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Abstract 

Background 

Knee osteoarthritis (OA) remains a leading aetiology of disability worldwide. With recent advances in gait analysis, clinical assessment 

of such a knee-related condition has been improved. Although motion capture (mocap) technology is deemed the gold standard for gait 

analysis, it heavily relies on adequate data processing to yield clinically significant results. Moreover, gait data is non-linear and high-

dimensional. Due to missing data involved in a mocap session and typical statistical assumptions, conventional data processing methods 

are unable to reveal the intrinsic patterns to predict gait abnormalities.  

Research question 

Albeit studies have demonstrated the potential of Artificial Intelligence (AI) algorithms to address these limitations, these algorithms 

have not gained wide acceptance amongst biomechanists. The most common AI algorithms used in gait analysis are based on machine 

learning (ML) and artificial neural networks (ANN). By comparing the predictive capability of such algorithms from published studies, 

we assessed their potential to augment current clinical gait diagnostics when dealing with knee OA.  

Methods 

Thus, an evidence-based review and analysis were conducted. With over 188 studies identified, 8 studies met the inclusion criteria for 

a subsequent analysis, accounting for 78 participants overall.  

Results 

The classification performance of ML and ANN algorithms was quantitatively assessed. The test classification accuracy (ACC), 

sensitivity (SN), specificity (SP) and area under the curve (AUC) of the ML-based algorithms were clinically valuable, i.e., all higher 

than 85%, differently from those obtained via ANN.  

Significance 

This study demonstrates the potential of ML for clinical assessment of knee disorders in an accurate and reliable manner. 

 
Keywords - Artificial Neural Networks; Machine Learning; Biomechanics; Gait; Knee; Osteoarthritis. 
 

1 Introduction 
1.1 Gait analysis to aid diagnosis of knee-related disorders 

Gait analysis involves the assessment of human motion. By revealing the underlying physiological walking, it is essential to recognise 

lower limb-related pathologies. Motion capture (mocap) technologies are deemed the gold standard for gait data acquisition. Mocap 

involves the use of reflective markers and infrared cameras to estimate the position of the human body in three dimensions (3D). 

Kinematic parameters (joint angles) describing the movement of the human body can be inferred from mocap data. Moreover, by 

integrating instrumented force platforms, kinetic data (forces and moments) can also be measured. Considering the impact of knee 

disorders, the disruption of the anterior cruciate ligament (ACL) is a widespread debilitating injury amongst athletes involved in sports 

activities, such as soccer, football and basketball [1]. ACL may lead to a long unwanted absence from sports, pain, disability, with the 

risk of developing knee osteoarthritis (OA) [1, 2]. Knee OA is the most common joint disorder worldwide [3, 4]. Such a knee-related 

condition typically requires surgical intervention and months of rehabilitation. Furthermore, the incidence of symptomatic knee OA is 

increasing due to the ageing population and obesity, particularly in developed countries [3]. Quantitative analysis of the gait can help 

clinicians diagnose knee-related conditions by recognising deviations from physiological gait, e.g., knee adduction moment (KAM) in 

patients with knee OA [5, 6]. However, analysis of mocap data heavily relies on adequate experimental setup, pre- and post-processing 

methods, e.g., gap filling between marker trajectories, adequate band-pass filter design and thresholds. Although statistical tools are 

widely used in gait analysis, given the nonlinearity and high dimensionality of gait data [7], they are only analytical and lack predictive 

capability to generalise to unseen data. 

 

1.2 Artificial Intelligence to improve clinical gait diagnostics 

Artificial Intelligence (AI)-based algorithms can help overcome the above-mentioned limitations. They can enable classification of gait 

data and generalisation in their predictive outcomes [8]. Furthermore, these techniques can be effective in both supervised [9, 10] and 

unsupervised scenarios [8]. Whilst unsupervised AI learning-based algorithms, such as the self-organising map (SOM) [11, 12], Random 

Forest (RF) [13, 14], can classify gait data used as inputs without preliminarily knowing their true classes, supervised classifiers instead, 

such as the multi-layer perceptron (MLP) [15], the radial basis function (RBF) networks [16] and the Support Vector Machine (SVM) 

[14] require that the true classes of the input data are preliminarily known. Amongst AI-based methods, Machine Learning (ML) [7, 17-

19] and Artificial Neural Networks (ANN) have proven to be accurate when dealing with gait-related data on patients with knee OA [2, 

5, 6, 20, 21].  

 

Artificial Neural Networks (ANNs) are brain-inspired computational algorithms. They involve numerous inputs and outputs, with some 

intermediate layers defined as ‘hidden’ [22]. The adjustment of weights in these layers occurs during the ‘learning’ or ‘training’ phase, 

wherein their moduli determine the degree of relevance towards the required classification [12, 22]. During training, the weights across 

these layers are updated iteratively to minimise the error during training (e.g., the Mean Squared Error or MSE) between the actual and 

predicted outputs [22]. In the ‘testing’ phase, ANNs apply the ‘learnt’ relationship to classify unseen data [12]. Supervised and 

unsupervised ANNs are respectively feed-forward (e.g. multi-layer perceptron (MLP) and radial basis function (RBF)) and feedback-

type of architectures (e.g. self-organising maps (SOM)) due to their corresponding direction (forward or backward) of conveying 
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information. Whilst the MLP deploys either the logistic/sigmoid or the hyperbolic tangent sigmoid transfer functions [23], RBF uses the 

Gaussian transfer function [16]. MLP is trained via the back-propagation algorithm, whereby the initially randomised weighted inputs 

are propelled forward, whilst the errors are iteratively propagated backwards until an optimal set of weights generates the least MSE 

[22, 24]. The SOM uses competitive learning and deploys the Kohonen neighborhood transfer function [11], whereby input data features 

are clustered based on distance metrics between data points [15]. 

Amongst Machine Learning (ML)-based methods for gait analysis, the SVM [25] is the most widely applied technique [19, 26]. SVMs 

map the training samples via kernel functions into a high dimensional space and apply a decision surface boundary as an optimal 

separating hyperplane (OSH) for classification [26]. 
 

Via AI, gait-related indices could be derived as subject-specific metrics to assess the impact of gait-driven rehabilitation in patients with 

knee OA. Due to the lack of evidence-based, quantitative analysis on the efficacy of these algorithms, the use of AI-based tools in 

clinical gait diagnostics is still limited [27]. Moreover, none of the studies published so far as a topical review in gait analysis [28] has 

been able to offer such a comprehensive and quantitative analysis. Let alone to select an algorithm for aiding either diagnosis or 

assessment of prognosis of knee OA, biomechanists currently do not have any objective ground truth whereby they could choose 

amongst several algorithms, as well as the time and expertise involved in understanding the tools in question (AI).  

 

To the best of the authors’ knowledge, this is the first study that has performed an evidence-based analysis on AI-related studies in 

clinical gait diagnostics tailored to patients with knee OA. Besides providing an evidence-based review, a star-rating system for quality 

assessment of relevant literature has been formulated. The scope of this rating system is not only limited to this study but can also be 

applied in any AI-related studies involving healthcare data. 

By performing a methodological evaluation of the eligible articles, the validity of the inferences drawn in this study were further 

ascertained. This review is hoped to have a significant impact in the field of Clinical Biomechanics in promoting the clinical application 

of AI-based methods to aid diagnosis and/or assessment of prognosis of several lower limb pathologies. 

 

2 Methods 

 The high-level objectives of this evidence-based review and analysis are the following: 

1. To identify studies that have used AI for gait analysis on knee OA and conduct a methodological quality assessment for their 

inclusion to conduct an evidence-based analysis; 

2. To assess the predictive capability of such studies by comparing supervised and unsupervised models via an evidence-based 

analysis approach, with respect to test classification accuracy (ACC) and further performance measures, such as sensitivity 

(SN), specificity (SP) and area under the curve (AUC); 

3. To compare studies that have implemented ANN- and ML-based algorithms in clinical gait diagnostics for knee OA, with 

respect to the above-mentioned performance measures. 

An evidence-based analysis was carried out via Review Manager (RevMan) (Version 5.3. Copenhagen: The Nordic Cochrane Centre, 

The Cochrane Collaboration, 2014). Further to performing the I2 test to assess the heterogeneity amongst selected studies [29], a 

sensitivity analysis was carried out to discard studies that could have biased the results. Furthermore, a statistical analysis on the accuracy 

and reliability measures of the algorithms reviewed was performed via IBM SPSS Statistics (IBM Corp. Released 2016. IBM SPSS 

Statistics, Version 24.0. Armonk, NY: IBM Corp.). Although gait data include spatiotemporal and metabolic data more broadly, only 

kinetic and kinematic data were considered in this study, as they are gold standard variables to quantify human motion in clinical gait 

diagnostics, and, thus, were collectively referred to as “gait data”. 

2.1 Inclusion and exclusion criteria 

Full-length papers and conference articles were initially screened, and their titles and abstracts were assessed for eligibility against the 

aims and high-level objectives of this study by all four authors independently.  

All major electronic databases including PubMed, Web of Science, MEDLINE, ScienceDirect, Scopus, Google Scholar, IEEE Xplore, 

Springer, Wiley, O'Reilly, SAGE, Cochrane, Embase were parsed with relevant keywords of interest, e.g., knee osteoarthritis, machine 

learning and artificial neural networks. Subsequent subscription-based and open-access articles published from 1984 (since when 

optometric mocap systems were first introduced) until 29/04/2018 were searched for. However, no relevant articles were found in 

MEDLINE, Cochrane, O’Reilly, Embase and Sage databases, which were thus discarded. 

 

The exact keywords used to guide the literature survey were the following: “machine learning”, “gait”, “motion capture”, “neural 

network”, “multi-layer perceptron”, “random forests”, “support vector machine”, “self-organizing maps” (US spelling), “self-organising 

maps” (UK spelling), “k-nearest neighbor” (US spelling), “k-nearest neighbour” (UK spelling) and “radial basis function”. 

 

Selected articles must have reported gait-related data on human participants with knee OA, regardless of any other demographic factor 

except for the age (older than 12 but younger than 75). Studies reporting gait-related data on human subjects with neurotrauma or with 

neurodegenerative disorders, such as Parkinson's Disease, Cerebral Palsy or Huntington's Disease, were discarded from this review. 

 

Studies in which kinematic data collected only using optoelectronic systems that uses RGB-D sensors (e.g., Vicon, Qualysis and Asus 

Xtion) were considered for inclusion. Moreover, body segments must have been identified via passive markers and any other methods 
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for measuring or estimating such gait metrics were not considered. Selected articles must have reported data on walking gait (speed 

lower than that of a healthy human subject, approximately less than 5 km/h, due to the knee OA). Any studies involving walking on 

instrumented treadmills (with embedded force platforms) and fall detection systems were discarded. 

 

An initial search was performed only based on the title. Subsequently, a second and final search was carried out, after which relevant 

key articles were selected for inclusion based on their abstract and full-text content. All bibliographies from the retrieved key articles 

were also searched for potential articles that might not have been considered previously. The “Preferred Reporting Items for Systematic 

reviews and Meta-Analysis” (PRISMA) guidelines [30] were followed throughout this study. 188 studies were identified following a 

further screening. By applying the above-mentioned inclusion and exclusion criteria, 180 articles were excluded and 8 were selected. A 

methodological quality assessment was performed on these studies for their inclusion in the meta-analysis, as outlined in 2.2. 

 

In case of incongruencies in the selected articles that could have not been clarified amongst the four authors and reviewers, the 

corresponding author of the selected articles was contacted for clarification, thus ascertaining whether the articles in question were 

eligible for inclusion, instead of discarding them a priori. 

 

2.2 Methodological quality assessment: The UARTA star-rating system. 

Adapted from the MQAS scale [32], a quality assessment on selected articles was performed via a star-rating system developed by the 

authors L.P. and N.R. at the University of Auckland Rehabilitative Technologies Association (UARTA). The "UARTA Star-rating 

System for Assessing Clinical Significance of Artificial Intelligence-related Research" is deemed applicable to any research articles 

dealing with AI applied to healthcare-related data. Each of the following points corresponds to a star (★) attributed to selected papers 

for meeting the criterion described in the statement next to it. A maximum of fifteen stars was attributed to each of the selected articles. 

Articles carrying less than seven stars were not considered for the review and meta-analysis. 

★ Selected articles must have outlined a clear purpose for the classification task, specifying inputs/outputs, reported any data pre-

processing steps undertaken to ensure accuracy and consistency of the results presented, and to enable their reproducibility. If those 

were not applicable, the authors of the selected articles must have justified why they were not. 

★ Selected articles must have reported any data post-processing steps undertaken to ensure accuracy and consistency of the results 

presented, and to enable their reproducibility. If those were not applicable, the authors of the selected articles must have justified 

why they were not. 

★ Selected articles must have reported a measure (number and/or percentage of the whole dataset) quantifying the training set of the 

data used. 

★ Selected articles must have reported a measure (number and/or percentage of the whole dataset) quantifying the cross-validation 

set of the data used. 

★ Selected articles must have reported a measure (number and/or percentage of the whole dataset) quantifying the testing set of the 

data used. 

★ Selected articles must have reported the name of the cross-validation algorithm (e.g., holdout validation, leave-one-out (LOO), 

nested or k-fold cross-validation, specifying the number k of partitions made where applicable) to avoid overfitting and ensure 

reproducibility of the results attained. 

★ Selected articles must have reported any qualitative outputs showing the training- and cross-validation-related mean squared error 

(MSE) curves against the number of iterations or epochs to illustrate at which iteration/epoch overfitting occurs. This step is 

fundamental to stop the training accordingly. 

★ Satisfying the above-mentioned criterion provides evidence on the avoidance of overfitting, thus ensuring that the algorithms tested 

were truly learning from the data which were trained on, rather than solely 'remembering' the input features. 

★ Selected articles must have reported testing or out-of-sample classification accuracy.  

★ Selected articles must have reported at least one measure of error, e.g., the mean squared error (MSE) or cross entropy, or it should 

be clearly inferable from the performance measures reported. 

★ Selected articles must have reported the sensitivity (SN). 

★ Selected articles must have reported the specificity (SP). 

★ Selected articles must have reported the area under the receiver operating characteristic curve (AUC) or, at least, the Pearson's 

product-moment coefficient of determination (r2). 

★ Selected articles must have reported any of the above-mentioned performance measures with confidence intervals.  

★ Selected articles must have reported any qualitative outputs on the receiver characteristic curve (ROC) under which the AUC was 

computed. 

 

Based on the inclusion and exclusion criteria in 2.1 and the quality assessment performed via the UARTA star-rating scale, eight (N=8) 

key articles were retrieved, as per the selection procedure outlined in Fig. 1.  
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Figure 1. PRISMA flowchart showing the selection procedure adopted to recruit suitable articles for review.   

 

 

 

 

Table 1 shows the stars attributed to each of the selected articles for meeting the UARTA star-rating scale-related criteria, as outlined 

above. 
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Table 1. Stars attributed to each of the selected articles for meeting the UARTA start-rating scale-related criteria.  

Scoring 

attributes 
[5] [18] [19] [20] [6] [21] [17] [7] 

Pre-processing ★ ★  ★  ★ ★ ★ 

Post-processing ★    ★ ★ ★ ★ 

Training Dataset ★ ★ ★ ★ ★ ★ ★ ★ 

Cross-validation 

dataset 
★ ★     ★ ★ 

Testing Dataset ★ ★ ★ ★ ★ ★ ★ ★ 

Cross-validation 

Algorithm 
★ ★ ★    ★ ★ 

Learning/training 

Measures 
★  ★    ★  

Learning 

Performance 
★        

Classification 
Accuracy 

★ ★ ★ ★ ★ ★ ★ ★ 

Measure of Error ★ ★  ★ ★ ★   

SN  ★ ★   ★ ★  

SP  ★ ★   ★ ★  

AUC   ★  ★  ★  

CI         

ROC   ★      

Total 10 10 9 5 7 8 11 7 

 

 

 

Table 2 summarises the main elements derived from a comprehensive review of the selected studies, as per the UARTA star-rating 

quality assessment scale described above. 

 

 

 



 

 

Table 2. Comprehensive review of included studies.  

 [5] [19] [18] [21] [6] [20] [17] [7] 

Aim 

To predict knee 
adduction moment 

using force plates 

and anthropometric 
measurements 

To predict 

pathological gait 
patterns pre-

operatively 

To quantify 
pathological 

differences in gait 

phases and joint 
angles 

To assess the 

viability of 

ensemble classifiers 
for recognising 

pathological gait 

patterns 

To predict knee joint 

moments from the 
movement of body 

segments 

To recognise 

pathological gait 

patterns using joint 
angles and spatio-

temporal gait 

parameters 

To classify 

pathological gait 
patterns pre-and 

post-operatively 

To recognise 

gender-independent 

and gender-
dependent 

differences in 

pathological gait. 

Condition Knee OA Knee OA Knee OA Knee OA Knee OA Knee OA Knee OA Knee OA 

Type of study Regression Classification Classification Classification Regression Classification Classification Classification 

Subject classes (N) 

Asymptomatic OA 

(N=28), Mild OA 
(N=28), Severe OA 

(N=28) 

Healthy (N=12) 

Symptomatic OA 

(N=11) 

Healthy (N=15) 

Symptomatic OA 

(N=32) 

Healthy (N=91) OA 
(N=110) 

Alkaptonuria with 
knee OA (N=31) 

Healthy (N=91) OA 
(N=110) 

Healthy (N=12) 

Symptomatic OA 

(N=11) 

Healthy (N=43) 

Symptomatic OA 

(N=100) 

D
a

ta
 

Training set 

(N, %) 
- 

51 trials 

(73.91%) 

21 subjects 

(44.68%) 

138 subjects 

(66.8%) 

22 subjects 

(70%) 

138 subjects 

(66.8%) 

69 trials 

(100%) 

112 subjects 

(80%) 

Cross-

validation 

(CV) set 

- 
Leave-one-out 

(LOO) 
5-fold - - - 

Leave-one-out 
(LOO) 

10-fold 

Testing set 

(N, %) 
- 18 (26.09%) 21 (44.68%) 63(31.3%) 9 (30%) 63(31.3%) 69 (100%) 14 (10%) 

Mocap technology 

and sampling rate 
120 Hz - Vicon (200 Hz) - 

Qualisys, Oqus and 

Vicon 
- Vicon (50Hz) Vicon (120 Hz) 

Force platform 

technology and 

sampling rate 

- 
Kistler force plate 

(400 Hz) 
- - - - 

Kistler force plate 

(400 Hz) and 

GAITRite 

Bertec instrumented 
treadmill 

Gait data type 
Kinetics and 
kinematics 

Kinetics and 
Kinematics 

Kinematics Kinematics 
Kinetics and 
kinematics 

Kinematics 
Spatio-temporal and 

symmetry indices 
Kinematics 

Data pre-

processing 
Low-pass filter - 

Normalisation per 

gait cycle 

Removal of missing 

values 

Normalisation per 

gait cycle 

Removal of missing 

values 
- 

Normalisation per 

gait cycle 

Gait-related input 

features (N) 

Twelve (N=12) 
features: Ground 

reaction forces -  

x,y,z , relative 
velocities -x,y,z ), 

relative 

displacements - 
x,y,z , stance 

duration, time point 

knee axis alignment. 

Twelve (N=12) 

features: walking 

velocity, cadence, 
stride length, stride 

time, step time, step 

length, single 
support time, double 

support time. 

Two (N=2) features: 
gait phase deviation 

and the joint 

function deviation 
reference-based 

indices (GCD-RBI 

and JFD-RBI) 

Five (N=5) feature 

vectors: four for 

temporal changes of 
knee joint angle 

(KFlex, KMFlex, 

KMVal, KPTot), 
one for time-

distance parameters 

3,131 instances, 

consisting of 12 
columns of angles 

(ankle - x, y, z, knee 

- x, y, z, hip - x, y, z, 
pelvis - x, y, z) 

Five (N=5) feature 

vectors four for 

temporal changes of 
knee joint angle 

(KFlex, KMFlex, 

KMVal, KPTot), 
one for time-

distance parameters 

Four (N=4) spatio-
temporal 

parameters: speed, 

cadence, stride 
length, stride time. 

Four (N=4) 

symmetry indices: 
step length, step 

time, single and 

double support time. 

For each of the 

groups, two feature 

vectors were created 
based on the original 

discrete variables 

and a principal 
component analysis 

(PCA). 

A
tt

r
ib

u
te

s 
o

f 
th

e
 c

la
ss

if
ie

r
s 

Architecture MLP SVM 
Quadratic SVM and 

KNN 
MLP RF, DT and MLP MLP SVM SVM 

Type of 

learning/train

ing 

Backpropagation 

SVMs were trained 

over the range C = 

{0.1, 1, 10, 100, 
1000} 

- - 

RF: ensemble of un-

pruned decision tree. 
DT: C4.5 decision 

tree; 
MLP: - 

- 
SVM (kernel width 

s=0.5, penalty 

parameter C=10). 

- 

T
ra

n
sf

e
r 

fu
n

c
ti

o
n

 Hidden 

Layer 

Hyperbolic tangent 

sigmoid 

Linear, polynomial 
and Gaussian 

kernels 

SVM: quadratic 

kernel 

KNN: nearest-
neighbor 

Tangent sigmoid - Tangent sigmoid 
Gaussian 

kernel 
Linear kernel 

Output 

layer 
Linear function - - Tangent sigmoid - Tangent sigmoid - - 



 

 

Input vectors 

(N) 
12 12 2 207* 3,131 207* 69 8 

Hidden layers 

(N) 
1 - - 2* 1 1* - - 

Hidden 

neurons in 

the first layer 

(N) 

7 - - 150* 10 50* - - 

Hidden 

neurons in 

the second 

layer (N) 

- - - 40* - - - - 

Output 

vectors (N) 
1 1 1 1* 1 1* 1 1 

T
ra

in
in

g
 

a
lg

o
r
it

h
m

 

Type 
Levenberg-
Marquardt 

- - - - - - - 

Learnin

g rate 
- - - - - - - - 

Moment

um 
- - - - - - - - 

Epochs - - - - - - - - 

Post-processing - - - - - - - - 

Software deployed 
MATLAB 

(Mathworks, MA) 
- - 

MATLAB 

(Mathworks, MA) 
- 

MATLAB 

(Mathworks, MA) 
- - 

C
la

ss
if

ie
r
 p

er
fo

r
m

a
n

c
e 

Accuracy 
median R for group 

curves 99.8% 
88.89% 

SVM: 85%; 
KNN: 87% 

90.48% 

RF(r2):96.27% 

DT(r2):67.67% 

MLP(r2):86.16% 

90.48% 94.2% 99% 

Sensitivity 

(SN) 
median R: 74.2% - 

SVM: 91%; 

KNN:93%; 
96.55% - 96.55% 100% - 

Specificity 

(SP) 
77.78% - 

SVM: 75%; 

KNN: 75% 
85.29% - 85.29% 97% - 

AUC 
0.836 

 
- - 

- 

 

RF: 0.889 

DT: 0.829 
MLP: 0.874 

- - - 

Limitations/Lack 

of reporting on 
SN; SP; ACC; ROC. 

Pre-processing; 

post-processing; 
cross-validation 

dataset; learning 

performance; 
measure of error; 

CI. 

Post processing; 
Learning/training 

measures; Learning 

performance; AUC; 
CI; ROC. 

Cross-validation set; 

cross-validation 
algorithm; 

learning/training 

measures; learning 
performance; AUC; 

CI; ROC. 

Pre-processing; 
cross-validation 

dataset; cross-

validation 
algorithm; learning 

measures; learning 

performance; SN; 
SP; CI; ROC. 

Post-processing; 

cross-validation 

dataset; cross-
validation 

algorithm; 

learning/training 
measures; learning 

performance; SN; 

SP; AUC; CI; ROC. 

Learning 

performance; 
measures of error; 

CI; ROC. 

Learning measures; 

learning 

performance; 
measures of error; 

SN; SP; AUC; CI; 

ROC. 

*data pertains to the MLP6 classifier, which was the most accurate individual MLP tested using the lowest number of hidden layers and hidden neurons amongst the multiple MLPs tested. This enables direct comparison of 
performance with the other studies.  
 



 

 

3 Results  
Table 3 and fig. 2.a illustrate the results obtained via a Forest plot indicating that the test classification accuracy obtained via ML-based 

algorithms was not statistically different with respect to that attained via ANN (mean difference (MD): 13.84%, 95% CI: -13.45, 41.12, 

p=0.32). Furthermore, the heterogeneity was considerably high (I2=93%), which is due to the very low number of studies (N=2) that 

compared the performance of ML and ANN directly, i.e., in the same study. 

Table 3. Forest plot showing the mean difference (MD) in test classification accuracy (mean±standard deviation) between machine learning (ML)-based algorithms and 
artificial neural networks (ANN) using gait-related kinetic and kinematic data. 

Study 
ML ANN Mean Difference 

Mean SD Total Mean SD Total Weight IV, Random,95% CI 

[6] 81.10 14.06 31 52.41 37.56 31 46.80% 28.69 [14.57, 42.81] 

[18] 80.05 5.76 47 79.26 6.12 47 53.20% 0.79 [-1.61, 3.19] 

Total (95% CI)   78   78 100% 13.84 [-13.45, 41.12] 

Heterogeneity: Tau2 =362.48; Chi2=14.58, df=1(p=0.00); I2=93% 

Test for overall effect: Z=0.99 (P=0.32) 

 

Fig. 2.b shows a Funnel plot indicating that, since the studies (N=2) are plotted near the mid-line representing the average MD, there 

was no publication bias in the results obtained.  

 
Figure 2. a) Forest plot comparing the test classification accuracy of ML- and ANN-based algorithms in clinical gait diagnostics from 

selected studies eligible for the evidence-based analysis as including both performance data in the same study; b) Funnel plot indicating 

no publication bias in the results obtained.  

 

Table 4 summarises the results obtained from a statistical analysis on the classification outcomes reported in selected studies. Whilst the 

test classification accuracy was reported in eight (N=8) selected studies, the sensitivity and specificity were reported in four (N=4) 

studies, with the area under the curve being reported only in two (N=2) studies. 

 
Table 4. Results from the descriptive statistics and correlation analysis. 

Performance measure Studies (N) 
ML Mean 

(%) 

ML Standard 

deviation (%) 

ANN Mean 

(%) 

ANN Standard 

deviation (%) 

Correlation 

(r2, p-value) 

Accuracy (ACC) 8 89.81 6.88 90.69 5.42 1, p=0.01 

Sensitivity (SN) 4 95.50 6.36 87.92 12.01 N/A 

Specificity (SP) 4 86.00 15.56 79.36 5.32 N/A 

Area under the curve (AUC) 2 0.86 0.00 0.85 0.03 N/A 

 



 

 

4 Discussion 
Previous reviews on the use of AI in clinical gait diagnostics were purely qualitative [28]. Instead, in this study not only a qualitative 

analysis of previous research findings was carried, but also a quantitative one was performed using a novel evidence-based analysis 

approach in AI for clinical gait diagnostics, which yielded two eligible studies that compared the classification performance of ML- and 

ANN-based methods directly, i.e., in the same study. Aljaaf et al. [6] were able to capture underlying gait patterns from the movement 

of body segments and quantified the knee adduction moment of the ankle, knee (KAM), hip and pelvis from their corresponding Euler 

angles during a single gait cycle. As compared to other ANN-based techniques, MLP was the most accurate algorithm tested (r2=0.86, 

root mean squared error (RMSE)=0.07). Karg et al. [18] applied a quadratic SVM to quantify pathological discrepancies in gait phases 

and joint angles between patients with symptomatic OA-related gait abnormalities and healthy subjects deploying spatio-temporal 

parameters with a classification accuracy of 85%. Patients with knee OA tendentially were found to have decreased walking speed, 

cadence, stride and step lengths when considering both lower limbs, a reduced time taken in single support but a longer time when in 

double support. 

 

To the best of the authors’ knowledge, the UARTA-star rating quality assessment scale represents the first ever clinical gait diagnostics-

equivalent (when dealing with AI-based clinical decision-making) of the MQAS scale [32] and the Newcastle-Ottawa quality assessment 

scale [31], the latter being used to assess findings from cohort studies (prospective or retrospective) published in the medical literature. 

Published studies lack consistency in reporting machine learning-based research findings as shown in Table 2 and as evident from the 

analysis in Table 4, where not all (N=8) selected studies had reported all the main performance measures of the AI-based algorithms 

tested on gait data. Remarkably, only two (N=2) studies reported the area under the curve (AUC) (Table 4), which is one of the most 

important performance measures for AI algorithms.  

In selected papers that directly compared classification outcomes between machine learning (ML)- and artificial neural networks (ANN)-

based architectures (N=2) [6, 18], ML-based algorithms were found to consistently have a higher accuracy and a lower standard deviation 

than those of ANN, thus being more stable in dealing with gait data (Table 3). The reduced performance in ANN-based algorithms may 

be partly explained by the re-sampling occurring within ANN-based architectures, such as the multi-layer perceptron (MLP), where 

weights and biases are adjusted iteratively, and so the data is continuously resampled until the mean squared error drops below a preset 

threshold that is deemed acceptable to stop training the ANN. However, such mean difference was not significant (p=0.32, Table 3 and 

Fig. 2.a) and the heterogeneity between studies was also considerably high (I2=93%, Table 3). Instead, when considering outcomes on 

test classification accuracy of the AI-based algorithms from the eight studies (N=8) that reported such a performance measure, the ANN 

seems to have a slightly higher accuracy with a slightly lower standard deviation than the ML-based ones, being both highly correlated 

between one another (r-squared=1.00, p=0.01; Table 4). Nevertheless, as also shown in Table 4, all reliability-related performance 

measures of ML-based algorithms (SN=95.50%, SP=86.00, AUC=0.86) were consistently higher than those of ANN-based architectures 

(SN=87.92%, SP=79.36, AUC=0.85). These apparently contradictory results further support the development and use of the UARTA 

star-rating quality assessment scale for clinical gait diagnostics-related studies using machine learning for three main purposes: 

1. qualitatively evaluating the technical rigour and quality of such studies; 

2. quantitatively perform the first ever objective evidence-based analysis (in this study) on results reported in published studies; 

3. providing guidelines to biomechanists and clinicians on which algorithm would be more accurate and reliable. 

Fig. 2.b shows no publication bias, as the mean differences from the selected studies are close to the midline of the graph indicating the 

mean MD. Therefore, the lack of publication bias supports the reliability of the above-mentioned conclusions derived from analysing 

the results reported in Table 3. Moreover, Table 3 seems to suggest that ANN can be used when dealing with gait data collected on 

patients with knee OA [18], whilst ML seems to generalise to patients with any other knee-related conditions better [6, 18].  

 

Whilst the test classification accuracy was reported in four studies, the sensitivity and specificity were mentioned in four studies, with 

the area under the curve being reported in two studies only. The limited size of the data available for the evidence-based analysis and 

statistical analysis is a major limitation of this study, which, indeed, highlights an even greater limitation in the reporting machine 

learning-related results in the literature. Nevertheless, the main limitation of this study remains the small sample of studies reviewed, 

which met the inclusion criteria for eligibility. Therefore, it is hard to draw definitive conclusions. 

 

To summarise, with respect to applications in clinical gait diagnostics, whilst both ANN- and ML-based algorithms attempt to mimic 

the learning-related mechanisms occurring in the brain and can handle nonlinear and highly dimensional data, they require adequate 

data pre-processing (removal of outliers, at times normalization or standardisation of inputs) and do not directly yield physiologically 

interpretable results.  

The development and validation of the UARTA star-rating quality assessment scale seeks to change such a status quo and obviate the 

lack of appropriate, consistent and thorough reporting on machine learning-related findings in the clinical gait diagnostics literature. The 

implementation of this set of standards for selection criteria is also intended to guide the development and testing of AI-based algorithms 

in clinical gait diagnostics, such that progress in AI research can be promptly translated in readily available and thoroughly validated 

tools that biomechanists and clinicians can easily use to aid diagnosis and/or assessment of prognosis of lower limb disorders and/or 

pathologies worldwide.  



 

 

5 Conclusion 
This study establishes clear design criteria for selecting and deploying Artificial Intelligence (AI)-based algorithms for diagnostic and/or 

prognostic purposes in clinical gait diagnostics, particularly when dealing with data on patients with knee-related conditions. A concise 

but comprehensive description of the main AI learning-based algorithms was provided (ANN and ML). A quantitative analysis enabled 

the definition of criteria for selecting the most accurate and reliable AI-based algorithm to apply in a clinical setting. Based on this 

analysis, the test classification accuracy (ACC), sensitivity (SN), specificity (SP) and area under the curve (AUC) of the ML-based 

algorithms analysed were found to be clinically valuable, i.e., all higher than 85% (ACC=89.81±6.88%; SN=95.50±6.36%; 

SP=86.00±15.56%; AUC=0.86±0.00), differently from those obtained via ANN (SP=79.36±5.32%). 

Biomechanists have so far applied AI-based algorithms without having any standards for guiding adequate selection and implementation 

of such tools. Via the development and validation of the UARTA star-rating quality assessment scale for machine learning-based studies 

in clinical gait diagnostics, we attempted to define a set of initial standards, guidelines that can promote a thorough and prompt 

translational application of previous research findings and AI-based algorithms. It is hoped that the UARTA scale will be considered 

when international standards will be outlined on appropriate and consistent reporting of findings from clinical gait diagnostics-related 

studies in which machine learning was used.  

AI can revolutionise and objectify best practices in clinical gait diagnostics, augmenting the capabilities of biomechanists to aid diagnosis 

and assessment of prognosis in patients with knee-related conditions. 
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