Ruhul Amin Khalil

and 5 more

Intelligent Transportation Systems (ITS) operate within a highly intricate and dynamic environment characterized by complex spatial and temporal dynamics at various scales, further compounded by fluctuating conditions influenced by external factors such as social events, holidays, and weather conditions. Navigating the intricacies of modeling the intricate interaction among these elements, creating universal representations, and employing them to address transportation issues presents a significant endeavor. Yet, these intricacies comprise just one facet of the multifaceted trials confronting contemporary ITS. This paper offers an all-encompassing survey exploring Deep learning (DL) utilization in ITS, primarily focusing on practitioners' methodologies to address these multifaceted challenges. The emphasis lies on the architectural and problem-specific factors that guide the formulation of innovative solutions. In addition to shedding light on the state-of-the-art DL algorithms, we also explore potential applications of DL and large language models (LLMs) in ITS, including traffic flow prediction, vehicle detection and classification, road condition monitoring, traffic sign recognition, and autonomous vehicles. Besides, we identify several future challenges and research directions that can push the boundaries of ITS, including the critical aspects of explainability, transfer learning, hybrid models, privacy and security, and ultra-reliable low-latency communication. Our aim for this survey is to bridge the gap between the burgeoning DL and transportation communities. By doing so, we aim to facilitate a deeper comprehension of the challenges and possibilities within this field. We hope that this effort will inspire further exploration of fresh perspectives and issues, which, in turn, will play a pivotal role in shaping the future of transportation systems.

Maurilio Matracia

and 3 more

The number of disasters has increased over the past decade where these calamities significantly affect the functionality of communication networks. In the context of 6G, airborne and spaceborne networks offer hope in disaster recovery to serve the underserved and to be resilient in calamities. Therefore, this paper surveys the state-of-the-art literature on post-disaster wireless communication networks and provides insights for the future establishment of such networks. In particular, we first give an overview of the works investigating the general procedures and strategies for counteracting any large-scale disasters. Then, we present the possible technological solutions for post-disaster communications, such as the recovery of the terrestrial infrastructure, installing aerial networks, and using spaceborne networks. Afterward, we shed light on the technological aspects of post-disaster networks, primarily the physical and networking issues. We present the literature on channel modeling, coverage and capacity, radio resource management, localization, and energy efficiency in the physical layer and discuss the integrated space-air-ground architectures, routing, delay-tolerant/software-defined networks, and edge computing in the networking layer. This paper also presents interesting simulation results which can provide practical guidelines about the deployment of ad hoc network architectures in emergency scenarios. Finally, we present several promising research directions, namely backhauling, placement optimization of aerial base stations, and the mobility-related aspects that come into play when deploying aerial networks, such as planning their trajectories and the consequent handovers.