we consider the likelihood function
L of two consecutive NSSS signals denoted by y1 and y2,
before generalizing to NR repetitions. In this respect, L can
be expressed as

IET Research Journals, pp. 1–8

4 c© The Institution of Engineering and Technology 2015



L = C. exp
(

−
1

σ2
‖y1 − α1X(q, θf,1)E(u)‖2

)

× exp
(

−
1

σ2
‖y2 − α2X(q, θf,2)E(u)‖2

)

= C. exp
(

−
1

σ2

[

‖y1‖2 + ‖y2‖2

+ ‖α1X(q, θf,1)E(u)‖2 + ‖α2X(q, θf,2)E(u)‖2
])

× exp
(

1

σ2

[

Re

{(
α1X(q, θf,1)E(u)

)H
y1

}

+ Re

{(
α2X(q, θf,2)E(u)

)H
y2

}])

. (24)

We know from (4) that the difference between X(q, θf,2) and
X(q, θf,1) lies in a phase rotation, such that we can write
X(q, θf,2) = MθX(q, θf,1), where Mθ is a 132 × 132 diagonal

matrix containing the elements e−j π
2 n for any n = 0, 1, .., 131.

It results that maximum likelihood estimation of (q, u) in (24)
leads to

(û, q̂) = arg max
u,q

L

= arg max
u,q

exp
(

1

σ2

[

Re

{(
X(q, θf,1)E(u)

)H

×
(
α

∗
1y1 + α

∗
2M

H
θ y2

)}])

. (25)

In the following, we assume that the channel is almost static,
such that we can consider α2 ≈ α1. In that case, (25) can be
rewritten similarly to (8) and (9) as

(û, q̂) = arg max
u,q

Re

{

α
∗
1

(
X(q, θf,1)E(u)

)H

×
(
y1 + M

H
θ y2

)}

, (26)

if the channel state is known, or

(û, q̂) = arg max
u,q

∣
∣
∣

(
X(q, θf,1)E(u)

)H(
y1 + M

H
θ y2

)
∣
∣
∣, (27)

if the channel state is unknown. In both cases, it can be
deduced from (26) and (27) that a new equivalent observa-
tion y1 + MH

θ y2 can be used in cell ID ML estimator, and it
is the best way to combine y1 and y2. Then, the same new
observation can be used to feed the suggested sub-optimal
algorithm as well. Thus, we add a "step 0" to the method,
which is to define a new observation ỹ(2) as

ỹ(2) =
y1 + MH

θ y2

2
, (28)

and the suggested low-complexity algorithm (12)-(17) is per-
formed using ỹ(2) instead of y. The same principle can be
generalized for any NR repetitions of the NSSS signal with

ỹ(NR) =
1

NR

NR∑

i=1

(Mi−1
θ )H

yi. (29)

The performance of the soft combination method can be com-
pared with the error probability (22). To this end, we compare
the signal to noise ratio (SNR) corresponding to y denoted by
SNR, and that of the equivalent observation ỹ(NR) denoted

by SNR(NR). Thus, the SNR corresponding to y can be
expressed as

SNR =
E{‖y‖2}

σ2
− 1 =

E{‖αd‖2}

σ2
. (30)

Since the different additive zero-mean noise components wi in
yi are independent, the equivalent noise variance for ỹ(NR)
is given by σ̃2(NR)

σ̃
2(NR) = E

{∥
∥
∥

1

NR

NR∑

i=1

(Mi−1
θ )H

wi

∥
∥
∥

2}

=
1

N2
R

NR∑

i=1

E{‖wi‖
2} =

σ2

NR
. (31)

We then deduce that the equivalent SNR can be expressed as

SNR(NR) = NR.SNR, (32)

or equivalently in dB: SNRdB(NR) = SNRdB + 10 log(NR).
This result highlights that the equivalent SNR of the com-
bined NSSS signals at the NR-th repetition is 10 log(NR)
higher then the original SNR at the first repetition, which
should therefore improve the estimation performance. We
denote by PML(NR) the error probability corresponding to
the NR-th repetition. Based on (22), it can be expressed as

PML(NR) = P(û 6= u, NR), (33)

where P(û 6= u, NR) is the shifted version of P in (22) in
which SNR is substituted by SNR(NR). This method is less
computationally expensive than the hard decision as the cell
ID needs to be estimated only after NR repetitions, and the
complexity of the combination (29) is negligible.

4.3 Hybrid Hard decision-ML Combination

The hybrid combination consists in merging the principles of
both the hard decision and the ML combination techniques.
Thus, similarly to the hard decision method, the UE continues
estimating the cell ID from successive observations, but it
combines the observations at each repetition as in (29). The
expected probability of error, denoted by PHy(NR), can be
expressed from (23) and (33) as

PHy(NR) =

NR∏

i=1

P(û 6= u, i). (34)

Since P(û 6= u, NR) ≤ P, we deduce from (34) that PHy(NR)
shall be lower than PH(NR). However, the hybrid decision is
the most computationally expensive method, as it is a com-
bination of the previous ones. The actual performance of the
different methods are further discussed through simulations
in next section.

5 Simulations and Discussion

5.1 Simulations Results

5.1.1 Performance Comparison for NR = 1: All simulations
results have been obtained using Matlab, where 105 inde-
pendent runs per point have been performed. In Fig. 2, we
compare the suggested method with the exhaustive ML cell
ID estimation for NR = 1, where the channel is supposed
to be known as in (8) and (16), and unknown as in (9)
and (17). The considered SNR is in the range [−15, 0] dB.
It can be observed that the ML exhaustive cell ID search
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Fig. 2: Performance comparison of exhaustive ML estimation
(8) (known channel) (9) (unknown channel) and suggested
method (16) (known channel) (17) (unknown channel) for
NR = 1.

largely outperforms the suggested method. However, it must
be reminded that the ML is 30 times computationally more
complex than the sub-optimal technique. This is why NSSS
repetitions can be taken into account in order to challenge
the ML estimator performance. Moreover, Fig. 2 shows that
the performance of the suggested method is the same by con-
sidering a known or unknown channel (16) or (17). Therefore
in the following, we only consider the case where the channel
is unknown. Finally, Fig. 2 allows us to validate the estab-
lished expression of the probability of error (22). In fact, we
can observe that P(û 6= u) actually matches the probability
of error of cell ID estimation P such as expected.

In the following, we compare the exhaustive ML search for
NR = 1 with the proposed method and the different combi-
nations. In order to carry out the fairest possible comparison,
we examine the performance in term of error probability rel-
atively to the complexity of the methods. Thus, it has been
stated that the ML estimator is 30 times more complex than
the suggested method. It results that we can consider up to
NR = 30 repetitions for our method to reach the complexity
of ML. We hereby limit NR to the set NR ∈ {1, 2, 4, 8}.

5.1.2 Hard Decision Method: Fig. 3 shows the performance
of the hard decision technique for SNR in the range [−15, 0]
dB. In Fig. 3-(a), we compare the error probability for
NR ∈ {1, 2, 4, 8}. It is exhibited that the larger NR, the bet-
ter the performance. It can even be noted that the error
probability of PH(NR = 8) is lower than that of ML in SNR
range [−15, −7] dB, which justifies the use of hard decision
method. Furthermore, Fig. 3-(b) compares the expected error
probability PH(NR) = P(û 6= u)NR and that obtained from
simulations for arbitrarily chosen NR = 4. It can be observed
that P(û 6= u)NR fits the simulation for SNR ≤ −8 dB, but
underestimates the actual error probability for larger SNR
values. We deduce that (23) should be used only as a good
lower bound to estimate the error probability. The reason why
the theoretical expression does not match the simulations for
any SNR value is discussed afterward.

5.1.3 Soft Combination Method: Other series of simula-
tions investigate the performance of the soft combination
method in Fig. 4, for NR ∈ {1, 2, 4, 8}. Once again, we observe
that the larger NR, the lower the error probability. The
error probability of soft combination with NR = 8 is even
largely lower than that of ML for SNR ≤ −8 dB. More-
over, it should be noticed that the different behaviors for
NR ∈ {2, 4, 8} are shifted versions of the trajectory corre-
sponding to NR = 1. Thus, according to theory in (33), the
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(a) Performance comparison with NR ∈ {1, 2, 4, 8}.
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Fig. 3: Error probability of the suggested cell ID estimation
versus SNR using hard decision method.
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Fig. 4: Error probability of the suggested cell ID estima-
tion versus SNR using soft combination method for NR ∈
{1, 2, 4, 8}.

SNR differences between the curves of NR = 1 and NR =2,
4, and 8 are of 3, 6, and 9 dB, respectively.

5.1.4 Hybrid Method: In Fig. 5, we compare the perfor-
mance of the hybrid method with that of the hard decision
and the soft combination techniques for NR = 4. It can be
seen that in low SNR range (≤ -10 dB), the three techniques
outperform the ML estimation, and we have PH(NR) ≤
PML(NR) ≤ PHy(NR). However, for SNR ≥ −5 dB, we
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Fig. 5: Error probability of the suggested cell ID estimation
versus SNR using soft hybrid method for NR = 4, compared
with hard decision and soft combination techniques.

observe that the error probability of the hybrid method is
slightly higher than that of the hard decision, which is incon-
sistent with the analysis deduced from (34). This behavior is
hereby discussed.

5.2 Discussion

5.2.1 Behavior Analysis: It has been observed in Figs. 3
and 5 that the expected performance in (23) and (34) match
that obtained through simulations for low SNR values (typi-
cally ≤ −8 dB), but is not consistent for higher SNR values.
This could be due to the assumption of independence of the
event in B and C leading to (22). In fact, this holds for low
SNR values, but further simulations revealed that for SNR
values larger than -5 dB, we have P(û 6= u|q̂ = q) = 0, i.e. it
is unlikely to wrongly estimate u if q is properly estimated.
As a consequence, we deduce that

P(B) = P(û 6= u ∩ q̂ = q)

= P(û 6= u|q̂ = q)P(q̂ = q) = 0, (35)

and hence P in (20) is reduced to P = P(C). Furthermore,
since P(û 6= u|q̂ = q) = 0, the errors of cell ID estimation for
higher SNR levels are only due to errors of estimation of q,
then P = P(q̂ 6= q).

This result indicate that the error probability of cell ID
estimation should be split according to the SNR range: one
corresponding to low SNR value where P is mainly linked
to the error of estimation of u, and one for larger SNR val-
ues where the errors of cell ID estimation are mainly due to
the errors of estimation of q. Thus, under hypothesis of inde-
pendence between the successive observations of NSSS signal,
we could assume that PH(NR) in larger SNR range can be
expressed similarly to (23), i.e. PH(NR) = P(q̂ 6= q)NR . This
assumption is hereby discussed.

In Fig. 6 we show the error probability of the hard decision
method, as well as P(û 6= u)NR and P(q̂ 6= q)NR versus SNR
for NR = 2. We can observe that, in accordance with Fig.
3-(b), P(û 6= u)NR fits the cell ID estimation error probabil-
ity obtained through simulations in low SNR range, whereas
P(q̂ 6= q)NR underestimates the error probability for any SNR
value. As a consequence, we cannot estimate PH(NR) =
P(q̂ 6= q)NR such as aforementioned.

This behavior is due to the fact that P(q̂ 6= q) is not inde-
pendent of the cell ID value. Thus, in presence of noise, it
is more likely to misestimate q for some cell ID values than
for some others. The reason is that, in absence of noise, the
correlation metric in (15) corresponding to (q′, θ′

f ) = (q, θf )
is equal to
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Fig. 6: Error probability of the suggested cell ID estima-
tion versus SNR using hard decision method for NR = 2,
compared with P(û 6= u)NR and P(q̂ 6= q)NR .
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Fig. 7: Histogram of the possible auto-correlation values
Γ(q′).

Γ(q) = Re
{ 64∑

n=0

zn,0(q, θf )∗
z130−n,0(q, θf )

}

= 65|α|2,

for any cell ID value. The other possible values of this correla-
tion metric for (q′, θ′

f ) 6= (q, θf ) are depicted in the histogram

in Fig. (7), which have been obtained with 104 simulations
runs and for α = 1. It can be observed that the Γ metric
can take different values from −57|α|2 to 59|α|2. The neg-
ative bins on the left side of Fig. 7 correspond to sequences
zn,0(q′, θ′

f ) that are "rather" anti-symmetric, the bins close to

0 correspond to sequences zn,0(q′, θ′
f ) that are neither anti-

symmetric nor symmetric, and the positive bins on the right
side of Fig. 7 correspond to sequences zn,0(q′, θ′

f ) that are
"rather" symmetric, the exact symmetry is only obtained for
(q′, θ′

f ) = (q, θf ) leading to Γ(q) = 65|α|2.
We deduce from Fig. (7) that it is likely to erroneously

estimate q in presence of noise in particular if a given value
of cell ID leads to Γ(q′ 6= q) = 59. In that case, it is also likely
to misestimate q in successive repetitions. Therefore, we con-
clude that there is no straightforward expression of PH(NR).
This is the reason why the analysis does not match the results
obtained through simulations.

5.2.2 Alternative Estimation Methods: In this section, we
briefly present alternative estimation techniques to those pre-
sented in Sections 3 and 4. First, the mean square error (MSE)
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estimator could be used instead of the auto-correlation (15)
to estimate q, which is expressed as

(q̂, θ̂f ) = arg min
q′,θ′

f

64∑

n=0

|zn(q′
, θ

′
f ) − z130−n(q′

, θ
′
f )|2. (36)

Simulations (not shown in this paper) revealed that the
performance of the MSE estimator is the same as the auto-
correlation one. Furthermore, it requires the same number of
complex multiplications.

Then, it must be stated that the methods presented in
Section 4 to take advantage of the repetitions of the NSSS
signal are not the only ones that could be used to improve
the cell ID estimation using the repetitions. From the previous
results, we can suggest two leads that pave the way for further
works:

• In order to improve the good estimation of q, it can be
suggested to consider the arguments of the two maximal val-
ues in (15), if the two maximal values are close, i.e. when it
is likely to estimate the wrong q value. However, this strat-
egy doubles the complexity of the method, since u should be
estimated for the two estimated q values.
• Another alternative is to choose the best combination
method according to the SNR (which should be estimated).
Thus, the soft combination or hybrid method should be con-
sidered in low SNR values, whereas the hard decision method
should be chosen in higher SNR ranges.

6 Conclusion

In this paper, we have presented a sub-optimal low-
complexity cell ID estimator for NB-IoT, which can be seen
as an alternative to the ML exhaustive search. Based on the
auto-correlation metric instead of the cross-correlation, it is
up to thirty times less complex than the ML. Moreover, we
have introduced different methods to take advantage of the
NSSS signal repetitions. The first one is based on the hard
decision after the estimation step, the second one softly com-
bines the observations before the estimation step, and the
third one is an hybrid technique that merges the principles of
the two firsts. A performance analysis of the different meth-
ods has been suggested, which is further discussed through
simulations results. We conclude from the results that the
sub-optimal method with combinations of the repetitions can
at least reach the performance of the exhaustive ML search
for a lower overall complexity. Furthermore, some alternative
techniques have been mentioned, paving the way for further
works.
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