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Abstract—We presents a squared sine functioned adaptive (S-
SA) algorithm for acoustic-echo-cancellation (AEC) applications
in-presence-of impulsive noise. In the development of the SSA
algorithm, a novel cost function is constructed by exerting a
sliding window type squared sine function on the estimation
error vector, which provides robustness in the impulsive-noise
environments and speed-ups convergence when the input is col-
ored signals. Theoretical models for predicting the mean-weight-
behavior, transient excess-mean-square-error (EMSE) behavior,
and tracking behavior are presented. Moreover, the optimal
step size and minimum EMSE of the tracking performance are
provided. The computation complexity of SSA algorithm has also
been investigated. Numerical experiments demonstrate that the
theoretical results match well with simulation results and show
the superiority of the proposed SSA algorithm against known
algorithms in AEC applications.

Index Terms—AEC, adaptive filters, impulsive-noise, perfor-
mance analysis.

I. INTRODUCTION

ADAPTIVE filtering (AF) has been widely consid-
ered and used for active-noise-control, system iden-

tification, beamforming, channel-equalization, acoustic-echo-
cancellation (AEC), speech prediction [1], [2]. Among AF
algorithms, the least-mean-square (LMS) algorithm [3] is the
most often used due to its simple implementation. The LMS
utilizes instantaneous squared error to get an error-criterion
resulting in its low-complexity, but also a slow convergence.
The normalized LMS (NLMS) [4]–[6] is an improved version
of LMS to enhance its performance, and it is a variable-step-
size algorithm. However, the performance for these LMS-type
algorithms will be degraded when the input signals are highly
correlated, including speech signal.

To improve the performance, the affine-projection (AP) al-
gorithm and its variants [6]–[10] were created and investigated.
The AP-promoted algorithms utilize input signals at previous
time and current instants to reduce the colored input influ-
ence. At present, these AP-promoted algorithms are mainly
discussed and analyzed with a background noise of Gaussian
distribution [11], [12]. Nevertheless, the performance of the
aforementioned algorithms will degrade when the analyzed
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signal is contaminated by impulsive noises with heavy-tail
distributions.

For improving the convergence of AF algorithms operating
in impulsive noises, the AP sign (APS) algorithm [13] has been
devised, which minimizes l1-norm of the a posteriori error-
vector. The APS does not need matrix inversion, which has
low computational-complexity. Additionally, it enhances the
convergence in environments with impulsive noise when com-
pared with the original AP algorithm. The AP Versoria (APV)
[14] and memory-improved proportionate APS (MIP-APS)
[15] algorithms were presented to achieve a faster convergence
and lower steady-state misalignment (SSM). The APV al-
gorithm combines data-reuse and Versoria-cost maximization
to get a better filter performance. The robust APS (RAPS)
algorithm and its shrinking version (SRAPS) are reported in
[16]; they minimize a mixed l1/l2 norm to speed-ups their
convergence speed and significantly reduce the misalignment.
Finally, the RAPS and SRAPS algorithms achieve a lower
SSM and converge faster than the APS algorithm. However,
the algorithms require the matrix inversion, resulting in high
computational complexity.

The aforementioned AF algorithms are realized using the
mean-squared error (MSE) criterion, constructing from the
second-ordered error statistics. Their performances degrade
significantly as the probability of large outliers (in the impul-
sive noise) increases. Recently, the saturation of error nonlin-
earities, such as in the correntropy concept used against large
outliers, has been considered in the literature [17]–[23]. The
saturation has been successfully used for developing robust AF
algorithms. The maximum-correntropy-criterion (MCC) algo-
rithm with different versions were proposed for applications
with background non-Gaussian noise. In addition, variable-
kernel-width methods have been used and integrated into the
MCC algorithm to balance between SSM and convergence
speed using a fixed step-size [21]. Moreover, combining the
AP algorithm and generalizing MCC, the AP generalization
maximum-correntropy (APGMC) algorithm [24] is construct-
ed to reduce misalignment and enhance the convergence.

The squared sine function obtained from Andrews sine
[25] has been investigated in robust statistics, which reveals
its effectiveness to recover outliers. For low-power noises or
outliers, the squared sine function performs similar to the
l2-norm function, while it behaves similar to the l1-norm
function for high-power noises. Benefiting from its property,
the sine estimator is more efficient for trimming outliers
described by long-tailed distributions [25], [26]. In this paper,
the squared sine adaptive (SSA) algorithm is devised to further
enhance the steady-state and convergence performance under
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the impulsive environments and correlated signals. Motivated
by the AP scheme, the proposed SSA algorithm is realized
by taking the gradient-descent-search on a new cost-function
obtained from the squared sine function to guarantee robust-
ness against impulsive interferences. Theoretical models for
predicting the mean-weight-behavior, transient excess-mean
square-error (EMSE) behavior, and tracking behavior of the
SSA algorithm are presented and compared with simulation
results. Moreover, the optimal step-size and minimum EMSE
of tracking behavior of the SSA algorithm are provided.
The computational complexity of the SSA algorithm is also
investigated. Experimental results validate the correctness of
theoretical analysis and show the superiority of the devised
SSA algorithm against known algorithms in acoustic echo
cancellation applications.

Notations: The scalars, vectors and matrices are marked
using normal letters, boldface lowercase letters and boldface
uppercase letters. The other related notations are given below.

(·)T Transpose operation for matrix or vector
I Identity matrix
E [·] Random variable expectation
|·| Absolute value operator
Tr (·) Trace of a matrix

II. THE PROPOSED SSA ALGORITHM

For a linear system, the unknown system output is depicted
as

y(l) = uT (l)wo, (1)

where wo = [w1, w2, · · · , wL−1, wL]
T is the unknown system

weight vector and u(l) is the system input vector of length L.
The desired signal is given by

d(l) = y(l) + v(l) = uT (l)wo + v(l), (2)
where v(l) is noise in the systems. The estimation-error vector
is gotten and written as

e (l) = d (l)−UT
l w (l) . (3)

Here, e (l) = [e (l) , e (l − 1) , ..., e (l −M + 1)]
T , and

d (l) = [d (l) , d (l − 1) , ..., d (l −M + 1)]T , the input matrix
is constructed as Ul = [u (l) ,u (l − 1) , ...,u (l −M + 1)],
M is the projection order, and w(l) represents an estimate of
wo.

For identification of the unknown system, a new cost
function is constructed from the squared sine (obtaining from
the Andrews sine [25] function), given by

JSS (l) =

{
c · sin2

(
e(l)
2c

)
if |e (l)| ≤ πc

c otherwise
, (4)

where c is an adjustable parameter to control the shape of the
cost function. The SSA algorithm employs the cost function
in (4) to create a data-reuse version, which makes full use of
error-information and improves the identification performance
in impulsive noise scenarios. Then, a new cost function is
created by combining (4) with data-reusing,

JSSA (l) =

M−1∑
i=0

JAS (l − i). (5)

TABLE I: The SSA algorithm and its computational complex-
ity

Step Equation × + sin (·)
Initialization: w (l) = 0, for l ≤ 0 −

For l = 1, 2, 3 . . . −
1 f(l)=UT(l)w(l) ML M (L− 1) −
2 e(l)=d(l)−f(l) − M −
3 Sµ (l) = µ sin (e (n) /2c) 2M − M
4 w(l+1)=w(l)+UlSµ(l) ML ML −

Totail : 2ML+2Mmultiplications, 2ML additions,Msine operations.

Taking partial-derivative in (5) in relation to w (l), we get

∂JSSA (l)

∂w (l)
=

∂

∂w (l)

M−1∑
i=0

2c · sin2

(
e (l − i)

2c

)
= −

M−1∑
i=0

sin

(
e (l − i)

2c

)
u (l − i)

= −Ul sin

(
e (l)

2c

)
,

(6)

when |e (l − i)| ≤ πc, i = 0, 1, . . . ,M − 1. If |e (l − i)| > πc,
the value of ∂JAS (l)/∂w (l) is equal to zero.

Using the gradient-descent-method [27], the SSA weight
update-equation is defined as

w(l + 1) = w(l)− µ ∂

∂w (l)
JSSA (l), (7)

where µ is a step-size, which is chosen to offer a tradeoff
between the convergence-rate and misalignment. From eqs.
(6) and (7), we have

w(l + 1) = w(l) + µUl sin

(
e (l)

2c

)
, (8)

while e (l − i) is set to zero when |e (l − i)| > πc. For large
values of e (l − i), the weight update is a small value and thus
the SSA algorithm achieves stable performance in the presence
of outliers.

The implementating complexity of devised SSA algorithm
is briefly discussed in Table I. Steps 1 and 4 have the most
computations and we use a look-up table for the sin (·) to
reduce the complexity of non-linear operations. Table II is a
comparisons of multiplications, additions, and divisions for
recent reported APS, AP, APV, and SSA algorithms for each
iteration. The AP algorithm gives the highest computation
burdens as it uses matrix inversion, while SSA algorithm is
simpler compared to these popular AP-like algorithms.
TABLE II: Complexities of the SSA and recent AP-like AF
algorithm.

Algorithm Multiplication Division Addition

AP
(
M2+2M

)
L+M3+M −

(
M2+2M

)
L+M3+M2−M

APS 2ML+M2+4M 1 2ML+M2 +2M−1
APV ML+L+2M2+6M+2 M+1 ML+ L+2M2+4M
SSA 2ML+2M − 2ML

III. THE MEAN WEIGHT ANALYSIS

Theoretical analysis for SSA algorithm is now carried out
to obtain its transient mean weight (MW) behavior. The MW
analysis can indicate the instantaneous behavior of the weight
vector. Let w̃ (l) = w (l)−wo, then (3) is rewritten as

e (l) = v (l)− ea (l)

= v (l)−UT
l w̃ (l) ,

(9)
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where ea (l) is a priori error vector. Then, the weighting
update-equation is

w̃ (l + 1) = w (l + 1)−wo

= µUl sin

(
e (l)

2c

)
+ w̃ (n) .

(10)

Taking expectation in (10), we get

E [w̃ (l + 1)] = E [w̃ (l)] + µE

[
Ul sin

(
e (l)

2c

)]
= E [w̃ (l)] + µ

M−1∑
i=0

E

[
u (l − i) sin

(
e (l − i)

2c

)]
.

(11)

To analyze the nonlinearity terms sin (e (l − i) /2c) , i =
0, 1, . . . ,M − 1, several assumptions are normally considered
in the convergence analysis [28]–[31].

Assumption 1: v(l) are zero mean (ZM) and i.i.d. variables,
independent of other signal.

Assumption 2: w̃ (l) is independent of other signal.
Assumption 3: The input u (l) is i.i.d. signal with covariance

matrix Ru(τ) = E
[
u (l)uT (l + τ)

]
, where τ indicates a

delay between the input vectors.
Taking the Taylor-series expansion of sin (e (l − i) /2c) in

relation to ea (l − i) at v (l − i), yields

sin

(
e (l − i)

2c

)
= sin

(
v (l − i)− ea (l − i)

2c

)
= sin

(
v (l − i)

2c

)
−

cos
(

v(l−i)
2c

)
ea (l − i)

2c

−
sin
(

v(l−i)
2c

)
e2
a (l − i)

c2
+ o

(
e2
a (l − i)

)
,

(12)

where o
(
e2
a (l − i)

)
refers to the third and higher-order terms.

If o
(
e2
a (l − i)

)
is small enough, then based on the Assump-

tions 1, 2, and 3, we obtain

E

[
u (l−i) sin

(
e (l−i)

2c

)]
≈ −E

cos
(

v(l−i)
2c

)
u (l − i) ea (l − i)

2c


=−E

cos
(

v(l−i)
2c

)
u(l−i)uT (l−i)w̃(l)

2c


= − 1

2c
E

[
cos

(
v (l)

2c

)]
Ru(0)E [w̃ (l)] ,

(13)

where E [sin (v (l) /2c) ] = 0 because of Assumption 1. The
value of sin (v (l) /2c) is set to zero when |v (l)| > πc. Thus,
we obtain the MW recursion in the SSA algorithm as

E[w̃ (l + 1)]=E[w̃ (l)]−µM
2c
E

[
cos

(
v (l)

2c

)]
Ru(0)E[w̃ (l)] .

(14)
The simulation results reported in section VI illustrate the
model accuracy.

IV. THE TRANSIENT EMSE ANALYSIS

Transient EMSE is a widely-used measure for evaluating
convergence performance of AF-algorithms [28]–[30]. Using
Assumptions 2 and 3, the transient EMSE can be obtained
from
TEMSE=E

[(
uT (l) w̃ (l)

)2] ≈ trace [Aw̃ (l)Ru(0)] , (15)

where Aw̃ (l) = E
[
w̃ (l) w̃T (l)

]
. From equation (15), the

recursion model of Aw̃ (l) = E
[
w̃ (l) w̃T (l)

]
is the key to

obtain the transient EMSE by using equation (10).

Multiplying (10) by its transpose yields

w̃(l+1) w̃T (l+1)=w̃(l) w̃T (l)+µw̃(l) sin

(
eT (l)

2c

)
UT

l

+µUl sin

(
e (l)

2c

)
w̃T (l)+µ2Ul sin

(
e (l)

2c

)
sin

(
eT (l)

2c

)
UT

l .

(16)
Therefore, taking expectations on (16), yields

Aw̃ (l + 1) = Aw̃ (l) + µE

[
w̃ (l) sin

(
eT (l)

2c

)
UT

l

]
+µE

[
Ulsin

(
e(l)

2c

)
w̃T(l)

]
+µ2E

[
Ulsin

(
e(l)

2c

)
sin

(
eT(l)

2c

)
UT

l

]
.

(17)
We have

E

[
Ul sin

(
e(l)

2c

)
w̃T(l)

]
=

M−1∑
i=0

E

[
u(l−i)sin

(
e(l−i)
2c

)
w̃T(l)

]
.

(18)
Substituting (12) into (18), we obtain

E

[
u (l − i) sin

(
e (l − i)

2c

)
w̃T (l)

]
≈ E

[
sin

(
v (l − i)

2c

)
u (l − i) w̃T (l)

]
− E

cos
(

v(l−i)
2c

)
u (l − i) ea (l − i) w̃T (l)

2c


− E

 sin
(

v(l−i)
2c

)
e2
a (l − i)u (l − i) w̃T (l)

8c2


≈ −E

cos
(

v(l−i)
2c

)
u (l − i)uT (l − i) w̃ (l) w̃T (l)

2c


= − 1

2c
E

[
cos

(
v (l)

2c

)]
Ru(0)Aw̃ (l) .

(19)
Then, (18) changes to

E

[
Ul sin

(
e (l)

2c

)
w̃T(l)

]
≈−M

2c
E

[
cos

(
v (l)

2c

)]
Ru(0)Aw̃(l) .

(20)
Using the same approach, we obtain

E

[
w̃(l) sin

(
eT(l)

2c

)
UT

l

]
≈−M

2c
E

[
cos

(
v(l)

2c

)]
Aw̃(l)Ru(0).

(21)
Assume that sin

(
e(l)
2c

)
≈ sin

(
e(l−1)

2c

)
≈ · · · ≈ sin

(
e(l−M+1)

2c

)
which is valid in the steady state of the SSA algo-
rithm. Then, utilizing same method for getting the term
E
[
Ul sin

(
e(l)
2c

)
sin
(

eT (l)
2c

)
UT

l

]
, yields

E

[
Ulsin

(
e(l)

2c

)
sin

(
eT(l)

2c

)
UT

l

]
≈E
[
sin2

(
e(l)

2c

)
Ul11

TUT
l

]
,

(22)
where 1T = [1, 1, . . . , 1] is a vector of ones of length M .
Taking Taylor-expansion of sin2

(
e(l)
2c

)
in terms of ea (l)
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around v (l), we get

sin2

(
e (l)

2c

)
=sin2

(
v (l)

2c

)
−
cos
(
v(l)
2c

)
sin
(
v(l)
2c

)
ea (l)

c

−

(
sin2
(
v(l)
2c

)
−cos2

(
v(l)
2c

))
e2
a (l)

4c2
+o
(
e2
a (l)

)
.

(23)

Then, we get

E

[
Ul sin

(
e (l)

2c

)
sin

(
eT (l)

2c

)
UT

l

]
≈ E

[
sin2

(
v (l)

2c

)
Ul11

TUT
l

]
−1

c
E

[
sin

(
v (l)

2c

)
cos

(
v (l)

2c

)
ea (l)Ul11

TUT
l

]
− 1

4c2
E

[(
sin2

(
v(l)

2c

)
−cos2

(
v(l)

2c

))
e2
a (l)Ul11

TUT
l

]
= E

[
sin2

(
v (l)

2c

)
Ul11

TUT
l

]
− 1

4c2
E

[(
sin2

(
v(l)

2c

)
−cos2

(
v(l)

2c

))
e2
a (l)Ul11

TUT
l

]
.

(24)
The last term in (24) can be rewritten as

1

4c2
E

[(
sin2

(
v(l)

2c

)
−cos2

(
v(l)

2c

))
e2
a (l)Ul11

TUT
l

]
=

1

4c2
E

[
sin2

(
v (l)

2c

)
− cos2

(
v (l)

2c

)]
×E

{[
M−1∑
i=0

u(l−i)

]
uT(l)w̃(l)w̃T(l)u(l)

[
M−1∑
i=0

uT(l−i)

]}
≈ 1

4c2
Esc2R

M
u Aw̃ (l)RM

u ,

(25)
where RM

u = Ru (0) + Ru (1) + · · · + Ru (M − 1) and
Esc2 = E

[
sin2

(
v(l)
2c

)
− cos2

(
v(l)
2c

)]
. Substituting (25) into

(24), yields

E

[
Ul sin

(
e (l)

2c

)
sin

(
eT (l)

2c

)
UT

l

]
≈ E

[
sin2

(
v (l)

2c

)]
E
[
Ul11

TUT
l

]
− 1

4c2
Esc2R

M
u Aw̃ (l)RM

u .

(26)

Furthermore, substituting (20), (21) and (26) into (17), the
recursion for Aw̃ (l) can be obtained, given by

Aw̃ (l + 1) = Aw̃ (l)− µM
2c
E

[
cos

(
v (l)

2c

)]
Aw̃ (l)Ru (0)

− µM
2c
E

[
cos

(
v (l)

2c

)]
Ru (0)Aw̃ (l)

+ µ2E

[
sin2

(
v (l)

2c

)]
E
[
Ul11

TUT
l

]
− µ2

4c2
Esc2R

M
u Aw̃ (l)RM

u .

(27)
The simulating results obtained in Section VI helps to verify
an excellent accuracy of the theoretical prediction.

V. TRACKING ANALYSIS

In this section, the behavior of SSA algorithm is assessed
in non-stationary environment. We assume that wo (l) is time-

varying referring to random walk model [10],
wo (l + 1) = wo (l) + h (l) , (28)

where h (l) is an i.i.d. ZM Gaussian sequence of vectors with
the auto-correlation matrix Q = E

[
h (l)hT (l)

]
= σ2

hIL.

Substituting (28) into (10), we have

w̃ (l + 1) = w̃ (l) + µUl sin

(
e (l)

2c

)
− h (l) . (29)

Left multiplying UT
l on (29), we obtain

ẽp (l) = ẽ (l) + µUT
l Ul sin

(
e (l)

2c

)
(30)

with
ẽ (l)

∆
= UT

l w̃ (l) = v (l)− e (l) , (31)

ẽp (l)
∆
= UT

l (w̃ (l + 1) + h (l))

= UT
l (w (l + 1)−wo (l)) .

(32)

Using (29) and (30), following relation is gotten between
estimation errors

w̃ (l + 1) = w̃ (l) +Ul

(
UT

l Ul

)−1
(ẽp (l)− ẽ (l))− h (l) .

(33)
Taking the square of the l2-norm and expectations on (33), we
obtain

E
[
‖w̃ (l + 1) + h (l)‖22

]
+E

[
ẽT (l)

(
UT

l Ul

)−1
ẽ (l)

]
= E

[
‖w̃ (l)‖22

]
+E

[
ẽTp (l)

(
UT

l Ul

)−1
ẽp (l)

]
.

(34)
Substituting (30) and (29) into (33), the equation (34) can be
rewritten as

E
[
‖w̃(l + 1)‖2

]
=E

[
‖w̃(l)‖2

]
+2µE

[
eTa (l) sin

(
e(l)

2c

)]
+ µ2E

[
sin

(
eT (l)

2c

)
UT

l Ul sin

(
e (l)

2c

)]
+Tr (Q) .

(35)
Assuming that weight error-vector reaches a steady-state-
mean-squared value, yields

lim
l→∞

E
[
‖w̃ (l + 1)‖2

]
= lim

l→∞
E
[
‖w̃ (l)‖2

]
. (36)

From (35) we have

lim
n→∞

µE

[
sin

(
eT (l)

2c

)
UT

l Ul sin

(
e (l)

2c

)]
+Tr (Q) =

− 2 lim
n→∞

E

[
ea (l) sin

(
e (l)

2c

)]
.

(37)
Then, right-hand side of (37) changes to

lim
l→∞

E

[
eTa (l) sin

(
e (l)

2c

)]
≈M lim

l→∞
E

[
ea (l) sin

(
e (l)

2c

)]
.

(38)
Combining (12) and (38), we obtain

lim
l→∞

E

[
eTa(l)sin

(
e(l)

2c

)]
=−M

2c
E

[
cos

(
v(l)

2c

)]
lim
l→∞

E
[
e2
a(l)
]

=−M
2c
E

[
cos

(
v(l)

2c

)]
EMSE,

(39)
where EMSE

∆
= lim

l→∞
E
[
e2
a (l)

]
. Similarly to the derivation of
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Fig. 1: Weight performance of the SSA with different M and P = 0.001. (a) M = 1; (b) M = 8; (c) M = 16.
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Fig. 2: Weight performance of the SSA with different M and P = 0.1. (a) M = 1; (b) M = 8; (c) M = 16.

(22), the left-hand side of (37) is rewritten as

lim
l→∞

E

[
sin

(
eT (l)

2c

)
UT

l Ul sin

(
e (l)

2c

)]
= E

[
1TUT

l Ul1
]
lim
l→∞

E

[
sin2

(
e (l)

2c

)]
≈ E

[
1TUT

l Ul1
]
E

[
sin2

(
v (l)

2c

)]
− 1

4c2
E
[
1TUT

l Ul1
]
EMSE

= SuE

[
sin2

(
v (l)

2c

)]
− Su

4c2
Esc2EMSE,

(40)

where Su
∆
= E

[
1TUT

l Ul1
]
. Substituting (39) and (40) into

(37) yields

µSuE

[
sin2

(
v (l)

2c

)]
− µ

4c2
SuEsc2EMSE + Tr (Q)

=
M

c
E

[
cos

(
v (l)

2c

)]
EMSE.

(41)
After some algebra, we can obtain

EMSE =
4c2µ2SuE

[
sin2

(
v(l)
2c

)]
+ 4c2Lσ2

h

4cµME
[
cos
(

v(l)
2c

)]
+ µ2SuEsc2

=
4c2µ2SuEs2 + 4c2Lσ2

h

4cµMEc1 + µ2SuEsc2
,

(42)

where Es2
∆
= E

[
sin2

(
v(l)
2c

)]
and Ec1

∆
= E

[
cos
(

v(l)
2c

)]
.

Taking the derivative of (42) with respect to µ, yields

EMSE′=

(
1

E2
scS

2
uµ

4 + 8Ec1EscMSucµ3 + 16E2
c1M

2c2µ2

)
×
(
16Es2Ec1MSuc

3µ2−8EscLSuc
2σ2

hµ−16Ec1LMc3σ2
h

)
.

(43)
Making (43) equal to zero, the optimized µ for minimizing
EMSE is obtained as

µo=

√
E2

scL
2σ4

hS
2
u + 16c2M2Lσ2

hSuEs2E2
c1+Lσ

2
hSuEsc

4cMSuEs2Ec1
,

(44)
and the minimum EMSE is given by

EMSEmin =
4c2µ2

oSuEs2 + 4c2Lσ2
h

4cµoMEc1 + µ2
oSuEsc

. (45)

VI. SIMULATION RESULTS

To show the effectiveness of devised SSA and the cor-
rectness of theoretical analysis, experiments are set up and
investigated. Results in all experiments are derived from
averaging over 500 independent Monte-Carlo trials. v (l) is
added to system output with v (l) = b (l) + η (l) q (l) [25],
where η (l) is i.i.d. Bernoulli-random sequence in which
occurrence probability Pr [η (l) = 1] = P and Pr [η (l) = 0] =
1 − P . The sequences b (l) and q (l) are i.i.d. ZM white
Gaussian noises (WGNs), and their variances are σ2

b and
σ2
q (σ2

q � σ2
b ), respectively. The mean-squared deviation

(MSD) is adopted in the simulations, defined as NMSD(l) =

10 log10

[
‖w (l)−wo‖2/‖wo‖2

]
to measure identification
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Fig. 3: Transient performance of the SSA with M and P = 0.001. (a) M = 1; (b) M = 8; (c) M = 16.
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Fig. 4: Transient performance of the SSA with different M and P = 0.1. (a) M = 1; (b) M = 8; (c) M = 16.
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Fig. 5: Steady state EMSE for σ2
h = 1 × 10−6 vs. µ for

variousσ2
b .

performance of the algorithm,where initial weight-vectors are
zero.

A. Evaluation of Mean Weight

The mean weight results are investigated in the following
scenario. The input signal is a first-order auto-regression
(AR) process that has correlation-coefficient of 0.9. The
unknown system is considered to have the weight vector
wo=[0.8, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1− 0.1− 0.3− 0.6]
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Fig. 6: Steady state EMSE with σ2
b =1×10−3 vs. µ for various

σ2
h.

[32]. The impulsive-noise v (n) is put into system to get a
SN) of 30 dB and a signal-to-interference ratio (SIR) of −30
dB, where SNR is SNR = 10 log10

{
E
[
y2(l)

]
/σ2

b

}
and SIR

is SIR=10 log10

{
E
[
y2(l)

]
/σ2

q

}
.

Figs. 1 and 2 show the MW curves for different values
of M with P = 0.1 and P = 0.001. The parameters in
these experiments are µ = 0.001 and c = 1. Figs. 1 and 2
illustrate a very good agreement of the theoretical analysis
with the corresponding simulation results, which demonstrate
the accuracy of the analysis.
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B. Evaluation of Transient EMSE

The transient EMSE is now investigated via simulation
experiments. The parameters of these experiments are the same
as in the MW experiments. Figs. 3 and 4 show the theoretical
transient curves for different values of M with P = 0.001 and
P = 0.1, respectively. The theoretical results predict well the
performance of SSA algorithm, which shows that although we
made an approximation in Equation (21), the results from the
simulations verify the theoretical analysis accuracy.

C. Evaluation of Tracking EMSE

The theoretical analysis of the tracking performance is now
verified by experiments. The system and input signal are same.
The occurrence probability is set to P = 0.005 [14]. The
parameter setting is σ2

q = 1000. Figs. 5, 6, and 7 display the
simulated and theoretical tracking EMSE vs. µ for different
values of σ2

b , σ2
h, and M , where c = 4 for Figs. 5 and 6, c = 7

for Fig. 7. The minimum EMSE and the optimal step size µo

are also shown.
In Fig. 5, an increase of σ2

h leads to higher minimum EMSE
and lower optimal µo for the given σ2

b . As can be seen in
Fig. 6, the optimal µo and minimum EMSE decrease as σ2

h

decreases for a given σ2
b . From Fig. 7, the minimum EMSE

does not vary much with the projection-order M for given
σ2
b and σ2

h. The optimal step size decreases monotonically
with increasing the projection order M . The high accuracy of
the theoretical expressions can be clearly verified from these
simulation results over a range of step-sizes, σ2

b , σ2
h, and M

values.

D. AEC Application

Herein, the convergence of SSA is evaluated for AEC
application. In AEC, an AF is to identify acoustic echo path
between microphone and loudspeaker (see Fig. 8, which shows
the AEC block diagram). The filter output signal is subtracted
from the microphone signal for echo cancellation. To show the
superiority of devised SSA against known algorithms, three

Speaker

W(l )Echo Channel

Microphone

Loudspeaker

d(l ) e(l )

u(l )

+

Acoustic Echo 

Canceler

-

Fig. 8: Block-diagram of an AEC system.
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Fig. 9: Echo CIR with 128 taps.

types of input signal are considered in the simulations: zero-
mean white Gaussian signal with unit variance, AR signal,
and an authentic speech-signal sampled at 8 kHz shown in
Fig. 10. The unknown channel is the echo-channel given by
the ITU-T G.168 with 128 taps [33] which is shown in Fig.
9. M for all algorithms is 4. The other parameters are set as
SIR = −30dB and SNR = 30dB. The regularized parameters
for APS, MIPS-APS, and APV are 10−6. The step size µ and
various parameters are given in figures and they are selected
to obtain same NMSD or initial convergence rate.

Figs. 11 and 12 show the performance curves for the
algorithms with P = 0.001 and P = 0.1, respectively. Figures
11 and 12 show that the APS, MIPS-APS, APV, and SSA
algorithms are robust in impulsive environments with different
values of the occurrence probability, except the AP algorithm,
and the SSA algorithm always works better than mentioned
algorithms.

VII. CONCLUSIONS

This article proposes a squared sine adaptive (SSA) algo-
rithm by using the squared sine function on the error vector
to create a new cost-function. The SSA shows robustness in
the impulsive environment and speed-ups convergences for
colored inputing signals. The theoretical models for predicting
the mean weight behavior, transient EMSE behavior, and
tracking behavior are developed and verified using simulations.
Furthermore, the optimal step-size and minimum EMSE are
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4
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0

1

A
m
p
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tu
d
e

Samples

0 2 4 6

Fig. 10: Speech input signal for AEC Application.
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Fig. 11: Convergence of AP, APS, MIPS-APS, APV, and SSA with different input signals and P = 0.001. (a) WGN signal;
(b) AR signal; (c) Speech signal.
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provided for time-varying systems. Also, we investigated the
computation complexity of the algorithm and showed that the
SSA algorithm is simpler than the other algorithms. Experi-
mental results demonstrate that theoretical prediction matches
well with experimental results under different occurrence
probabilities, projection-orders, step sizes, σ2

b , and σ2
h values.

The experimental results confirm the superiority of devised
SSA algorithm against known AP-like AF algorithms.
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