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Abstract—The aim of this study is to propose a low-complexity algorithm that can be used for the joint sparse recovery of biosignals.
The framework of the proposed algorithm supports real-time patient monitoring systems that enhance the detection, tracking, and
monitoring of vital signs via wearable biosensors. Specifically, we address the problem of sparse signal recovery and acquisition in
wearable biosensor networks, where we develop an efficient computational framework using compressed sensing (CS) and
independent component analysis (ICA) to reduce and eliminate artifacts and interference in sparse biosignals. Our analysis and
examples indicate that the CS-ICA algorithm helps to develop low-cost, low-power wearable biosensors while improving data quality
and accuracy for a given measurement. We also show that, under noisy measurement conditions, the CS-ICA algorithm can outperform
the standard CS method, where a biosignal can be retrieved in only a few measurements. By implementing the sensing framework, the
error in reconstructing biosignals is reduced, and a digital-to-analog converter operates at low-speed and low-resolution.

Index Terms—Patient monitoring systems, joint sparse recovery for biosignals, wearable biosensor networks.
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1 INTRODUCTION

RECENT developments in patient monitoring systems
have led to important applications in the field
of biomedical engineering. Wearable devices inte-

grated with cyber-physical systems (CPS) make the med-
ical monitoring of patients with chronic conditions easier
and more consistent, allowing clinicians and caregivers to
supervise their patients remotely and providing feedback
to help maintain an optimal health status, regardless of
patient location. These systems are being increasingly used
in hospitals and clinics to provide continuous high-quality
care to patients in complex clinical scenarios [1].

Recent advances in wearable sensors make CPS a pow-
erful candidate for real-time e-health monitoring, extending
to different monitoring areas, including homes, buildings,
means of transport, etc. Unlike traditional embedded sys-
tems, CPS is typically designed as a network of real-time
embedded computing interaction with physical elements
that can ensure the adaptability, autonomy, reliability and
functionality of wearable biosensor networks. An essential
part of CPS is the internet of things (IoT) edge computing
platforms, which can enable smart mobile healthcare ser-
vices, through which patient data is collected by wearable
biosensors and clinical data aggregators (e.g., smart watches
and mobile devices) to be transferred to ambient sensors
and then stored in medical servers for monitoring health
status. The IoT edge computing platform consists of a large
number of real-time data aggregators and ambient sensors
that collect large amounts of data from patients in different
locations and make them accessible to clinicians at any time
for analysis (see, e.g., Fig.1).
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Big data analytics for CPS help clinicians predict illness,
prepare diagnosis, and plan treatment, resulting in overall
improved quality of care and reduced cost. By exchanging
medical records for patients between public and private
hospitals, doctors and specialists would be able to predict
where the patient is located on the spectrum of disease
progression more accurately and efficiently. Managing and
monitoring vital signs [2], such as heart and respiratory
rates, blood pressure, blood flow, blood glucose, body tem-
perature, oxygen saturation, electroencephalogram (EEG),
electrocardiogram (ECG), requires wearable sensing plat-
forms that can capture vital signs and biometrics, and de-
liver data from the patient to IoT edge computing devices
(e.g., data aggregators, ambient sensors), as well as to the
CPS cloud, for medical analysis.

The main challenge is to implement remote monitor-
ing and tracking of patients in sensors and data acquisi-
tion/detection, i.e., when vital signs (biosignals) contain
noise and artifacts. For example, ECG signals are affected
by patient motion and they often suffer from low signal-to-
noise ratio (SNR) due to motion artifacts and interference
effects. Artifacts can be defined as distorted signals caused
by internal or external sources [e.g., muscle movement,
overlapping of data transmission where inter-biosensor in-
terference occurs within the same wearable biosensor net-
work] or inter-network interference where the wearable
biosensor network interferes with other nearby wireless
sensor networks operating in the industrial, scientific, and
medical (ISM) radio bands [3].

Due to ECG artifacts, high data acquisition is invisible to
wearable biosensors, resulting in inadequate diagnosis and
treatment. With a complete set of n discrete-time samples
of a biosignal, the design of physical sampling devices such
as digital-to-analog converters (DACs) and analog-to-digital
(ADCs) becomes more complicated for wearable biosensors.
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Fig. 1: IoT edge computing platform for continuous patient monitoring,
where vital signs are collected through wearable biosensors and then send to
the data aggregator (e.g., smart watch/mobile device) which in turn trans-
mits data flows to ambient sensors and medical servers for analysis

Another challenge presented by patient monitoring systems
is related to the large energy consumption of wearable
biosensors and data aggregators due to continuous mon-
itoring; therefore, the goal of this work is to design and
implement a low-complexity computation algorithm that
can eliminate noise and artifacts in wearable biosensor net-
works at a low-cost hardware implementation and power
consumption.

The mutual interference between wearable biosensors
(e.g., biosensor-to-biosensor interference) due to the over-
lapping of physiological data transmission can reduce the
received signal strength, which may result in significant
degradation of signal detection. In other words, the pres-
ence of noise and interference in the sparse biosignals re-
quires an increase in the number of measurements needed
by compressed sensing (CS) to improve the quality of
the reconstructed image/signal, making the resolution of
the sampling devices high, i.e., high-complexity acquisi-
tion/detection systems [4], [5].

In order to reduce the number of noisy biosignal mea-
surements and obtain a high-resolution biosignal, we per-
form independent component analysis (ICA) [6]. ICA is a
computational method that separates a multivariate signal
into independent subcomponents, and is mainly used to
remove artifacts from EEG recordings. The primary driving
force behind the use of ICA in patient monitoring is that
solutions are required to address the data sparsity 1problem
in the presence of noise and interference. Due to biosignal
artifacts, high-resolution and high bit-depth DACs/ADCs
are needed to restore biosignals.

In this paper, we propose an innovative approach to ad-
dress the problem of sparse signal recovery and acquisition
in wearable biosensor networks. The approach proposed in
the block diagram is summarized in Fig.2. Since ICA recov-
ery algorithms are powerful tools even in noisy environ-

1. Sparsity is defined as having a small number of coefficients that
capture most of the information contained in a biosignal.

ments, we aim to use these algorithms to remove noise and
artifacts from sparse biosignals, so that the CS can reduce
the number of measurements (i.e., sampling rate) needed
to retrieve viable biosignals and use low-speed and low-
resolution sampling devices (i.e., low-cost implementation
and power consumption of patient monitoring systems).
Our analysis shows that CS-ICA can perform better than
conventional CS when the sparse biosignal contains noise
and artifacts, improving the quality of the reconstructed
biosignal.

2 RELATED WORK

2.1 CS

In recent years, there has been a research focus on CS
applications in wireless body sensor networks and telemoni-
toring purposes (see, for example [7-10]), where the CS hard-
ware architecture has been divided into two main methods:
analog and digital CS. For instance, in [7], the digital CS
method (where the linear CS compression is applied after
the ADC) was used to recover fetal ECG signals. In [11]
and [12], the analog CS method has been applied to ECG,
where the compression occurs in the analog sensor read-out
electronics prior to the ADC. In spite of the fact that the
analog CS method reduces the cost and power consumption
of sampling devices compared with the digital CS method,
its demonstration still requires extensive work on the analog
sensor read-out electronics. Hence, in the current work, we
propose to use the digital CS (as described in Fig.2).

2.2 ICA

In medical applications, it is common practice to use the dig-
ital ICA algorithm to restore EEG signals (where the ADCs
are located at the receiver and data is processed in the digital
domain [13], [14]). This type of algorithm requires high-
speed sampling rate (due to the use of full measurements:
m ≥ n) to find the independent components/EEG signals,
resulting in high-cost and high-power devices. On the other
hand, few studies have discussed the analog VLSI imple-
mentation of ICA algorithms [see [15] for intelligent hearing
aid applications] where the low-energy ICA architecture
has been proposed in a noisy and reverberant environment,
and experiments have shown a clear separation and precise
localization of two speech sources.

However, both CS and ICA methods have some limita-
tions when used alone, and pre/post-processing techniques
must be adopted. Some studies have recently proposed
new frameworks for the joint CS-ICA recovery to remove
artifacts from EEG signals; see, e.g., [16], [17], where the CS
method is preceded by the ICA data processing method to
reduce power consumption of the sensing unit (wearable
biosensor network). It is noteworthy that the implementa-
tion of ICA prior to CS can lead to a power consumption
problem because full measurements are used by the digital
ICA algorithm to reconstruct biosignals, giving rise to addi-
tional power-hungry components in the sensing unit [18].

Another recent study discussed this issue (see, e.g.,
[19]), where the ICA is performed after the CS. There are
drawbacks to this method because two important factors
have been neglected: 1) The use of a Gaussian random
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Fig. 2: Proposed Framework

matrix Φ ∈ Rm×n in the CS-based sensing unit to measure
source biosignals usually following non-Gaussian distribu-
tions (e.g., sub-Gaussian, super-Gaussian, or mixed super-
, sub-, and Gaussian distributions) [20], and 2) Increased
power consumption of the sensing unit as the number
of noisy measurements (m) increases in the measurement
matrix Φ due to artifacts and interference that exist in source
biosignals. In order to bridge the gap between the CS and
ICA methods in inter-biosensor interference scenarios, we
provide a new co-design platform for CS-ICA algorithms
that offers significant energy savings compared to other
state-of-the-art methods. The proposed framework enables
efficient implementation in CS hardware and provides valu-
able guidelines for communications engineers/researchers
working on the design of sparse recovery algorithms for
wearable biosensor networks. Specifically, the paper’s con-
tributions are summarized as follows:
• Developing low-cost, low-power wearable biosen-

sors through digital CS-ICA algorithms, where we
address the sparse signal recovery problem for inter-
biosensor interference scenarios, and reconstruct a
biosignal with only a handful of samples or mea-
surements needed (m ≥ 2 log2

(
n
K

)
/ log2 (M.SNR)

samples) compared to conventional CS methods.
• Unlike conventional CS recovery methods, the CS-

ICA algorithms reduce biosignal reconstruction er-
rors and provide a low mean squared error compared
to standard CS methods (where the noise power in
the collected data is reduced to up ε

M when recon-
structing a biosignal).

3 PROBLEM FORMULATION

In order to develop an energy-efficient sensing framework
for patient monitoring systems, we outline the steps of
CS used in noisy measurements, where source biosignals
are sparse in the time domain (i.e., the K-source biosig-
nal vector sK contains K non-zero elements and satisfies
‖s‖l0 ≤ K � n). If the source biosignal s ∈ Rn is not
sparse, we can make it so through CS, using an inverse
discrete cosine transform (IDCT) matrix to produce a sparse
vector; that is, x = Ψs, where Ψn×n is a unitary matrix
that can discard the small coefficients of s (i.e., many
coefficients are set to zero via Ψ after adding a quantization
step to the IDCT). With CS, we can employ low-speed DACs
(i.e., sub-Nyquist sampling rates) to recover the biosignals
and reduce the power consumption and cost of wearable
biosensors/data aggregators.

3.1 CS Acquisition
In e-health monitoring applications, where interference can
occur between N wearable biosensors (see, e.g., Fig.3), the

receiving sparse signal for each biosensor, yr ∈ RM×n,
r ∈ {1, 2, . . . , N}, at the M -sensor array (mixtures) of data
aggregator (where M ≥ N ), is expressed as

yr =
N∑
i=1

hrx
T
i + nr, (1)

where xi = Ψisi represents n-pixel image/video/radio
pulses, which are corrupted by additive white Gaussian
noise (AWGN) nr ∈ RM×n, hr ∈ RM×1 is a constant
channel vector with array elements hrj , which depends
on the distance between the r-th biosensor and the j-th
sensor node of the data aggregator. The received signal is
then processed by a digital combiner wr ∈ R1×M to obtain
x̂r = wryr, which can be rewritten as

x̂r = wrhrx
T
r︸ ︷︷ ︸

desired signal

+
N∑
i6=r

wrhrx
T
i︸ ︷︷ ︸

interference

+wrnr︸ ︷︷ ︸
noise

, (2)
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where wr = hTr . After extracting the desired sparse biosig-
nal, x̂r , and using the CS, the received signal is expressed as
zr = Φrx̂r , namely

zr = Arsr + vr , (3)

where zr ∈ Rm is the measurements vector for the biosensor
r, Ar = ΦrΨr is the sensing matrix, Φr ∈ Rm×n is the
measurement matrix (where n � m � K), and vr ∈ Rm

is the effective noise vector that contains the noise and in-
terference component. Here, the sensing matrix Ar ∈ Rm×n
obeys the the restricted isometry property (RIP), i.e.,

(1− δK) ‖sr‖2l2 ≤ ‖Arsr‖
2
l2 ≤ (1 + δK) ‖sr‖2l2 , δK ∈ (0, 1) ,

when δK is not too close to one and its entries are drawn
from a suitable distribution, e.g. a Gaussian distribution [5].
So, if the RIP of order K is established, then it is sufficient
to have m = O (K. log2 n/K) samples.

3.2 CS Recovery
In order to recover sr from zr, we consider the following
optimization problem

min
sr
‖sr‖l1 s.t ‖Arsr − zr‖l2 ≤ ε, (4)

where ‖vr‖l2 ≤ ε is the maximum noise power, ‖sr‖p stands
for the standard lp-norm and ‖sr‖l0 counts the number of
nonzero elements in sr. If we assume that δ2K <

√
2 − 1 ,

the solution to the convex problem above is satisfied by

‖ŝr − sr‖l2 ≤ C0.‖sr − sr,K‖l1/
√
K + C1.ε, (5)

where the constants C0 and C1 are typically small [21, eq.
(14)]. The result in (5) indicates that the noise power in
the data can significantly increase the reconstruction errors,
which means that we need more measurements (m-samples)
to recover the source biosignal vector sr . An equivalent
expression has been determined by [22], ‖ŝr − sr‖l2 <
‖vr‖l2 + ε/1− δ2K .

Note that when δ2K approaches one, the reconstruction
process becomes infeasible because of the high error rate.
It should be noted that the RIP works well when there
is no noise, where the reconstruction of the biosignal is
more accurate (i.e., ‖ŝr − sr‖l1 ≤ C0.‖sr − sr,K‖l1 , [5,
eq. (10)]). Although the CS technique resolves the sparse
data acquisition problem, there are still some conditions and
limitations that should be considered when dealing with
scenarios of noise and interference (i.e., it is impossible to
construct the sparse vector sr when the effective noise level,
vr , is high). Therefore, the precise calculation of the digital
combiner elements wr is important to reduce the high noise
level of vr so that the biosignal is retrieved in relatively few
measurements.

4 PROPOSED FRAMEWORK

ICA was originally developed as a computational method
that can be used in various applications including medical
signal and image processing (with a non-Gaussian input)
[6], where a multivariate biosignal decomposes into inde-
pendent additive subcomponents without prior knowledge
of source biosignals or mixing coefficients. In other words,
if we have a mixture of N independent source biosignals,

Fig. 3: Biosensor-to-biosensor interference scenarios where biosignals
are retrieved through standard digital CS methods.

the ICA algorithm works to find the unmixing matrix
W ∈ RN×M , to extract the source biosignal and remove
artifacts from EEG recordings, see Fig.2, where the source
biosignals are collected by wearable biosensors and com-
pressed by the digital CS model to be transferred to the data
aggregator (e.g., smart watch, mobile device). Here, the ICA
scheme is performed to extract the sparse biosignals which
are then decompressed by the digital CS model.

Using the joint CS-ICA recovery, we can employ low-
speed and low-resolution DACs (i.e., sub-Nyquist sam-
pling rates and low bit-depths) to restore biosignals and
reduce the power consumption and cost of wearable biosen-
sors/data aggregators. Linear receivers such as zero-forcing
and minimum mean squared error equalizers can offer a fair
trade-off between performance and complexity. The main
drawbacks of these receivers are twofold: 1) Any defects
in the estimation of channel and covariance matrices in a
large network of biosensors result in residual interference
in the data aggregator output, which in turn can lead to
performance degradation. 2) There is an increase in the
number of iterations needed for convergence. Therefore, the
ICA algorithm is suggested as an alternative if the channel
state information is unknown, and a fast convergence multi-
biosensor detection scheme can be achieved by extracting
all independent components directly. Suppose now that the
data aggregator observes the mixture signal y ∈ RM×1 in
the time domain,

y (t) = Hx (t) + n (t) , (6)

where n ∈ RM×1 is the Gaussian noise vector, H ∈ RM×N
is the unknown mixing matrix of source biosignals s ∈
RN×1, and x (t) = Ψs (t) is the sparse vector, such that

x (t) = [x1 (t) , . . . , xN (t)]
T

s (t) = [s1 (t) , . . . , sN (t)]
T
,

where the discrete-time representation of a continuous-time
signal, which lies at the heart of analogue to digital conver-
sion [23], defined as xi (t) = Ψisi (t), si ∈ Rn is a source
biosignal, and Ψi ∈ Rn×n is the unitary matrix generated
by the IDCT. We define t as a time index, where 1 ≤ t ≤ T .

The digital ICA algorithm estimates the sparse vector
x ∈ RN×1 using the unmixing matrix W, that is, x̂ (t) =
Wy (t) , where W = HT is approached by maximum-
likelihood estimation or FastICA algorithms [6]. Further-
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Fig. 4: Block diagram for an n-sample compression

more, to eliminate the noise components Wn (t), we use an
adaptive filter (e.g., Least Mean Square (LMS) methods) to
accomplish this task.

Assuming the independence of sparse biosignals xi,
the joint probability density function (PDF) of continuous
random variables P (X1, . . . , XN ) is factorized as

pXi
(x (t)) =

∏
i

pXi
(xi (t)) . (7)

In order to maximize the statistical independence of ex-
tracted components (i.e., sparse biosignals), we need to
minimize the mutual information of estimated signals x̂i
and maximize non-Gaussianity, i.e., I

(
X̂1; . . . ; X̂N

)
=∑

H
(
X̂i

)
− H

(
X̂1, . . . , X̂N

)
, where the differential en-

tropy H
(
X̂i

)
of a continuous random variable X̂i with a

density function p (x̂i), is defined as [24, Sec. 8.1]

H
(
X̂i

)
= −

∫
S
p (x̂i) log p (x̂i) dx̂i, (8)

where S is the support set of the variable X̂i, and the
joint differential entropy of multiple continuous random
variables X̂1, . . . , X̂N is defined as [24, Sec. 8.4]

H
(
X̂1, . . . , X̂N

)
= −

∫
p (x̂1, . . . , x̂N )

× log p (x̂1, . . . , x̂N ) dx̂1 . . . dx̂N .
(9)

(9) can also be rewritten as H
(
X̂1; . . . ; X̂N

)
≤
∑
H
(
X̂i

)
with equality if X̂1, . . . , X̂N are independent.

Now let X̂ = WY ; using the differential entropy prop-
erty: H (WY ) = H (Y ) + log |W|, we obtain

I
(
X̂1; . . . ; X̂N

)
=
∑

H
(
X̂i

)
−H (Y1, . . . , YM )− log |W|.

(10)

In order to measure the difference in entropy between a
given distribution and Gaussian distribution (containing the
highest entropy) with the same mean and variance, we use
negentropy, defined as J

(
X̂i

)
= H

(
X̂g

)
−H

(
X̂i

)
, where

H
(
X̂g

)
is the entropy of the Gaussian distribution with

unit variance for all estimated sparse biosignals x̂i.

In information theory and statistics, minimization of
mutual information between multiple random variables X̂i

is achieved by minimizing entropy H
(
X̂i

)
or maximizing

negentropy J
(
X̂i

)
, which is also equivalent to minimizing

Gaussianity. Therefore, finding the optimal unmixing matrix
W will help to minimize the mutual information between
the variables X̂i and make the extracted sparse biosignals
uncorrelated (independent) and non-Gaussian. Once the

Fig. 5: Gaussian Channel

ICA extracts the sparse biosignals with improved SNRs,
the CS senses and acquires each sparse biosignal, so the
number of measurements m is minimized, and the biosignal
is sampled by few measurements at a rate below Nyquist
standards.

Suppose the sparse biosignals are independent and iden-
tically distributed (i.i.d) random variables (i.e., all sparse
biosignals Xi have the same probability distribution and are
mutually independent), then the sparse biosignal observed
by the CS model can be expressed as

zi (tk) = ui (tk) + vi (tk) , (11)

where ui (tk) = Φix̂i (tk) is the received sparse biosignal
vector, x̂i (tk) is the estimated sparse vector that corre-
sponds to the i-th row of Wy (tk), and vi (tk) is the i-
th residual gaussian noise vector after filtering the noise
component Wn (tk). Note that tk, k ∈ {1, 2, . . . ,m} are
the time instants when samples (m-snapshots) are taken.

In order to reconstruct the sparse biosignal xi, we fix
Ψi and pick up the input of the i-th sampling matrix Φi
randomly from a non-Gaussian distribution with zero mean
and variance 1/m (e.g., sub-Gaussian distribution [25]).
Here is typically a flat PDF with a strong tail decay property,
so that

E
[
e−λu

]
≤ e−λ

2ρ2/2, for all λ ≥ 0, (12)

where E [U ] = 0, Var [U ] ≤ ρ2, and the sensing ma-
trix [Ai = ΦiΨi] satisfies the RIP condition (i.e., m ≥
c.K. log2 n/K , where c is a positive constant). Here, the
digital CS-ICA algorithm takes advantage of the RIP prop-
erty by providing minimum and maximum power for the
samples, ensuring that the K-sparse vectors do not fall into
the null space of the sampling matrix Φi, which in turn
provides a stable recovery for the sparse biosignals.

5 GENERALIZED RATE OF CS-ICA ALGORITHMS

The sparse recovery algorithm works to reduce interference
and noise, where the generalized rate Ri of independent
sub-Gaussian random variables Ui,k ∼ N

(
0, ρ2i,k

)
, is calcu-

lated in the following way:

Proposition. Suppose Umi = (Ui,1, . . . , Ui,m) ∈ Umi , and
Zmi = (Zi,1, . . . , Zi,m) ∈ Zmi are an m-tuple of the random
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variables Ui and Zi , i ∈ {1, . . . , N}, which are generated
from the CS and data compression process. Now consider
m independent Gaussian channels in parallel, in which we
can send the non-Gaussian input umi through m-AWGN
channels vmi with power constraint 1

m

∑m
k=1 Pi,k ≤ P

N and
noise variance σ2

i,k. The the digital ICA combiner output
is expressed as zmi = umi + vmi with power gain ‖hi‖2 =∑M
j=1 |hij,k|2, hi is the i-th column of the unknown mixing

matrix H. Thus, if Ui,k and Vi,k are independent random
variables, then

Ri = I (Zmi ;Umi ) ≤
∑
k

1

2
log2

(
1 +

Pi,k
σ2
i,k

.‖hi‖2
)
, (13)

with equality if Zi,k are independent and sub-Gaussian
random variables (i.e., Zi,k ∼ N

(
0, ρ2i,k + σ2

i,k

)
and σ2

i,k =

E
[
V 2
i,k

]
), and the SNR is obtained for the k-th sample as

SNRi,k = Pi,k/σ
2
i,k.

Proof. By calling the definition of the information capacity of
parallel Gaussian channels [24, Sec. 9.4], we obtain

I (Zmi ;Umi ) ≤
∑
k

H (Zi,k)−H (Vi,k) . (14)

Given H (Zi,k) ≤ 1
2 log 2πe

(
ρ2i,k + σ2

i,k

)
, H (Vi,k) =

1
2 log 2πeσ2

i,k, and ρ2i,k = Pi,k.‖hi‖2, (13) can be proven.

Special cases:

1) Since the ICA algorithm mitigates interference be-
tween source biosignals, we assume that a) the
received SNR is high enough so that we can dis-
tribute equal amounts of energy across channels
using a water-filling solution (i.e., Pi,k ≤ P/N ), and
b) with a coefficient magnitude of |hij,k|2 = 1 (i.e,
‖hi‖2 = M ). Using Jensen’s inequality, (13) can be
expressed as

R ≤ 1

2
log2

(
1 +

1

m

∑
k

Pi,k
σ2
i,k

‖hi‖2
)

≤ 1

2
log2 (M.SNR) ,

where SNR = P/Nσ2.
2) On the other hand, assuming that the mixture sig-

nal y contains Gaussian and non-Gaussian random
variables, we can maximize the entropies H

(
X̂i

)
and minimize the negentropies J

(
X̂i

)
, hence find-

ing an ideal unmixing matrix W becomes impossi-
ble due to Gaussian increase, leading to a low SNR
(e.g., log (1 + x) ≈ x log2 e when x is sufficiently
small), namely

R ≈ 1

2
M.SNR. log2 e,

where SNR = P/Nσ2.

3) Assuming that the number of measurements is large
enough (i.e., m = n → ∞ ). By the strong law of

Fig. 6: The biosignal reconstruction errors for both CS-ICA (a) and CS
(b) methods, where N = 2,M = 2. (c) Comparison of the mean squared
error for various sparse biosignal recovery methods, where the biosignal
is recovered at n = 1000,m = 300 and different SNR values.
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Fig. 7: The joint CS-ICA recovery for EEG s1 (t) and EMG s2 (t) signals. Both source biosignals are sparse in the frequency domain (e.g.,
the number of samples per sparse biosignal is n = 2500) and reconstructed in the time domain (e.g., m = 170) at an SNR level of 30dB.

large numbers, Pr
[
limm→∞

1
m

∑
k Pi,k = P

N

]
= 1,

(13) is calculated as

R ≤ 1

2
log2 (1 +M.SNR) .

5.1 Channel Coding via CS-ICA Algorithms

To extract the performance gain of digital CS-ICA algo-
rithms, we invoke the channel coding theorem for a dis-
crete memoryless channel [24]. Suppose we connect through
a noisy channel (Umi , p (zmi |umi ) , Zmi ), where the input
samples do not depend on the past output samples, that
is to say, p

(
zi,k|uki , zk−1i

)
= p (zi,k|ui,k); p (zmi |umi ) =∏m

k=1 p (zi,k, ui,k). The encoder (compressor) Ψi first takes
a block of n samples and turns them into a K-sparse biosig-
nal, where log2

(
n
K

)
bits are used to encode/compress the

n-sample sequence Si = (Si,1, . . . , Si,n), then the decoder
(decompressor) does the inverse process. An

(
2mR,m

)
code

for the channel Umi , p (zmi |umi )Zmi consists of a compressing
function Um and a decompressing function Zm (see Fig.4).
The rate of the code

(
2mR,m

)
is defined by R = log2

(
n
K ) ,

with a probability of error Pe = Pr
(
Si 6= Ŝi

)
< ε. So,

if we assume that all entries of the source vector Si are
i.i.d random variables and the channel coefficients of the
samples are defined as |hik|2 = 1, then the number of
measurements for each source biosignal is calculated as

m ≥
2 log2

(
n
K

)
log2 (1 +M.SNR)

, (15)

where log2

(
n
K

)
= 2H (K/n) = 2K log2

(
n
K

)
bits when 0 ≤

K/n ≤ 1. Note that the ICA method brings an additional
power gain to the CS method. The higher the SNR, the lower
the number of measurements. We can also conclude that

m ≥ 2 log2

( n
K

)
/ log2 (M.SNR) ,

when the number of ICA mixtures is very large i.e., M →
∞, where SNR = P/σ2. By assuming that the sensing
matrix Ai satisfies the RIP property, (1− δi,K) ‖si‖2l2 ≤
‖ui‖2l2 ≤ (1 + δi,K) ‖si‖2l2 , where ui = ‖hi‖2Aisi, then
the receiver can reconstruct the n-sample sequence, Si =
Si,1, . . . , Si,n , in the digital domain by solving the convex
problem

ŝi = min
si ∈Rn

‖si‖l1 s.t.‖‖hi‖2Aisi − zi‖l2 ≤ ε. (16)

By using the triangle inequality [21] and the theorem in (5)
for ‖vi‖l2 ≤ ε = σ2

i , the solution to (16) obeys

‖ŝi − si‖l2 ≤ Ci,0.‖si − si,K‖l1/
√
K + Ci,1σ

2
i /‖hi‖2. (17)

6 PERFORMANCE ANALYSIS

In order to gain further insight into the performance of
digital CS-ICA algorithms, we display the error in retrieving
source biosignals from noisy data as shown in Fig.6 (a) and
(b), where the linear regression of modelling n data points
is performed and each biosignal is restored from noisy
measurements (e.g., n = 1000, m = 250, and SNR = 25dB).
Here, the simulation results show that the digital CS-ICA
algorithms have fewer reconstruction errors than traditional
digital CS methods, the reason for which is that the ICA
algorithms can capture all n data points containing the K-
coefficients and make the biosignal detectable at a high SNR,
whereas traditional CS methods cannot guarantee whether
the measured samples m contain all non-zero components
K , which are randomly distributed across the sparse vector
si and captured by increasing the number of measurements
m.

Fig.6 (c) compares the performance of both methods
in terms of the mean squared error (MSE) with standard
(digital) ICA algorithms, where the CS-circuit components
are omitted and the ICA scheme must perform full mea-
surements to create W, i.e., m = 1000. The results indicate
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Fig. 8: Reconstruction of ECG signals at mm-wave, measured at SNR level of 20dB. The ECG signal is retrieved through the digital CS-ICA algorithms. In
this example, the mm-wave pulses are sparse in the time domain for a certain period of 30 ns (i.e., n = 3361 samples after passing the source biosignal s (t)
through IDCT) and are recovered from just 300 snapshots.

that the performance of CS-ICA algorithms can be close
to standard ICA algorithms for medium and high SNR
regimes, both of which are roughly equivalent at low SNR
values. We can consequently conclude that the digital CS-
ICA algorithms can significantly reduce Gaussianity output
because of the high level of additive Gaussian noise (i.e.,
‖vi‖l2 ≤ σ2

i /‖hi‖2).
According to the central limit theorem and the law of

large numbers, when adding a large number of independent
random variables (i.e., the number of wearable biosensors
gets larger, N → ∞), the total tends to a Gaussian dis-
tribution even if the original variables (source biosignals)
are not normally distributed. Since the CS methods have
inherently Gaussian characteristics, they can be used instead
of the ICA algorithms to retrieve biosignals. Furthermore,
the results demonstrate that the CS-ICA algorithms perform
better than traditional CS methods when tested under the
same conditions (e.g., m = 300).

In general, Fig.6 results can be treated as benchmarks for
the CS-ICA algorithms. On one hand, the ICA can increase
the sparse biosignal strength received (by reducing artifacts
and interference) and use low-resolution DACs to restore
the biosignal. On the other hand, the CS methods can reduce
the sampling rate and make the DACs operate at low speed.
This process is called an ”exchange of interests” between CS
and ICA methods.

7 EXPERIMENTAL RESULTS

Fig.7 shows the joint CS-ICA recovery for two source biosig-
nals, e.g., EEG and electromyography (EMG) signals where
N = 2,M = 2. The source biosignals are sparse in the
frequency domain (e.g., the number of samples per source
signal is n = 2500 and the number of spikes is K = 2)
with various periods for each source biosignal (e.g., T = 1
second for the EEG signal s1 (t) and T = 2 seconds for the
EMG signal s2 (t). The relatively few coefficients capture

most of the signal energy, e.g., m = 170, taken in the time
domain. This example obviously shows the gain acquired
by the digital CS-ICA algorithms, where the biosignals can
be restored in only a few measurements.

Fig.8 compares the performance of CS-ICA algorithms
and standard CS methods to two source ECG signals oper-
ating in the 28 GHz band [26]. The mm-wave pulse train is
sparse in the time domain, e.g., the pulse repetition period
(4t) is 10 ns for the first ECG signal and 3 ns for the second
ECG signal, N = 2, where each biosignal has the same
frame size. For example, T = 30 ns for the ECG signals s1 (t)
and s2 (t). The reason is due to the assumption that the mm-
wave signals are sparse in the time domain rather than the
frequency domain to simplify the construction of the IDCT
matrix Ψn×n (where n is very large) required to produce the
sparse source vectors x1 (t) and x2 (t). Here, the sampling
rate is calculated as fs = 4 × 28 giga samples/sec, and the
total number of samples (data points) taken to perform a
Fourier transform, is n = 3361.

Moreover, in this example, assume that the wearable
ECG sensors have line-of-sight (LOS) paths with the data
aggregator sensors M = 2 (e.g., SNR = 20dB), where each
sparse ECG signal is retrieved from a few measurements
that are captured in the frequency domain (e.g., m = 300).
In this setup, the mixing matrix elements of H ∈ R2×2 are
uniformly distributed and the unmixing matrix W = HT

is calculated through the FastICA algorithms. Our experi-
mental results show that the digital CS-ICA algorithms can
provide a more accurate and rapid recovery of ECG signals
compared to traditional CS methods. Another practical ex-
ample of real-time patient monitoring systems can be found
in wearable magnetoencephalography (MEG) scanners that
are used for mapping brain activity.

Fig.9 illustrates a phantom recovery experiment that
exactly mimics MEG images that can be contaminated with
outside noise and artifacts. In this example, we restore a
large image size of 256x256 pixels of noisy measurements
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Fig. 9: Phantom recovery experiments at SNR 15dB, where the CS-ICA recovery and standard CS methods restore the MEG image at
n = 65, 536 samples and m = 6213 snapshots, while standard ICA methods perform accurate image recovery at m = 65, 536 snapshots.

(e.g., SNR = 15dB), where the biosignal of interest s1 is ex-
tracted from an unwanted biosignal s2 (e.g.,N = 2,M = 2).
The sparse MEG image is recovered using the min-total
variation (TV) 2 method [27], with 25 non-zero frequency
components distributed uniformly in the Fourier domain,
where a few measurements are created to restore the desired
MEG image (e.g., m = 6213). Compared with standard
digital ICA methods, the CS-ICA recovery methods can re-
duce noise and number of measurements needed (e.g., from
65,536 to 6213 snapshots), allowing receivers to use low-
speed/low-resolution DACs to retrieve the sparse source
MEG signal. Furthermore, the experiential results show that
the digital CS-ICA algorithm can achieve high-resolution
of MEG images compared to standard digital CS method.
However, it should be noted that standard digital ICA
algorithms have poor resolution of highly correlated brain
sources.

8 CONCLUSION

In this paper, we present a low-complexity algorithm that
can address the sparse signal recovery and acquisition
problem in wearable biosensor networks. Using digital CS-
ICA implementation in wearable biosensor devices, we can
reduce the number of measurements, increase the noise
robustness, and improve the accuracy and efficiency of
standard digital CS methods. Our results showed that the
CS-ICA algorithms can perform better than standard CS
methods when a biosignal contains noise and artifacts.
In fact, we can recover K-sparse biosignals/images from
just m ≥ 2 log2

(
n
K

)
/ log2 (M.SNR) noisy measurements,

thereby improving the quality of the reconstructed biosig-
nals. Compared to standard ICA algorithms, the CS-ICA al-
gorithms can reduce the sampling requirements for digital-
to-analog converters as well as the computational com-
plexity of recovery at mm-waves, so that we can reduce
the power consumption of wearable biosensors and data
aggregators, and retrieve biosignals in fewer measurements.

The proposed sensing framework will have a signif-
icant impact on the healthcare sector by improving the
efficiency, reliability and accuracy of patients’ continuous
monitoring systems, resulting in better patient diagnosis
and treatment options. The sensing method will generally
provide significant environmental and economic benefits to

2. The min-total variation (TV) solution is used for the large-scale 2D-
structure instead of min−l1, which ensures stable recovery for sparse
MEG images with high accuracy.

healthcare delivery systems, allowing clinicians to moni-
tor patient conditions directly and lighten the burden of
healthcare costs. For future work, it would be interesting
to test out the proposed framework in real-life scenarios to
analyze the objective computational advantages against the
conventional approaches.
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