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Abstract—High-quality generator dynamic models are critical
to reliable and accurate power systems studies and planning.
With the availability of PMUs, measurement-based approach for
model validation has gained significant prominence. In this ap-
proach, the quality of a model is analyzed by visually comparing
measured generator response with the model-based simulated
response for large system disturbances. This paper proposes a
new set of performance metrics to assess the model validation
results to facilitate automation of the model validation process.
In the proposed methodology, first, the slow governor response
and comparatively faster oscillatory response are separated, and
then a separate set of performance metrics is calculated for each
of these two components. These proposed metrics quantify the
mismatch between the actual and model-based response in a
comprehensive manner without missing any information enabling
automation of the process. Furthermore, in this paper, we are also
proposing that the sensitivity analysis for model calibration be
performed with respect to the proposed metrics for the systematic
identification of key parameters. Results obtained using both
simulated and real-world case-studies validate the effectiveness
of the proposed performance metrics for model validation and
their application to the sensitivity analysis for model calibration.

Index Terms—Model validation and calibration, performance
metrics, oscillatory response, governor response, signal Process-
ing, PMU measurements, sensitivity analysis.

I. INTRODUCTION

IGH quality dynamic model of generators are critical

to reliable and economical power system operations and
planning. Dynamic studies for various system disturbances,
such as faults, generation loss, line trip, etc., is carried
out using these models for both short and long term plan-
ning. These studies provide information on several aspects of
power systems dynamic stability such as rotor angle stability,
damping ratio of system modes, primary frequency response,
system frequency and voltage recovery, etc., and identify
contingencies that can result in system instability and stability
constrained transmission paths. The accuracy of these studies
heavily depends on the quality of dynamic models used,
thereby making validation and calibration of generator dy-
namic models critically important. The need for accurate and
up-to-date dynamic models for reliable and economical grid
operations and planning was reinforced after the well-known
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1996 western grid blackout. The planning Western System
Coordinating Council (WSCC) model could not replicate the
unstable system oscillations observed following the series of
events that led to the system-wide outage [1]. NERC has since
then required all generators having capacity of greater than
10 MVA to be validated every five years. Also, Reliability
Standards MOD-026 [2] and MOD-027 [3] were developed to
provide guidelines for generator model validation.

Traditional methods for validating generator dynamic mod-
els include staged and standstill frequency response testing
[4]. These methods involve physical testing of the generators
and therefore generators to be validated remain unavailable for
normal operations. Even though these methods provide high
quality dynamic models, these methods are technically difficult
and are expensive [4]. With the availability of Phasor Measure-
ment Units (PMUs), measurement-based validation methods
have become widely-accepted [5]-[11]. This method requires
PMUs to be installed at the point of interconnection (POI)
of each generator to be validated. The PMU measurements
recorded at these locations for a grid disturbance are then
used as play-in signals to validate generator dynamic models
as shown in Fig. 1 [12]. This approach of validating dynamic
models is available in several power systems simulator such as
GE PSLF, SIEMENS PTI PSSE, PowerWorld Simulator and
TSAT [13].
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Fig. 1. Generator dynamic model validation using play-in PMU measurements

Several tools have been developed to validate generator
dynamic modele using play-in PMU measurements, such as
power plant model validation (PPMV) tool by Bonneville
Power Administration (BPA) and Pacific Northwest Na-
tional Laboratory (PNNL) [13], generator parameter validation
(GPV) tool by Electric Power Group [14] and Power Plant
Model Verification (PPMVer) tool by ISO-New England [7].
Current practices of analyzing model validation results include
visually comparing actual generator real and reactive power re-
sponse measured using PMUs with the simulated model-based
response corresponding to a large system event [7], [15]. Some
examples of metrics that have been proposed for quantifying
mismatch between actual and simulated generator response
include root-mean square error (RMSE) used in [13], peak
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value and peak-time of the first swing and steady-state error
used in [16], normalized RMSE metric proposed in [15], [17].
Similar to the RMSE metric, the optimization function used
for for model calibration in [18] defines waveform similarity
metric that quantifies the mismatch between actual and model-
based response based on similarity of the curves. One other
proposed metric include magnitude-shape similarity metric,
which is based on frequency domain, first defined in [19] and
later applied for quantifying model validation results in [20],
[21]. This metric finds a weighted average of the similarity
measure of the magnitude and phase spectra in frequency
domain. All these metrics can help analyze model validation
results and provide information on the quality of the model.
However, the information provided by these metrics is limited
and can only tell if the model is good or not. If the model
validation process is to be automated using these metrics,
critical information on mismatch between specific aspects of
dynamic response could be lost which would otherwise have
been obvious from a simple visual inspection. This information
can specifically be useful for identification of key model
parameters for model calibration.

Therefore, in this paper, we are proposing a new set of
metrics for quantifying mismatch between the actual and
model-based response that takes into consideration mismatch
between specific aspects of generator dynamic response. In
the proposed methodology, first the slow governor and fast
oscillatory response are separated using a low-pass filter and
then separate set of metrics are calculated for each of these
two components of generator dynamic response; phase and
magnitude similarity metric for generator oscillatory response
[22], and delay, peak value, peak-value time, rise-time and
steady-state value for generator governor response. These new
proposed metrics are simple, intuitive and yet comprehensive
in nature and can easily provide information on specific aspect
of dynamic response that has mismatch. For example, in the
2nd case-study example used in this paper, which is based on
real-world data, the mismatch was mostly in the governor re-
sponse time (given by proposed delay metric). A simple RMSE
metric could not have provided this information, however,
the proposed metrics can provide this information without
having to visually analyze the results, and thereby facilitating
the automation of model validation process. Furthermore,
proposed metrics can help with the identification of key model
parameters that need to be tuned for model calibration. In
several references, such as [23]-[25], the key parameters are
identified by performing sensitivity analysis with respect to the
RMSE metric that quantifies the change in the model-based
response caused by a change in selected model parameter.
There can be several parameters that are sensitive to the RMSE
metric that may or may not be needed to be tuned at all.
For example, if the model mismatch is only in the governor
response, then performing sensitivity analysis with respect
to the RMSE metric will select all parameters irrespective
of the type of impact on model response, which includes
both oscillatory and governor. For this purpose, in this paper,
we are proposing that the sensitivity analysis be performed
with respect to the proposed metrics. This approach can help
identify parameters which are sensitive to specific aspect of
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generator response that has mismatch between actual and
model-based response and thereby help with the identification
of the key parameters in a more systematic and scientific
manner as compared to the current practices. These parameters
then can be used for model calibration using existing model
calibration methodology, such as advanced ensemble Kalman
filter method [25]. To summarize, the main contributions of
the paper are the new set of performance metrics to judge the
quality of the models and their application to the sensitivity
analysis to identify problematic parameters that need to be
calibrated, and facilitating the automation of model validation
process without losing any information that could have been
obtained by visual inspection.

The rest of the paper is organized as follows: Section II
discusses background theory required to develop the proposed
methodology, Section III presents a detailed description of
the proposed methodology, Section IV provides results and
discussion for proposed metrics and their application to the
sensitivity analysis, and Section V concludes the paper.

II. BACKGROUND THEORY

This section briefly describes the Prony method used for
quantifying mismatch for generator oscillatory response, and
characteristics of the step-response of a system used for
quantifying mismatch for generator governor response.

A. Prony method

While any modal analysis method, such as Prony [26] and
Matrix-pencil [27], can be used to obtain the metrics for
generator oscillatory response, Prony analysis method is used
in this paper to illustrate the methodology of the proposed
metrics for oscillatory response. The Prony method consists
of three steps as described in [26]. Let the N samples of
measurements be given by y[0], y[1]...., y[N-1].

1) In the first step, a discrete linear prediction model (LPM)

is obtained, that fits the signal, by solving a linear least-
squares problem given by

Ya =y, (D
where
a = [(Zl a9 an]T,
y=[yln+0] yln+1] y[N - 1)),
yin—1]  yn—2] y(0)
yn—0]  yn—1] y(1)
Y = : : and
YIN=2 yN-3] - y(N-n—1)

n is the model order selected to obtain system mode
estimates. The least squares solution of (1) is given by

a=Yly, 2)

where 1 denoted pseudo-inverse of a matrix. The n—th
order polynomial equation is then given by

l4az  4asz2+..4a,2"=0 3)
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2) In the second step, mode estimates, given by i =w; +
jo; for i =1 to n, are calculated using
i =~ log 2, )
where {Z;}!'*, are the roots of the estimated n-th order
polynomial equation given by (3), AT is the sampling
time period of the measurements, w; is the frequency of
each mode in rad/sec, and o; is the damping coefficient.
The damping ratio of each i*" mode is given by

~ —0;
G=—FF— ®)

Vw? +o?
3) In the final step, the initial amplitude and phase of each
mode, given by the phasor estimate B;, is calculated

solving
ZB =y, (6)
where
2 2 2
21 23 zpl
7 = .
2] -1 zé\[*l z,JIV_l
B=[B B, B,]" and
T
y = [y[0] y[1] y[N —1]]".

The least squares solution of (6) is given by
B =17y, (7

Following steps 1 to 3, mode estimates are given by (4)
and mode shape of each mode is given by (7).

Validation of mode estimates:

Only estimating modes is not sufficient unless the mode
estimates are validated [28]. For validating mode estimates,
the original signal is compared with the reconstructed signal
given by

Nr+Ne

MW:ZyM, (8)

where n, is the number of real modes, n. is the number of
pair of complex modes and 7, [k] is the contribution of the i*"
mode to the signal given by

Gi[k] = B;2F  for real mode

o O
=2x*R(B;z;) for complex mode pair.
The goodness of fit metric is calculated using [26]
[ly[k] — glK]|
GoF =1 — W — JIMIT (10)
[y [K]]]
where ||.|| denotes root-mean-square norm. Using (10), model

order n is selected that gives the best fit between the original
and reconstructed signal.

Sorting of system mode estimates
As described in [28], not all mode estimates represent actual

modes. Some of the mode estimates are spurious ones and
need to be discarded. One of the ways of distinguishing
actual mode estimates and spurious ones is to rank mode
estimates based on their energy given by

N
E; =Y gilk)?
k=1

The modes having insignificantly small energy as compared
to the highest energy can be discarded.

Y

B. Characteristics of the step-response of a system

Governor response of a generator can be represented by the
step-response of a system as shown in Fig. 2.
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Fig. 2. Step-response characteristics of a system

The metrics for validating model-based governor response is
based on the following step-response characteristics [29]:

o Peak value: Given by the peak absolute value of the
governor response.

o Peak time: Given by the time-instant at which peak
absolute value of the governor response occurs.

« Steady-state value: Given by the final value of the gov-
ernor response.

« Rise-time: Given by the time required by the governor
response to reach from 10% to 90% of it’s steady-state
value.

III. ADVANCED PERFORMANCE METRICS AND THEIR
APPLICATION TO THE SENSITIVITY ANALYSIS

The methodology for model validation and calibration pro-
cess has several steps:

1) Perform model validation by using play-in signal as
described in [9].

2) Analyze the model validation results by comparing actual
and model-based response.

3) Identify key model parameters that need to be tuned for
model calibration.

4) Perform model calibration using the identified key pa-
rameters.

In this paper, the proposed methodology is to help with
the second and the third step of the model validation and
calibration process. The main objective of this paper is to
develop metrics that can quantify mismatch between the
actual and model-based response in a comprehensive and
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accurate manner, which can then facilitate the automation of
the model validation process. For this, we are proposing new
set of metrics in this paper that takes into consideration the
mismatch corresponding to each specific aspect of generator
response, such as phase and magnitude of oscillatory modes,
and characteristics of the governor response. Furthermore, we
are also proposing that the sensitivity analysis be performed
with respect to the proposed metrics to identify key parameters
for model calibration in a more systematic manner. A detailed
description of the proposed methodology, shown in Fig. 3 , is
discussed next.

A. Step-1: Separating governor and oscillatory response

During system faults, generator dynamic response can be
broken down into two components, one is the slow governor
response and the other fast oscillatory response. The generator
oscillatory response is determined by system modes and
therefore the frequency range of this response lies between
0.1 and 2.0 Hz. Therefore, the slow governor response and
the oscillatory response can be separated by passing the
generator response through a high—pass filter having a cut-off
frequency of less than 0.1 Hz as illustrated in the Fig. 4(a) and
Fig. 4(b). The governor response is then obtained by taking
the difference of the generator response and the oscillatory
response, and passing the resultant signal through median filter
to smooth out any oscillatory components present in the signal.
This is the first and the important step in calculating proposed
metrics and performing sensitivity analysis.

B. Step-2: Calculation of performance metrics

In the second step, metrics is calculated for the separated
governor and oscillatory response corresponding to the active
power. Metrics proposed for each of these responses is de-
scribed next.

1) Active power - Oscillatory response: The metric for
validating generator oscillatory response is calculated based
on the properties of the oscillatory modes observed in the
PMU and simulated measurements. Two metrics are proposed
in this paper for validating generator oscillatory response,
one quantifying magnitude similarity and the other quanti-
fying phase similarity of oscillatory modes. The metric for
magnitude incorporates any discrepancy associated with initial
amplitude, damping-ratio and frequency of system modes
between the model-based response and actual response. The
metric for phase calculates any phase difference between the
two signal. By performing sensitivity analysis with respect to
these metrics can help identify model parameters that affect
these parameters, and if any discrepancy is observed in either
one or both of these metrics, those parameters can be tuned
for model calibration.

(1) Oscillation magnitude-similarity metric (Oscps): The
metric for validating the magnitude component of the
model-based oscillatory response is given by:

1
Oscar =1— Zplwl;wlem“ (12)
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where
emi = (||y1\—\ 1y sto<eni<1 (3)
Myl
- N N N T
¥i = [1o:[0]]  |ga[1]] |9:[N —1]]] (14)
Gilk] = |Bil2], (15)
superscript ‘a’ corresponds to estimates using actual

response and ‘s’ corresponds to estimates using simulated
response, €, ; is the normalized error metric for each
mode, w; is the weight factor for each mode given by its
energy as defined in (11), p is the number of dominant
modes selected out of n modes based on their energy,
and |.| denotes absolute value of the quantity. Here, the
reconstructed signal used for calculating this metric is
obtained by discarding initial phase of the modes so that
the error associated with the phase does not impact the
magnitude metric.

(ii) Oscillation phase-similarity metric (Oscp): The metric
for validating the phase component of the model-based
oscillatory response is given by:

Oscp=1— szem, (16)
1w%‘ 1
where
|/Be — /B3|
i= (g ) St0<gi<1, (D

€p.i is the normalized phase error associated with the 7"
mode observed in actual and simulated measurements.
The metric obtained for each mode is weighted with its
energy to obtain a single metric. If any mode observed
in the PMU measurement is not observed in the mode
estimated using the simulated data, an error of 1 is
assigned to both €, ; and €, ; for that mode.

The step-wise methodology to obtain the proposed metrics for
validating model-based oscillatory response is as below:

(i) Pre-process PMU and simulated measurements by using
signal processing techniques, such as filtering, downsam-
pling, etc., for modal analysis

(ii) Obtain mode estimates and mode-shapes for both pre-

processed PMU and model-based measurements using

(4) and (7). In this step, selection of model order is carried

out for both the signals by comparing pre—processed

original and reconstructed signal. Also, dominant modes
are distinguished from the spurious ones by calculating

energy of mode estimates using (11).

Calculate the two metrics to validate the model-based

oscillatory response by comparing it with the actual

oscillatory response using (12) and (16).

(iii)

2) Active power - Governor response: Based on the step-
response characteristics of a system, as shown in Fig. 2, several
metrics are defined to validate the model-based governor
response by comparing it with the actual governor response.
Each metric looks into a specific aspect of the governor
response, which are as follows:

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
http://dx.doi.org/10.1109/TPWRS.2021.3066911

URMILA AGRAWAL et al.: ADVANCED PERFORMANCE METRICS AND THEIR APPLICATION TO SENSITIVITY ANALY SIS FOR MODEL VALIDATION AND CALIBRATIONS

The final version of record is available at

Run model validation algorithms and obtain simulated active and reactive power measurements [4= = = —

Scope of the proposed methodology

Using high-pass filter, separate slow governor and fast oscillatory response
for both actual and simulated active power measurements

|

Calculate metrics for validating model-
based governor response by comparing it
with actual governor response

Calculate metrics for validating model-
based oscillatory response by comparing it
with actual oscillatory response

Y

| Based on metrics, determine if the model is good enough or requires calibration. |

| If model requires calibration, perform sensitivity analysis and identify parameters to be calibrated. |

Fig. 3. FlowChart for the proposed methodology
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(a) Generator response and the corresponding decoupled oscillatory and
governor response.
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(b) Zoomed-in version of Fig. 4(a) to focus on oscillatory response.
Fig. 4. Separated governor and oscillatory response using high-pass filter.

(i) Delay (G): Obtained by taking the difference of the time
taken by the model-based and actual governor response
to reach 10% of their respective peak value with respect
to a common time-reference.

(ii) Peak value (Gp): Obtained by taking the difference of

the peak value of the model-based and actual governor

response.

Peak time (G pr): Obtained by taking the difference of

the time taken by the model-based and actual governor

(iii)

response to reach peak-value

Steady-state error (Ggg): Obtained by taking the differ-

ence of the final value of the model-based and actual

governor response

(v) Rise time (Gprr): Obtained by taking the difference of
the time taken by the model-based and actual governor
response to change from 20% to 90% of their respective
peak-value.

(iv)

Ideally, the mismatch observed in the actual and model-
based generator response should be equal to zero. However,
that is generally not the case. Therefore, certain thresholds
need to be determined for each metric, summarized in Table
I, to validate the generator model. These thresholds should be
determined based on the industry practices and is beyond the
scope of the paper.

TABLE 1
PROPOSED METRICS FOR QUANTIFYING MISMATCH BETWEEN ACTUAL
AND MODEL-BASED RESPONSE

Oscillatory response | Oscps | Oscp

Governor response Gy Gp

Gpr ‘ GRrr ‘ Gss

C. Step-3: Identifying key parameters by performing sensitiv-
ity analysis with respect to the proposed metrics

Based on the calculated metrics, if it is determined that the
model needs calibration then the next step will be to perform
sensitivity analysis to identify key parameters that need to be
tuned for model calibration. In this paper, we are proposing
that the sensitivity analysis be carried out with respect to the
proposed metrics that quantifies the impact of each model
parameter on specific error metrics that have mismatch be-
tween actual and model-based response. For example, if it is
identified that the generator model response has mismatch with
the actual response for governor response time, given by delay
metric, then the sensitivity analysis needs to be performed with
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respect to the delay metric to identify parameters that have
significant impact on delay metric as given by:
AGq

AH’
Depending on how the selected model parameter affects other
metrics, other parameters may also have to be selected.

SGaH = (18)

IV. RESULTS AND DISCUSSIONS

Results were obtained using both simulated and real-world
PMU measurements based case-studies to illustrate the effec-
tiveness of the proposed metrics and their application to the
sensitivity analysis.

A. Simulated data based case-study

The simulated-data based example used in this paper is
taken from the 12 disturbances set prepared by NASPI Engi-
neering Analysis Task Team and NERC synchrophasor mea-
surement subcommittee team for NASPI Technical Workshop
on Model Verification Tools in 2016 [30]. Fig. 5 shows the
active power measured at the POI of the generator, and the
model-based response of the generator obtained using PPMV
tool developed by BPA and PNNL. Fig. 6(a) and Fig. 6(b)
show governor and oscillatory response obtained from actual
and model-based active power response. The results obtained
for oscillatory and governor response is presented next. For
comparison purpose, a normalized root mean square error
metric was also calculated using

N.RMSE = (19)
where
o = |~y [M‘ st 0<e, <1 (20)
ye[k]

0 20 40 60 80 100 120
Time (Sec)

Fig. 5. PMU measurements recorded at the Point of Interconnection, and
model-based response of the generator obtained using PPMV tool

1) Metrics for oscillatory response: Using the methodology
described in the earlier section, metrics were calculated for
validating the model-based oscillatory response of the gen-
erator. Before performing modal analysis, the signals were
downsampled to 5 samples/sec and also frequency components
lower than 0.1 Hz were removed. Using this pre-processed

http://dx.doi.org/10.1109/TPWRS.2021.3066911
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(b) Generator oscillatory response

Fig. 6. Generator governor and oscillatory response calculated using actual
and model-based active power response.

measurements, system modes and mode shapes were estimated
for both actual measurements and model-based response. The
model order selection is very critical to the proposed method
as it can significantly affect the metrics for quantifying the
validation results. For both actual measurements and model-
based simulated data, model order of n = 22 was chosen that
gave the best fit between the original and reconstructed signal
as shown in Fig. 7(a) and Fig 7(b).

Table II and III give the mode estimates for the PMU
and model-based simulated measurements. For metric calcu-
lations, mode estimates having energy less than 5% of the
highest energy were not considered.

TABLE I
MODE ESTIMATES FOR PMU MEASUREMENTS

Frequency Damping Initial Initial Normalized
(Hz) ratio (%) Amplitude Phase (Deg) Energy
0.362 11.999 3.028 48.384 1.000
0.799 14.678 2.990 -65.998 0.426
0.634 8.873 1.599 161.012 0.272
1.248 2.276 0.503 64.129 0.045
1.737 1.177 0.412 -33.676 0.040
TABLE III
MODE ESTIMATES FOR MODEL-BASED SIMULATED DATA
Frequency Damping Initial Initial Normalized
(Hz) ratio (%) Amplitude Phase (Deg) Energy
0.361 11.759 1.236 41.543 1.000
0.814 12.912 1.177 -76.053 0.399
1.935 4.673 0.545 30.661 0.126
0.634 8.592 0.419 166.861 0.111
2.038 10.432 0.758 151.799 0.101
1.749 4.239 0.351 -1.507 0.059
1.261 1.953 0.112 13.848 0.015

Using (12) and (16), metrics for validating model-based
oscillatory response was calculated and is given in Table IV.
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(a) For PMU measurements: n = 22 and Goodness of fit = 0.96
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(b) For Model-based response: n = 22 and Goodness of fit = 0.97

Fig. 7. Tllustration of the model order selection by comparing pre-processed
signal with the reconstructed signal.

Based on the oscillation magnitude-similarity metric, it can
be said that the dynamic model does not accurately represent
the model that generated the PMU measurements and requires
calibration. This is also illustrated in Fig. 8(a) and 8(b) that
compare the contribution of two dominant mode estimates to
the PMU measurements and simulated generator response. As
seen in these figures, the contribution of the two modes to
the PMU measurements and generator response do not have a
good match. However, the phase component of the oscillatory
response matched well based on the calculated oscillation
phase-similarity metric. By performing sensitivity analysis,
model parameters that affected the magnitude of the oscillatory
response were identified as discussed in later section.

TABLE IV
METRICS CALCULATED FOR OSCILLATORY RESPONSE.

Mode-1 Mode-2 | Mode-3 | Mode-4
w; 1 0.426 0.272 0.045 | Ose. Metre
€m.i 0.588 0.593 0734 | 0772 0.3759
pi 0.038 0.056 | -0.032 0.279 0.9342

2) Metrics for governor response: Using governor response
extracted from actual and model-based response measure-
ments, metrics were calculated comparing the actual and
model-based governor response and are given in Table V.
Based on these metrics, it can be said that model parameters
that can increase the peak-value of the governor response
needs to be calibrated. These parameters were identified using
sensitivity analysis as discussed in the later section.

TABLE V
METRICS CALCULATED FOR GOVERNOR RESPONSE

Gg (sec) | Gp (MW) | Gpr (sec)
0.025 0.9 -4

Gss (MW)
0.88

GRr (sec)
-18.32
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—Mode-1:PMU
6k —Mode-1:Model

MW

i \/ \C// \/

4r —/ -
I . . . .
0 2 4 6 8 10
Time (Sec)
(a) Mode-1
6 T T :
| —Mode-2:PMU

4 . . . .
0 2 4 6 8 10

Time (Sec)
(b) Mode-2

Fig. 8. Comparison of contribution of selected modes to the magnitude
component of oscillatory response of actual and model-based response

3) Comparison with the RMSE metric: For comparison
purpose, a normalized RMSE metric was calculated using (19),
and is equal to 0.39642 >> 0 indicating poor model quality.
However, as previously mentioned, the information provided
by this metric is limited as compared to that by the proposed
set of metrics which can help with the automation of model
validation process without losing any information and also
with the identification of key model parameters to be tuned.

B. Real-world data based case-study

The proposed methodology was also implemented using real
PMU measurements recorded in the Western Interconnection.
The allowable error limits for synchrophasor measurements
and minimum sampling frequency, as defined in the IEEE/IEC
Standard 60255-118-1-2018 [31], meets the criteria for using
synchrophasor measurements for model validation and cali-
bration.

Fig. 9 shows the comparison of the actual and model-based
active-power response. The methodology described earlier
were used to obtain the metrics, which are shown in Fig.
10(a) and 10(b), along with the respective responses. For
modal analysis, model order of n = 18 was chosen for
both actual and model-based response with GoF metric equal
to 0.99 and 1.00 respectively. Table VI provides the error
associated with each mode of the oscillatory response. Based
on the response obtained for the governor response, it can
be seen that the mismatch between the actual and model-
based response comes from delay and peak value, which
could not have been known by using a simple RMSE metric.
Based on the oscillation magnitude-similarity metric, it can
be said that the model parameters need to be calibrated to
improve oscillatory magnitude response of the model. Using
(19), the normalized RMSE for this example was calculated to
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Fig. 10. Metrics calculated for the real-world data example.

be 0.5382 >> 0 indicating poor model quality. Again, if the
model validation process is to be automated using this simple
RMSE metric, some critical information would be lost which
can be helpful for identifying key model parameters. Based
on the calculated metrics, model parameters to be tuned can
be identified by performing sensitivity analysis with respect
to the governor peak-value metric, governor delay metric
and oscillatory magnitude-similarity metric. However, for this
example, sensitivity analysis was not performed as the point
of interconnection at which the measurements were recorded
consists of multiple units.

TABLE VI
METRICS FOR OSCILLATORY RESPONSE REAL-WORLD DATA EXAMPLE.
Mode-1 Mode-2
w; | 1000 | 0457 | Osc Meuic
emi | 0341 | 0.105 0.708
i | 0093 | 00 0.924

http://dx.doi.org/10.1109/TPWRS.2021.3066911

TABLE VII
MODEL PARAMETERS FOR SIMULATED-DATA BASED CASE STUDY
EXAMPLE
GENROU REXS GGOV1 PSS2A

Param Value | Param Value | Param Value Param Value
Xd 185 | Tr 0.02 | R 0.05 | J1 1
X'd 0.21 | Kvp 600 | Rselect 1| Kl 0
X’d 0.15 | Kvi 0 | Tpelec 0.6 | 12 3
Xq 1.3 | Vimax 0.2 | Maxerr 0.025 | K2 0
X’q 0.7 | Ta 0.02 | Minerr -0.025 | Twl 1
X"q 0.15 | Tbl 1 | Kpgov 6 | Tw2 1
X1 0.15 | Tel 10 | Kigov 022 | T3 5
Ra 0.003 | Tb2 1 | Kdgov 0 | Twd 0
T’do 5| Te2 1 | Tdgov 1| T6 0
T"do 0.25 | Vrmax 10 | Vmax 1| T7 5
T'qo 1 | Vrmin -10 | Vmin 0.24 | Ks2 0.5
T"qo 0.05 | Kf 0.045 | Tact 0.6 | Ks3 1
S(1.0) 0.12 | Tf 5 | Kturb 1.5 | Ks4 1
S(1.2) 0.48 | Tfl 1 | Winl 025 | T8 0.5
H 3.1 Tf2 1 Tb 1 T9 0.1
D 0 | Fof 1| Tc 1| N 1
Rcomp 0 | Kip 5 | Flag 1| M 5
Xcomp 0 | Kii 0 | Teng 0 | Ksl 15
Accel 05 | Tp 0 | Tfload 03 | T1 0.28
Kis 0 | Vfmax 99 | Kpload 1| T2 0.043
Pfd 0 | Vfmin -99 | Kiload 33 | T3 0.281
Pkd 0 | Kh 0 | Ldref 1 T4 1.16
Pfq 0 | Ke 04 | Dm 0 | Vstmax 0.1
Pkq 0| Te 1.2 | Ropen 99 | Vstmin -0.1
Speed 0 | Ke 0 | Rclose 99 | A 1
Angle 0| Kd 0.7 | Kimw 0| Ta 0

El 2.4 | Pmwest 0| Tb 0.043

Sel 0.05 | Asest 99

E2 32 | Ka 10

Se2 0.3 | Tact 1

Rcomp 0 | Db 0

Xcomp 0 | Tsa 1

Nvphz 0 | Tsb 1

Kvphz 0 | Rup 99

Flimf 0 | Rdown -99

Xcomp 0

Vemax 0

Kefd 0

Limflg 0

C. An example illustrating the application of proposed metrics
to the sensitivity analysis and model calibration

In this paper, simulated-data based example is further used
to illustrate the application of proposed metrics for sensitivity
analysis. The model parameters of the generator machine
models and governor models in this case-study example is
shown in Table VII. In this example, all model parameters
were changed by certain % and the corresponding change in
the error metrics were calculated with respect to the original
error metric using

AE = Enew - Eold7 (21)

where I is the error metric for which sensitivity analysis was
carried out. The sensitivity analysis results for the generator
machine model (GENROU) parameters are summarized in
Table VIII. Table IX provides sensitivity analysis results for
the selected parameters of the governor model (GGOV1) that
were significant. The change in the exciter and stabilizer
model parameters did not result in any significant changes
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in the active power response and therefore the results are
not included. For comparison purpose, the sensitivity analysis
results are also included with respect to the RMSE metric in
Table VIII and Table IX.

In this example, based on the proposed metrics, calibration
of model is required to improve oscillatory similarity metric
and governor peak-value metric. Based on the sensitivity
analysis with respect to the proposed metrics, we were able to
identify parameters that can improve specific aspect of gener-
ator response that has mismatch with the actual response, for
example inertia constant H to improve oscillatory magnitude
similarity metric and integral gain (kigov) and proportional
gain (kpgov) for improving governor response. If we perform
sensitivity analysis with respect to the RMSE metric, then we
will end up selecting several parameters that will affect several
aspects of dynamic response, for example parameters such as
H, Xd, X’q, and T’do of machine model which affect both
oscillatory magnitude and phase similarity metric. Therefore,
performing sensitivity analysis with respect to the proposed
metrics can help narrow down parameters to be calibrated in
a more systematic and scientific manner.

TABLE VIII
SENSITIVITY ANALYSIS RESULT FOR MACHINE MODEL PARAMETERS
Param. | %change | AOscyr | AOscp | AGy | AGp | AGpr | AGrr | AGss | N.RMSE
Metric 0.37 0.93 0 0.9 -4 -18.32 0.88 0.396
H 50% 0.35 0.02 0.0 0.0 0 0.6 0.0 -0.0082
H -50% -0.17 0.02 0.0 0.0 0 -0.4 0.0 0.0161
Xd 50% 0.00 0.01 0.0 0.0 0 0.2 0.0 -0.0078
Xd -50% -0.04 -0.06 0.0 0.0 0 0.1 0.0 0.0160
Xd 50% -0.04 -0.06 0.0 0.0 0 -0.1 0.0 0.0166
X'd -50% -0.01 -0.04 0.0 0.0 0 0.0 0.0 0.0042
X'q 50% -0.05 -0.04 0.0 0.0 0 -0.2 0.0 0.0006
X'q -50% 0.06 0.18 0.0 0.0 0 0.0 0.0 0.0131
Xq 50% 0.05 0.18 0.0 0.0 0 0.0 0.0 0.0128
Xq -50% -0.04 -0.03 0.0 0.0 0 0.2 0.0 -0.0034
T’do 50% -0.05 -0.05 0.0 0.0 0 0.1 0.0 -0.0028
T’do -50% 0.00 0.00 0.0 0.0 0 0.1 0.0 0.0000
T”do 50% -0.05 -0.05 0.0 0.0 0 0.2 0.0 -0.0098
T do -50% -0.03 0.00 0.0 0.0 0 0.1 0.0 0.0113
T"qo 50% -0.01 0.00 0.0 0.0 0 0.2 0.0 -0.0043
T qo -50% -0.05 -0.03 0.0 0.0 0 0.0 0.0 0.0036
T'qo0 50% -0.02 -0.01 0.0 0.0 0 0.1 0.0 0.0011
T'qo -50% -0.05 -0.03 0.0 0.0 0 0.2 0.0 -0.0001
TABLE IX

SENSITIVITY ANALYSIS RESULT FOR GOVERNOR MODEL PARAMETERS

Param. | %change | AOscyr | AOscp | AGy | AGp | AGpr | AGRy AGgs | NNRMSE
Metric 0.37 0.93 0 0.9 -4 -18.32 0.88 0.396
kigov 50% 0.0 0.0 0.0 0.56 -2.7 -13.93 0.54 -0.036
kigov -50% 0.0 0.1 0.0 -1.03 0.5 8.48 -1.04 0.095
kpgov 50% 0.0 0.0 0.0 | -0.05 22 -55.21 -0.08 0.005
kpgov -50% 0.0 0.0 0.7 0.13 2.0 4.59 0.13 0.019
kturb 25% 0.0 0.0 0.0 0.28 -0.4 -11.49 0.26 -0.021
kturb -25% 0.1 0.0 0.7 -3.57 -84.7 -61.63 -4.57 0.569
R 50% 0.0 0.1 00 | -1.12 2.7 -14.20 -1.15 0.090
R -50% 0.0 0.0 0.0 2.19 2.0 12.50 2.19 -0.024

Based on this sensitivity analysis results, model calibration
was carried out by manually tuning key model parameters
identified using sensitivity analysis with respect to the pro-
posed metrics. By increasing the value of inertia—constant H,
the magnitude component of the oscillatory response showed
a better match with the actual oscillatory response. For im-
proving governor response, first the integral gain (kigov) was

increased and then the proportional gain (kpgov) was adjusted
to minimize error associated with the peak-time. The model-
based active power response obtained using this calibrated
model is shown in Fig. 11 along with the error metrics. As
can be seen in this figure, the error metrics is much improved
as compared to the original model. One thing must be noted
here that, the objective of this example is only to illustrate how
these proposed metrics can be helpful for model validation and
calibration, and not model calibration itself.
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Fig. 11. Model calibration using proposed metrics and sensitivity analysis

V. CONCLUSION

This paper proposes advanced performance metrics for
quantifying model validation results in a rigorous manner by
breaking down generator active power response into slow gov-
ernor response and fast oscillatory response. These proposed
metrics analyze several aspects of generator dynamic response
as compared to other existing metrics, and therefore pro-
vides more accurate and comprehensive assessment of model
validation results. The results obtained using both simulated
and real-world measurements based case-studies validate the
effectiveness of the proposed metrics to help with the automa-
tion of the model validation process without having to lose
any information captured by visual inspection. Furthermore,
performing sensitivity analysis with respect to the proposed
metrics can identify key parameters in a more systematic and
scientific manner that are sensitive to specific error metrics
having significant mismatch between actual and model-based
response. This has been illustrated in the paper using simulated
test-case based example. To conclude, proposed metrics and
sensitivity analysis can be very useful for model validation
and calibration. Future work will focus on advancing the use
of proposed metrics for model calibration and also combining
metrics for several events into a single metric that can help
with the model calibration based on multiple events.
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