
Effects of Feature Selection and Normalization on Network
Intrusion Detection

Mubarak Albarka Umara,b,∗, Zhanfang Chenb, Khaled Shuaiba, Yan Liuc

aCollege of Information Technology, United Arab Emirates University, Al Ain, 15551, Abu Dhabi, United Arab Emirates
bSchool of CS and Technology, Changchun University of Science and Technology, Changchun, 130022, Jilin, China

cDepartment of Computer Science, College of Engineering, Shantou University, Shantou, 515063, Guangdong, China

Abstract

The rapid rise of cyberattacks and the gradual failure of traditional defense systems and ap-
proaches led to using Machine Learning (ML) techniques to build more efficient and reliable
Intrusion Detection Systems (IDSs). However, the advent of larger IDS datasets has negatively
impacted the performance and computational complexity of ML-based IDSs. Many researchers
used data preprocessing techniques such as feature selection and normalization to overcome such
issues. While most of these researchers reported the success of these preprocessing techniques
on a shallow level, very few studies have been performed on their effects on a wider scale. Fur-
thermore, the performance of an IDS model is subject to not only the utilized preprocessing
techniques but also the dataset and the ML algorithm used, which most of the existing studies
give little emphasis on. Thus, this study provides an in-depth analysis of feature selection and
normalization effects on various IDS models built using two IDS datasets namely, NSL-KDD and
UNSW-NB15, and five different ML algorithms. The algorithms are support vector machine, k-
nearest neighbor, random forest, naive bayes, and artificial neural network. For feature selection
and normalization, the decision tree wrapper-based approach, which tends to give superior model
performance, and min-max normalization methods were respectively used. A total of 30 unique
IDS models were implemented using the full and feature-selected copy of the datasets. The
models were evaluated using popular evaluation metrics in IDS modeling, intra- and inter-model
comparisons were performed between models and with state-of-the-art works. Random forest
achieved the best performance on both NSL-KDD and UNSW-NB15 datasets with prediction
accuracies of 99.87% and 98.5%, as well as detection rates of 99.79% and 99.17% respectively,
it also achieved an excellent performance in comparison with the recent works. The results show
that both normalization and feature selection positively affect IDS modeling with normalization
shown to be more important than feature selection in improving performance and computational
time. The study also found that the UNSW-NB15 dataset is more complex and more suitable for
building and evaluating modern-day IDS than NSL-KDD.

Keywords: Cybersecurity, Intrusion Detection System, Machine Learning, Feature Selection,
Normalization, IDS Datasets, NSL-KDD and UNSW-NB15.

∗Corresponding Author
Email addresses: 700040629@uaeu.ac.ae (Mubarak Albarka Umar), chenzhanfang@cust.edu.cn (Zhanfang

Chen), k.shuaib@uaeu.ac.ae (Khaled Shuaib), yanliu@stu.edu.cn (Yan Liu)
Preprint submitted to Elsevier Journal January 22, 2024

1. Introduction

As the internet, networks, and computer systems play increasingly essential roles in our daily
activities, they have become prime targets for cybercriminals. Consequently, it is imperative to
explore optimal strategies to guarantee the security of our networks and systems. Initially, the
first line of defense (i.e. firewall), user authentication, and data encryption are used, yet they have
demonstrated inadequacies. Due to their limitations, Intrusion Detection Systems (IDSs) are now
utilized to actively monitor computer and network intrusions. IDSs leverage distinctive analytical
techniques to detect attacks, identify their sources, and promptly notify network administrators.

The two main approaches in IDSs are anomaly-based and signature-based detection. The
signature-based detection has dominated IDS use in practice, however, the continual advent of
new types of intrusion attacks, and the failure of the approach to detect those novel attacks
made the signature-based IDS approach less reliable, and consequently, there is a growing in-
terest among cybersecurity researchers in the anomaly-based IDS approach [1]. In the quest for
developing more reliable and efficient IDS, ML techniques are generally used. The ML tech-
niques require learning from experience, a dataset, in this case, to be able to correctly detect
an intrusion attack. However, the advent of larger IDS datasets is increasing the computational
complexity of developing ML-based IDS models, in addition to decreasing their performance.
To overcome such issues, data preprocessing techniques such as feature selection and normal-
ization are utilized by many researchers [2]. Feature selection is being widely used in selecting
relevant features for building robust IDS models and is influential on both the efficiency and
performance of IDS models [3]. Furthermore, the use of normalization in handling IDS dataset
features with large value ranges has proven to be very influential on the implementation of IDS
models, reducing learning time and improving IDS model performance [4, 5].

While most of the existing IDS studies aimed at utilizing either normalization or feature
selection or both on IDS datasets using machine learning algorithms, very few in-depth studies
were performed on the effects of those two preprocessing techniques. Furthermore, generalized
conclusions on the positive effects of feature selection and/or normalization on the IDS models
were typically reported in many shallow studies. However, this may not always be true because
the performance of an IDS model is subject to not only feature selection and normalization but
also the dataset and machine learning algorithms used, which most of the existing studies give
little emphasis on. Thus, IDS models should be developed using various ML algorithms and
more IDS datasets to enable fair comparison and a holistic understanding of the implication of
feature selection and normalization in IDS modeling. Hence, this work aimed at addressing this
gap.

An in-depth study of the effects of feature selection and normalization is performed in this
work. Five of the most used ML algorithms in IDS modeling [6] are selected. Two datasets, one
albeit considered outdated (NSL-KDD) yet often used by researchers, and the other considered
current (UNSW-NB15) [7] are also selected. To determine the effects of feature selection, a
feature-selected copy of each dataset is made using an optimal (wrapper-based) feature selection
approach with a decision tree algorithm as the feature evaluator. To determine the effect of
normalization, min-max normalization, one of the most common [8] and predominantly used
normalization methods in IDS modeling [5, 9, 10] is used. Using the four final datasets (full and
feature-selected copies) three different IDS programs are implemented, each program contains
ten distinct IDS models with some of the models developed without applying normalization.
Table 1 summarizes the three programs. The IDS models are evaluated using well-known and
most-used evaluation metrics in IDS modeling.

2

Table 1: Programs Implemented

IDS Program Dataset Features Min-Max Normalized Total IDS Models Built
Program A All Features Yes 10
Program B Selected Features Yes 10
Program C Selected Features No 10

In addition to the primary aim of this study, other important contributions are:

• Provides various in-depth comparisons on several aspects such as feature selection, nor-
malization, datasets, and IDS models. A comparison with the state-of-the-art works is also
made.

• Proposes a hybrid IDS modeling approach using a classifier for feature selection along-
side another classifier in implementing the IDS model for better detection accuracy and
efficiency.

• Dataset issue is one of the IDS challenges, though still oft-used, many consider the KD-
Dcup99 dataset and its variant such as the NSL-KDD to be outdated and their usage a
matter of concern [7], we contribute to the literature by verifying those claims; comparing
it with a contemporary UNSW-NB15 dataset on effectiveness, reliability, and consistency
aspects.

• The use of five of the most used ML algorithms in IDS modeling to implement many
IDS models, and the use of many model evaluation metrics to assess and compare the
performance of these models.

The rest of the paper is organized as follows: Section 2 presents a review of the existing
works, their limitations, and ways of overcoming the limitations. Section 3 presents an expla-
nation of some basic IDS concepts, Machine learning, and the preprocessing techniques used in
this study. The experimental procedures and tools used are presented in Section 4, while Section
5 provides the evaluation results along with discussions. Section 6 concludes the study. Study
limitations and directions for future research are identified in Section 7.

2. Literature Review

In this section, some of the recent and related works that made use of feature selection and
normalization in modeling IDS using various approaches and ML methods are presented along
with their limitations. A summary of the related works is shown in Table 2.

2.1. Related Works

Depren et al., [11] proposed a novel hybrid IDS model based on a self-organized map (SOM)
for anomaly detection and a J48 tree for misuse detection on the KDDcup99 dataset. Some six
basic features from 41 features were selected for modeling; however, no information about the
used feature selection technique was provided. The attributes were normalized using the min-
max technique and WEKA software was used for the modeling. The performance of the model
was promising with a detection rate of 99.90%.

3

Wang et al., [4] modeled IDS on a normalized KDDCup99 dataset using three algorithms,
namely, k-NN, PCA, and SVM. They used 34 numeric features, ignoring the remaining 7 nom-
inal features of the dataset. Four different attribute normalization methods were employed and
compared on the dataset for anomaly intrusion detection. The performances of the three models
were evaluated based on detection rate, and false-positive rate; they found that Z-score (Statisti-
cal normalization) performs better on larger datasets than the rest of the normalization methods.

Somwang and Lilakiatsakun [12] proposed an anomaly-based IDS using a hybrid algorithm
of supervised and unsupervised learning schemes on a non-zero normalized KDDcup99 dataset.
The proposed technique integrates Principal Component Analysis (PCA) with Support Vector
Machine (SVM). 10/41 features were selected using the PCA and the SVM was then used to
model the IDS classifier. Hit, Miss, Detection rate and False positive rate were the performance
measures used in evaluating the classifier. The experiment shows a detection rate of 97.4%,
however, the authors suggested that more work needs to be done using various theories and
techniques as one or two models can hardly provide a sufficient and reliable result.

Sivatha Sindhu et al., [13] propose a lightweight IDS for multi-class categorization using a
wrapper-based genetic algorithm for feature selection and a hybrid of neural network and deci-
sion tree (neurotree) for actual classification. They used 16/41 features of NSL-KDD datasets
and a min-max method to normalize the selected attributes. WEKA’s evaluation measures were
used to evaluate the performance of the models. Their proposed method achieved the highest
detection rate of 98.38% in comparison to tree-based single classifiers.

Song et al., [14] proposed an IDS method consisting of a combination of feature selection,
normalization, fuzzy C means clustering algorithm, and a C4.5 decision tree algorithm. They
used the KDDcup99 dataset and selected 8/41 features using WEKA’s CfsSubsetEval filter. Min-
max normalization was used to convert the data to a range of between 0 and 1, then the fuzzy C
means clustering algorithm was used to partition the training instances into clusters and for each
cluster, a C4.5 algorithm was used for the detection of anomaly/normal instance on test data. The
performance of the method was assessed using six measures and WEKA was used for compar-
ison with a single C4.5 classifier, one with a feature selection algorithm and the other without.
Their proposed method improves the performance results obtained by the C4.5 algorithm while
using only 19.5% of the total number of features.

Thaseen and Kumar [15] evaluated the classification ability of six distinct tree-based clas-
sifiers on the NSL-KDD dataset. They used WEKA’s CONS and CFS filters to select 15/41
features of the dataset, however, no normalization was done on the data (possibly because it has
no impact on the performance of tree-based algorithms [16]). To evaluate the performance of the
models, WEKA’s evaluation measures were used and the RandomTree model holds the highest
degree of accuracy and reduced false alarm rate.

Ghaffari Gotorlar et al., [17] proposed a harmony search-support vector machine (HS-SVM)
method for intrusion detection on a KSL-KDD dataset. They used harmony search to select
21/41 best features and the numerical features were normalized using the min-max method
whereas the nominal values were converted to numeric. LibSVM library was used for train-
ing the SVM model. Detection rate and test time were used to evaluate the model performance,
and the results show that the proposed HS-SVM method overcomes the SVM drawback of being
time-consuming during the testing phase.

Khammassi and Krichen [18] proposed the use of three distinct decision tree-based algo-
rithms on a genetic algorithm-logistic regression wrapper selector (GALR-DT) in building IDS
models. The three decision tree classifiers used are C4.5, Random Forest, and Naı̈ve Bayes Tree.
They applied a wrapper approach based on a genetic algorithm as a search strategy and logistic

4

regression as a learning algorithm to select the best subset of features on KDDcup99 and UNSW-
NB15 datasets. 18/41 features were selected in KDDcup99, and 20/42 features were selected in
UNSW-NB15 datasets by the GA-LR wrapper. Log-scaling and Min-max of the 0-1 range were
applied to normalize the data. Dataset-wise performance of the models was compared using the
detection rate, accuracy, and false alert rate. Their results show that UNSW-NB15 provides the
lowest FAR of 6.39% and a good classification accuracy compared to KDDcup99 and thus, they
conclude that the UNSW-NB15 dataset is more complex than the KDDcup99 dataset.

Setiawan et al., [19] proposed an IDS model using a combination of the feature selection
method, normalization, and Support Vector Machine. WEKA’s modified rank-based information
gain filter was used to select 17/41 of the NSL-KDD dataset features and then the numerical
features were log normalized. The model was evaluated using WEKA’s evaluation measures and
they achieved an overall accuracy of 99.8%.

Khan et al., [20] proposed a novel two-stage deep learning (TSDL) model, based on a stacked
auto-encoder with a soft-max classifier, for efficient network intrusion detection. The model
comprises two decision stages and is capable of learning and classifying useful feature represen-
tations in a semi-supervised approach. They evaluate the effectiveness of their methods using
KDDcup99 and UNSW-NB15 datasets. DSAE feature selection was used to select 10 features in
each dataset, which were then normalized using the min-max method. The most used IDS model
evaluation metrics were used to assess the performance of their proposed model, achieving high
recognition rates, up to 99.996%, and 89.134%, for the KDDcup99 and UNSW-NB15 datasets
respectively.

2.2. Limitations of Related Works

After a thorough review of the related works, it’s clear that each of the reviewed works suf-
fers from one or more of the below listed five identified limitations. The limitation can be classi-
fied into three categories: preprocessing stage (transformation, and feature selection), modeling
stage, and dataset issues.

1. Preprocessing: Transformation (encoding, discretization/normalization), Feature selection
2. Modeling Stage: Issues with classifier choice and fewer usage of multiple classifiers
3. Dataset Issues: Outdated datasets are used in most of the studies. No comparisons were

made.

2.2.1. Data Encoding
Most ML algorithms cannot handle categorical features unless they are converted to numer-

ical values. The categorical features can be nominal (no particular order) or ordinal (ordered).
The performance of many algorithms varies based on how categorical features are encoded. For
example, the "Protocol type" feature of the NSL-KDD is a nominal feature with three values
(UDP, TCP, and ICMP). By converting this attribute to a single numeric attribute using ordinal
encoding, one is implicitly introducing an ordering over the nominal values, which is a bad repre-
sentation of the data. This mistake can be seen in some of the reviewed literature [14, 17, 18, 20].
A better solution is to use binary encoding or, even better, one-hot (dummy) encoding that maps
each category to a vector containing 1 and 0 denoting the presence or absence of the feature’s
value.

5

Table 2: Summary of Related Works

Ref. FS Method (no.
features)

Algorithm Normalization Dataset / ID
approach

Evaluation Metrics

[11] Not mentioned
(6/41)

SOM/J.48, DSS
(Weka)

Minmax (0-1) KDD99/ Hy-
brid

Detection rate, False
positive rate, and
Missed rate

[4] Not used, se-
lected numeric
features only
(34/41)

PCA, k-NN,
SVM

Z-score, Ordi-
nal, Minmax,
and Frequency

KDD99/
Anomaly

Accuracy, Detection
rate, and False positive
rate

[12] PCA (10/41) SVM Non-zero KDD99/
Anomaly

Detection rate, False
positive rate, Mis, hit

[13] GA (16/41) Hybrid of Neu-
rotree

Minmax NSL-KDD/
Anomaly

TP Rate, FP Rate,
Precision, Recall, F-
Measure

[14] Weka’s Filters
(8/41)

Fuzzy C/ C4.5
(Weka)

Minmax (0-1) KDD99/
Anomaly

True positive rate, False
positive rate, Precision,
Recall, F-score

[15] CFS & CON
Filters (18/41)

Tree-based
Classifiers

Not mentioned NSL-KDD/
Anomaly

Accuracy, TP Rate, FP
Rate, Precision, Recall,
F-Measure

[17] Harmony
Search (20/41)

SVM (LibSvm) Min-max (1-
13)

NSL-KDD/
Anomaly

Detection rate, Test
Time

[18] GA-LR KDD99
(18/41) UNSW-
NB (20/42)

Random Forest,
C4.5, and Naı̈ve
Bayes Tree

Log-scaling,
Minmax (0-1)

KDD99,
UNSW-NB15
/Anomaly

Confusion Matrix, Ac-
curacy, Detection rate,
False alarm rate

[19] IG Weka’s Filter
(17/41)

SVM Log-norm NSL-KDD Accuracy, Sensitivity,
Specificity, False, and
True positive

[20] DSAE (10/45) Soft-max classi-
fier

Min-max (0-1) KDD99,
UNSW-NB15
/ Anomaly

Accuracy, precision, re-
call, F-measure, and
false alarm rate (FAR)

2.2.2. Data Discretization and Normalization
While the discretization of numerical features is influential in data preprocessing [21], how-

ever, unlike normalization, it generally leads to a loss of information [22]. Normalization is an
important data preprocessing step that can improve the accuracy and efficiency of classification
algorithms, especially in the case of IDS models built with large datasets [4, 5, 23]. Although
either or both can be applied, in the case of IDS where the data contains a wide range of traffic
values, normalization is indispensable, and discretization alone should not be used as there is
less need for value range. Even so, some studies choose to use discretization at the expense of
normalization [15]. Furthermore, most reviewed studies give little emphasis on the impact of
normalization on the performance of IDS models.

2.2.3. Feature Selection
Due to the high dimensionality and size of IDS datasets, many researchers use dimensionality

reduction methods to reduce dataset dimension and select an optimal subset of features. This re-

6

duces computational time, and resource utilization, and increases the accuracy and performance
of IDS models [24]. Three basic feature selection methods are explained in the next section.
However, only two of these methods were mainly applied in IDS modeling, with most studies
using the filter method, which generally ignores the effects of the selected feature subset on the
performance of the IDS model [25]. Contrary to the wrapper method, which, though computa-
tionally expensive, produces better performance for the predefined classifier. Furthermore, some
studies hand-pick certain features without using any feature selection methods, which may lead
to removing influential features [4, 11].

2.2.4. Modeling Stage
To develop an accurate and good IDS Model, it is necessary to explore various algorithms

and techniques, as using one or two algorithms may not offer reliable and good-performing IDS
models [12]. However, most studies use only one or two algorithms. Furthermore, there is ex-
cessive usage of tree-based algorithms in some studies without validating their performances by
comparing them with other algorithms [15, 18]. Unfortunately, tree-based algorithms, like en-
semble trees such as a random forest, generally do not have the same level of predictive accuracy
as some regression and classification algorithms [16].

2.2.5. Dataset Issues
Most reviewed literature made use of either KDDcup99 or its variant NSL-KDD, which are

widely used datasets in IDS academic research [6, 7]. However, they are considered outdated and
do not contain contemporary attacks [2, 26]. In the current environment of continually emerging
new threats, building reliable and accurate IDS models requires using an up-to-date ID dataset.
Some modern datasets were proposed by [27, 28, 29]. Ring et al. [30] also recommended
a selected few datasets suitable for general network intrusion detection evaluation. Both the
proposed and recommended datasets are publicly available and can be used for building better
and more reliable IDS models. Furthermore, Ring et al. [30] recommended using more than
one dataset with at least one publicly available dataset to avoid overfitting the IDS model to one
dataset and ensure the reproducibility of the work and its generic evaluation. However, most
studies used only one dataset.

In summary, this study addressed those limitations. Since most selected ML algorithms con-
sider all features during training simultaneously, one-hot encoding, an approach suited for such
ML algorithms [31], is used. Furthermore, Min-max, one of the most common normalization
methods [8], is also used. Five widely used ML algorithms in IDS modeling [6] are selected, and
as recommended, two datasets, one considered outdated (NSL-KDD) and the other considered
current (UNSW-NB15) [7], are also selected for this study. The decision tree wrapper-based
feature selection approach is used to select the best optimal subsets from the datasets. A total
of thirty models were developed and evaluated. In the subsequent section, the five selected ML
algorithms are explained, and the feature selection concept is also introduced.

3. Basic Theory and Related Knowledge

3.1. Intrusion Detection System (IDS)

An IDS is a software program or a device that monitors traffic passing across networks and
through systems for malicious behavior, policy violations, and the presence of known threats,
sending alarms when such things are encountered. IDS are security tools that, like other measures

7

such as firewalls, antivirus software, and access control schemes, are intended to strengthen the
security of information and communication systems [32]. An IDS can be classified in two ways:
based on data source/location and detection approach [33]. Based on the data source, Network
Intrusion Detection Systems (NIDS) and Host Intrusion Detection Systems (HIDS) are the most
well-known classifications. At the most basic level, NIDS looks at network traffic, while HIDS
looks at actions and files on the host computers. Based on the detection approach, the most well-
known types are Misuse-based (recognizing registered bad patterns) and Anomaly-based (detect-
ing deviations from a model of ”good” traffic, which often relies on machine learning) [34]; the
former can only detect known attack types and the latter is prone to generate false positive alerts.
Due to the complementary nature of these two approaches, a hybrid approach, combining both
of these techniques, is often used [35]. The literature nowadays focuses on developing a wide
variety of automated, fast, and efficient IDSs using expert-crafted rules, sophisticated statistical
learning, and machine learning techniques [2, 32].

3.2. Machine Learning (ML)
Machine Learning (ML) algorithms are the most widely used techniques in designing IDSs

[6]. The ML techniques are based on establishing an explicit or implicit model that enables
classifying patterns in raw data. The use of ML techniques in IDSs can be with single, hybrid,
or ensemble classifiers. The used classifier can be categorized into three operating modes: su-
pervised, unsupervised, and semi-supervised. Generally, the supervised mode outperforms the
remaining modes [3, 32]. Some of the ML algorithms used in IDSs include artificial neural net-
works, k-nearest neighbor, Naive Bayes, Genetic Algorithms, Support Vector Machines, Logistic
Regression, and Decision Trees. Developing a ML model consists of four basic steps, namely,
data collection, data preprocessing, model selection and training, and model evaluation [36]. The
two important concepts in this work, feature selection, and normalization are among the many
tasks performable in the data preprocessing step.

Figure 1: Machine Learning Basic Steps

8

3.2.1. Feature selection
This is a data reduction technique that involves selecting a subset of relevant features for

building a model, without changing the dimensions of the features. Feature selection simpli-
fies a model and improves classification accuracy and generalization while reducing overfitting
chances and model training time. Feature subset selection requires a search strategy and direction
to select a feature subset, an objective function to evaluate the selected features, a termination
condition, and an evaluation of the result. There are three main feature selection approaches: (a)
the filters that extract features from data without involving any learning algorithm, (b) the wrap-
pers that use a learning algorithm to determine useful features, (c) the embedded techniques that
combine the two mentioned approaches and a classifier [37]. In this work, the wrapper method
is used.

3.2.2. Normalization
This is a data transformation technique that is used to transform wide-range numeric values

in a dataset to a common scale without distorting differences in the range of the values. Normal-
izing data attempts to give all attributes an equal weight. Normalization helps speed up the model
training stage and is particularly useful for classification algorithms involving neural networks
or distance measurements such as nearest-neighbor classification and clustering algorithms [8].
There are many normalization methods, some of the most used methods are min-max normal-
ization, z-score normalization, and decimal scaling [38]. In this work, Min-max normalization is
used, its general formula is as follows:

xnew =
x −min(x)

max(x) −min(x)
(1)

3.3. Selected ML Algorithms

A collection of the most used ML algorithms in IDS is provided in [6] and five among them
are selected and used in this study. The algorithms are explained below.

3.3.1. Support Vector Machine (SVM)
A support vector machine is a supervised learning algorithm that uses hyperplane graphing

to analyze new, unlabeled data. They are mostly utilized for classification problems but can
also be used for regression modeling and outlier detection. SVMs are well known for their
generalization capability and are mainly valuable when the number of features is larger than
the number of samples [26]. In this work, the Scikit-learn implementation of a support vector
classifier based on LibSVM with the Radial Basis Function (RBF) as the kernel is utilized.

3.3.2. Artificial Neural Network (ANN)
ANN is a computational model composed of interconnected artificial neurons capable of

learning from their inputs to perform tasks without following any task-specific rules. ANNs aim
to realize a very simplified model of the human brain [39]. There are three main ANN classes:
Feedforward, Convolutional, and Recurrent neural networks (NNs). ANNs are used in IDS,
mainly because of their flexibility and adaptability to environmental changes [32]. In this work,
a Multi-layered perceptron (MLP), which is a widely used feedforward neural network, is used.

9

3.3.3. K-Nearest Neighbor (KNN)
The KNN algorithm is a simple, supervised machine learning algorithm that can be used to

solve both classification and regression problems. It computes the approximate distances be-
tween different points on the input vectors and then assigns the unlabeled point to the class of its
k-nearest neighbors. The assignment depends on the task K-NN is used for; in classification, the
output is a class membership assigned to neighbors with the highest vote, whereas, in regression,
the output is the property value for the object. This value is the average of the values of the k
nearest neighbors [40].

3.3.4. Random Forests (RF)
Random forests are an ensemble learning method that operates by randomly creating and

merging multiple decision trees at training time into a ”forest” and outputting the class result.
For a classification task, the mode of classes is the result, whereas for regression, the result is
the mean prediction of the individual trees. RF uses bagging ensembling methods to combine
the decision tree’s simplicity with the flexibility to increase accuracy and overcome the decision
tree’s habit of overfitting to its training set [41].

3.3.5. Naive Bayes (NB)
A Naive Bayes classifier is a form of probabilistic classifier inspired by the Bayes theorem

with a simple assumption of independence among features. It aims to process, analyze, and
categorize outcomes based on probabilities of their occurrence in training data. Naive Bayes
classifiers require a small amount of training data to estimate the necessary parameters. The NB
model is easy to build and particularly scalable to larger datasets since it takes linear time. NB
is a popular baseline method for text categorization, and with appropriate pre-processing, it is
competitive with more advanced methods, including support vector machines [42].

4. Methodology

This section explains how the experiment is conducted by following the four basic ML steps
outlined above. It also provides the tools used in the experiment.

4.1. Experimental Tools

In the literature, several tools are used for implementing, evaluating, and comparing various
IDS works. WEKA, general-purpose programming languages (such as Java, Python, etc.), and
Matlab are the most used tools [6]. In this work, Excel, WEKA, and Python are used for data
analysis and exploration, preprocessing, as well as for implementing and validating the IDS
models respectively. Google Colaboratory with Python 3.10.12 version is used as the execution
environment for Python and its libraries such as NumPy, Pandas, Matplotlib, Scikit-learn, and so
on. All the programs are implemented and executed in the same environment.

4.2. Dataset Acquisition

In this work, two datasets: the UNSW-NB15 dataset and, an old benchmark dataset, the
NSL-KDD are used to evaluate and compare the models.

10

4.2.1. UNSW-NB15 dataset
The UNSW-NB15 dataset is a new IDS dataset created at the Australian Center for Cyber

Security (ACCS) in 2015. About 2.5 million samples or 100GB of raw data were captured in
modern network traffic including normal and attack behaviors and are simulated using the IXIA
Perfect Storm tool and a tcpdump tool. 49 features were created using the Argus tool, the Bro-
IDS tool, and 12 developed algorithms. The created features can be categorized into five groups:
flow features, basic features, content features, time features, and additional generated features.
The dataset has nine different modern attack types, five more attack types than NSL-KDD, the
attacks are Backdoor, DoS, Generic, Reconnaissance, Analysis, Fuzzers, Exploit, Shellcode, and
Worms [28]. The UNSW-NB15 is considered a new benchmark dataset that can be used for
IDS evaluation by the NIDS research community [43] and is recommended by [30]. For easy
use and work reproducibility, the UNSW-NB15 comes along with predefined splits of a training
set (175,341 samples) and a testing set (82,332 samples) [44], however, the publicly available
training and testing set both contain only 44 features: 42 attributes and 2 classes. Only the
training set (UNSW NB15 training set) is used for both training and testing in this work. Since
our primary focus is binary classification, the broad distribution of total attacks (anomaly) and
normal traffic samples of the training set used is shown in Table 3.

Table 3: UNSW-NB15 Distribution Sample

Category Sample Size Distribution
Total Attacks 119,341 68.06%
Normal 56,000 31.94%
Overall Samples 175,341 100%

4.2.2. NSL-KDD dataset
The KDDcup99 dataset is the data set used for The Third International Knowledge Discov-

ery and Data Mining Tools Competition, which was held in conjunction with KDD-99 The Fifth
International Conference on Knowledge Discovery and Data Mining in 1999. The dataset con-
tains more than 5 million training samples and more than 2 million testing samples. It also has a
huge number of redundant samples, and imbalance classes [45]. The NSL-KDD is an optimized
version of the KDDcup99 dataset [46], it removes redundant records and provides reasonable
and diversified samples in training and testing sets. Like the KDDcup99, the NSL-KDD dataset
also has 41 features, with 3 categorical features and 38 numeric features. The dataset has four
different attack types: Denial of Service (DoS), Probe, User to Root (U2R), and Root to Local
(R2L) attacks. The NSL-KDD dataset is considered to be outdated [2]. The NSL-KDD is also
arranged into a training set of 125,973 samples (KDDTrain+) and a testing set of 22,544 samples
(KDDTest+). Only the training set (KDDTrain+) is used for both training and testing in this
work. Table 4 summarizes the sample’s distribution of all attacks (anomaly) and normal traffic
in the training set of the NSL-KDD dataset.

4.3. Data Preprocessing

In this study, two major preprocessing steps are used, namely, data reduction (filtration and
feature selection) and data transformation (data normalization and encoding).

11

Table 4: NSL-KDD Distribution Sample

Category Sample Size Distribution
Total Attacks 58,630 46.54%
Normal 67,343 53.46%
Overall Samples 125,973 100%

4.3.1. Data Reduction
Data Filtration: Irrelevant data was removed to reduce computational time and prepare the

data for feature selection. The UNSW-NB15 dataset comes with 42 attributes, 2 class attributes,
and an additional id attribute, the id is removed. Since we are interested in binary classification,
the class attribute attack cat indicating the categories of attacks and normal state is also removed
before feature selection. No issues were found with the NSL-KDD, thus no filtration was done
on the dataset. Both the UNSW-NB15 and the NSL-KDD datasets are divided into train and test
sets of unique samples in a proportion of 2/3 (66.7%) and 1/3 (33.3%) respectively as shown in
Figure 3. To avoid developing overfitted models that might perform poorly when given out-of-
sample data, WEKA’s unsupervised instance Resample filter is used to ensure balanced splitting
of the data.

Feature Selection: In feature selection, avoiding information leakage and subsequent build-
ing of misleading models is very important [47], thus only the training set is used for feature
selection, while the testing set is solely used for performance assessment to ensure getting a
reliable model capable of detecting abnormal intrusion attack in a real-world scenario. The
wrapper-based approach, though computationally expensive, tends to give superior model per-
formance [48] and is employed in this work with a decision tree algorithm as the feature evaluator
as shown in Figure 2.

Figure 2: DT Wrapper-Based FS

Scikit-learn implementation of feature selection was initially considered but because their
current decision tree implementation does not support categorical features [49] and encoding the
categorical features will result in removing some of the then values, now features, of encoded
features thereby leading to partial feature selection and losing count on the actual number of
selected features, thus the WEKA’s implementation is used instead [50]. The J48, a Java imple-
mentation of Quinlan’s C4.5 [51] decision tree algorithm [47] is used as the feature evaluator.
BestFirst Forward search strategy is used in feature search with 5 consecutive non-improving
nodes as the search-stopping criteria, and accuracy as the evaluation measure. After performing
the feature selection, twenty (20) and nineteen (19) features were the best optimal features for
UNSW-NB15 and NSL-KDD respectively. The WEKA’s supervised attribute Remove filter was
used to collect the feature subsets. Thus, two more datasets are derived bringing our total datasets

12

to four: the 2 full datasets and 2 feature selected versions of UNSW-NB15 and NSL-KDD, a de-
scription of the full datasets is available in [28] and [46] respectively, Table 5 shows the selected
optimal features of the datasets.

Table 5: Selected Optimal Features

No. UNSW-NB15 Feature No. NSL-KDD Feature
2 proto 1 duration

3 service 3 service

4 state 4 flag

5 spkts 5 src bytes

7 sbytes 6 dst bytes

8 dbytes 11 num failed logins

11 dttl 14 root shell

14 sloss 17 num file creations

15 dloss 23 count

17 dinpkt 24 srv count

18 sjit 25 serror rate

27 smean 26 srv serror rate

31 ct srv src 27 rerror rate

32 ct state ttl 32 dst host count

33 ct dst ltm 34 dst host same srv rate

34 ct src dport ltm 35 dst host diff srv rate

36 ct dst src ltm 38 dst host serror rate

39 ct flw http mthd 39 dst host srv serror rate

40 ct src ltm 40 dst host rerror rate

41 ct srv dst

4.3.2. Data Transformation
Data Normalization: The full and formed datasets consist of two types of features: numeric

and nominal. To avoid classifier bias towards numeric features with large value ranges, normal-
ization is performed on all the numeric features across the four datasets. Min-max normalization
is applied to normalize all the numeric features within a range of 0 to 1 using equation (1) above.
The normalization process is performed after feature selection in order not to affect the feature
selection process.

Data Encoding: All the categorical (nominal) features across the datasets are one-hot en-
coded. In the NSL-KDD dataset, three features (protocol type, service, and flag) are nominal
and are one-hot encoded. Table 6 shows an example of how the protocol type feature is en-
coded from 6(a) to 6(b). This procedure maps the 41-dimensional features into 122-dimensional
features: 38 continuous and 84 with encoded binary values of the 3 categorical features (proto-
col type, service, and flag). The encoding is also performed on the NSL-KDD feature-selected
version that has only two (service and flag) nominal features. Similarly, both the UNSW-NB15
and its feature-selected version have three nominal features (proto, service, and state) and were
all one-hot encoded accordingly.

Table 7 provides a summary of the four datasets’ dimensions before and after encoding. Be-
cause one-hot encoding increases the dataset dimension, to avoid losing some nominal features’
values encoded in the feature selection process, the encoding is performed after the feature se-
lection and normalization processes. Only the final encoded features are used in training and

13

Table 6: One-Hot Encoding Example

(a)

Protocol type
UDP
TCP

ICMP

(b)

UDP TCP ICMP
1 0 0
0 1 0
0 0 1

evaluating the models.

Table 7: Final Datasets Dimensions

One-Hot Encoding
UNSW-NB15 dataset features NSL-KDD dataset features
All Feature selected All Feature selected

Before Encoding 42 20 41 20
After Encoding 194 172 122 98

4.4. Model Selection and Training

Model selection is the process of choosing one among many candidate models for a predic-
tive problem using various methods [41]. Each of the datasets is divided into two sets, called
the training set and the testing set. For a statistically optimal model, we used the 10-fold Grid-
SearchCV method on the training dataset to build several models and select the optimal model.
The building of the models consists of two stages: training and testing stage. During the training
stage, the algorithms are trained using the training set to build the models, then in the testing
stage, the testing set is used to assess the performance of the built IDS models. Figure 3 de-
picts the entire model training and testing process. A total of thirty (30) distinct IDS models are
developed using the 5 selected algorithms. To measure the impact of normalization and feature
selection as well as the effectiveness of IDS datasets, some evaluation metrics are used to evaluate
and compare the models. The evaluation metrics and the results of the evaluations are provided
in section 4.5 and 5 respectively. A summary of the three different IDS model implementations
performed is as follows:

1. Program A: models implemented with full, non-feature selected, normalized datasets.
2. Program B: models implemented with feature-selected, normalized datasets.
3. Program C: models implemented with feature-selected, non-normalized datasets.

4.5. Model Evaluation Metrics

This is a criterion by which the performance of a model can be assessed. The performance
of an IDS model can be measured based on its ability to correctly classify network traffic as
anomalous or normal. Most of the existing IDS works used either some or all of the follow-
ing three metrics: classification accuracy, detection rate (DR), and false alarm rate (FAR) [26].
Similarly, in this work, the same metrics are adopted in addition to computational time. The
confusion matrix and the metrics are explained below. The confusion matrix in itself is not a
performance measure per se, but because all the evaluation metrics used in this study (except for
computational time) are based on the Confusion Matrix, we deem it important to explain it.

14

Figure 3: IDS Modeling Conceptual Framework

4.6. Confusion Matrix
The confusion matrix is one of the most intuitive and easiest metrics used for finding the

correctness and accuracy of a model. It is used for classification problems where the output can
be of two or more types of classes [52]. No confusion matrix is included in this work due to the
number of implemented models.

Table 8: Confusion Matrix

Predicted Class
Anomaly Normal

Actual Class
Anomaly TP (Good: Correct detection) FN (Bad: Incorrect prediction)
Normal FP (Bad: Incorrect detection) TN (Good: Correct prediction)

Basic Confusion Matrix terminologies:

• True positive (TP): Number of attacks correctly detected as an attack.
15

• False negative (FN): Number of attacks incorrectly detected as normal. Aka Type II error.

• False positive (FP): Number of normal instances incorrectly detected as an attack. Aka
Type I error.

• True negative (TN): Number of normal instances correctly detected as normal.

4.7. Accuracy (ACC)
Accuracy is the amount of correctly classified instances of the total instances, defined as the

ratio of the number of correct predictions to the total number of predictions. It is suitable to
use on a dataset with symmetric target classes and equal class importance [52]. Both training
(ACCTr) and testing (ACCPr) accuracies are reported in this study.

Accuracy (ACC) =
TP + TN

TP + TN + FP + FN
(2)

4.8. Detection Rate (DR)
Aka Recall, Sensitivity, Hit rate, or True positive rate (TPR), it is the measure of correctly

identified positive (anomaly) instances from all the actual positive instances, defined as the ratio
of correct positive predictions to the total number of positive predictions. Or more simply, how
sensitive the classifier is for detecting positive instances. The higher its value the better [52].

Detection Rate (DR) =
TP

TP + FN
(3)

4.9. False Alert Rate (FAR)
Aka Fall-out or False positive rate (FPR) is the measure of incorrectly classified negative

(normal) instances as positive (anomaly) from all the actual negative instances or defined as
the proportion of negative prediction that is mistakenly considered as positive (anomaly) for all
negative predictions. The lower its value the better [52].

False Alert Rate (FAR) =
FP

FP + TN
(4)

4.10. Computational Time
In this work, the computational time is the entire time taken to train, evaluate, and test a model

excluding the time taken in the feature selection process. Note that training time is derived from
using 10-fold cross-validation, which may result in substantial computational time for many
algorithms.

5. Result and Discussion

This chapter presents the results obtained as well as a discussion of the results. The following
comparisons are made:

1. Comparison between the IDS models developed using full datasets and feature-selected
datasets to assess the impact of feature selection.

2. Comparison between the IDS models developed using normalized and non-normalized
feature-selected datasets to assess the impact of normalization.

3. Comparison to measure the effectiveness, reliability, and complexity of the IDS datasets.
4. Comparison of the best-performing IDS model with state-of-the-art works to assess the

significance of the result.
16

5.1. Feature Selection
Table 9 presents the results of models built using both NSL-KDD and UNSW-NB15 full fea-

tures and feature-selected data. Feature selection generally improves performances on new un-
seen data and reduces computational complexity [9, 10, 14]. With NSL-KDD, it can be seen that
in comparison to the performance of models built using full features, the models built using the
19 selected features achieved similar performances albeit slightly lower (this is consistent with
[18]). Whereas with UNSW-NB15, the performance accuracy of three of the models (RF, KNN,
and NB) improved on both new unseen data and using the 20 selected features with both KNN
and RF achieving a remarkably higher performance across all the metrics (except time). ANN
and SVM models achieved similar performance both on the selected features and full features. It
can thus be seen that feature selection improves the performances of models implemented with
UNSW-NB15 more than those implemented with NSL-KDD; and in both datasets, RF benefitted
the most from the feature selection. In both datasets, the NB models achieved the best and lowest
computational time whereas SVM achieved the opposite.

Table 9: Feature Selection Comparison

Models Metrics
NSL-KDD Features UNSW-NB15 Features

Full FS Full FS

ANN

ACCTr 99.59 98.84 94.44 94.27
ACCPr 99.65 98.95 94.49 94.48

DR 99.61 98.72 97.06 97.93
FAR 0.31 0.85 11.03 12.88
Time 15.82m 22.27m 59.33m 47.26m

SVM

ACCTr 98.53 98.01 93.63 93.51
ACCPr 98.56 98.06 93.67 93.56

DR 98.13 97.18 96.63 96.54
FAR 1.08 1.17 15.14 15.19
Time 60.83m 86.39m 136.9m 276.1m

KNN

ACCTr 99.52 99.11 93.80 94.82
ACCPr 99.57 99.07 93.82 95.83

DR 99.49 99.12 96.26 97.35
FAR 0.36 0.98 11.42 7.41
Time 14.29m 13.75m 37.64m 41.49m

RF

ACCTr 99.79 99.71 95.86 96.1
ACCPr 99.81 99.75 95.78 98.49

DR 99.71 99.73 97.87 99.16
FAR 0.1 0.23 8.72 2.93
Time 1.5m 1.94m 3.37m 3.8m

NB

ACCTr 85.68 84.59 48.14 48.13
ACCPr 85.69 84.81 48.08 48.11

DR 69.5 67.61 23.91 23.76
FAR 0.22 0.22 0.02 0.01
Time 10.44s 11.25s 23.4s 23.57s

5.2. Normalization
Table 10 presents the results of models built using NSL-KDD and UNSW-NB15 normalized

and non-normalized feature-selected data. Normalization typically improves performance and
17

decreases computation time [4, 5]. In the case of NSL-KDD, the performance of three of the
five models (ANN, SVM, and NB) were all improved by normalization with the performances of
the distance-related classifier, SVM, benefiting the most, this is as expected [40, 53]. However,
normalization does not have much effect on both KNN and RF models built using NSL-KDD.
NB, which is not a distance-based classifier also achieves two opposing results; with NSL-KDD,
its performance was hugely improved by normalization, however, with UNSW-NB15, the nor-
malization negatively affects its performance. Normalization does not have huge effects on RF,
as it performed well achieving similar performances across the two datasets. The performance
of ANN across the two datasets is relatively better after normalization. Overall, normalization
has improved the performance of 4 classifiers on UNSW-NB15 as well as the performance of
3 of the 5 classifiers on NSL-KDD. Thus it can be inferred that normalization, although its im-
portance in IDS tasks is often ignored [4], does certainly improve model performances in IDS.
These findings are consistent with Wang et al., [4], who compare four different normalizations
for anomaly intrusion detection using SVM, PCA, and KNN. Both RF and NB do not necessar-
ily need normalization [40, 54], hence their computational time with and without normalization
are low and correspondingly close. Similarly, in both normalized and non-normalized versions
of each dataset, the NB models achieved the best and lowest computational time whereas SVM
achieved the opposite. Overall, the sum of computational time taken by the normalization-based
models is considerably lower than that of the models built with non-normalized data in both NSL-
KDD and UNSW-NB15 as shown in Table 11. Thus, normalization also reduces computational
time in addition to improving performance.

5.3. Dataset Comparison

To evaluate the reliability and complexity of the datasets, we consider two perspectives.
Firstly, a more general close observation of the models’ performances in Table 9 and 10, specifi-
cally focusing on models whose performances or computation time were rather surprising or did
not show similar effects after performing related actions to the similar models on corresponding
datasets. Secondly, although the feature selection process on both datasets is the same, more
features were selected in UNSW-NB15 (20) than in NSL-KDD (19), so for fair and transparent
comparisons, we consider the performances of the models implemented using full and normal-
ized features (Program A) since the same normalization is performed on both full datasets.

5.3.1. Reliability Comparison
Since KNN typically uses distance measures to find k nearest points from any given point,

using the normalized features should generally enable all features to be of equal importance
thereby improving its performance [40]. However, while normalization does improve KNN per-
formance with UNSW-NB15, the reverse is seemingly the case with NSL-KDD across all the
metrics. Moreover, while the poor performances of SVM and NB on NSL-KDD in Table 10 can
easily be attributed to a lack of normalization, however, a closer look at how SVM performed
without normalization with UNSW-NB15 implies that the poor performances have more to do
with the dataset itself. As seen in Table 9, the feature selection did not significantly improve the
performance of KNN and RF with NSL-KDD, however, with UNSW-NB15, the performances
of both KNN and RF across all the metrics were improved.

As shown in Table 11, a clear decrease in models’ computational time in the non-normalized
datasets (Program C) can be observed after normalizing the datasets (in Program B), however, the
overall computational time taken by models built using full normalized features (Program A) is

18

Table 10: Normalization Comparison

Models Metrics
NSL-KDD Features UNSW-NB15 Features

Normalized Non-normalized Normalized Non-normalized

ANN

ACCTr 98.84 95.62 94.27 92.8
ACCPr 98.95 95.55 94.48 93.45

DR 98.72 96.71 97.93 97.99
FAR 0.85 5.45 12.88 16.23
Time 22.27m 3.92m 47.26m 39.7m

SVM

ACCTr 98.01 53.3 93.51 74.43
ACCPr 98.06 53.8 93.56 75.59

DR 97.18 0.31 96.54 92.88
FAR 1.17 0.08 19.19 62.31
Time 86.39m 256.3m 276.1m 749.8m

KNN

ACCTr 99.11 99.38 94.82 93.58
ACCPr 99.07 99.42 95.83 94.89

DR 99.12 99.47 97.35 97.07
FAR 0.98 0.63 7.41 9.74
Time 13.75m 11.77m 41.49m 35.57m

RF

ACCTr 99.71 99.86 96.1 96.07
ACCPr 99.75 99.87 98.49 98.5

DR 99.73 99.79 99.16 99.17
FAR 0.23 0.05 2.93 2.94
Time 1.94m 1.37m 3.8m 2.82m

NB

ACCTr 84.59 53.51 48.13 52.34
ACCPr 84.81 53.41 48.11 52.3

DR 67.61 1.71 23.76 32.25
FAR 0.22 1.57 0.01 4.97
Time 11.25s 10.12s 23.57s 20.08s

Table 11: Computational Time Summary

A (Norm) B (FS + Norm) C (FS) Total
NSL-KDD 92.61m 124.54m 273.53m 490.68m

UNSW-NB15 237.63m 369.04m 828.22m 1434.89m
Total 330.24m 493.58m 1101.75m

somewhat lower this shows that, on average, feature selection has less impact than normalization
on computational complexity. Overall, the performance of models built using both datasets is
somewhat consistent and is reliably achieved via a 10-fold CV.

5.3.2. Complexity Comparison
As explained above, the performances of Program A models (implemented using full and

normalized features) are used for the comparison. Figure 4, Figure 5, and Figure 6 provide a
summary of the comparisons on Accuracy, Detection rate, and False alert rate respectively.

In Figure 4, all NSL-KDD models outperform their corresponding UNSW-NB15 imple-
mented models. In both datasets, RF achieved the highest prediction accuracy of 99.81% and
95.78% for NSL-KDD and UNSW-NB15 respectively, while NB achieved the worst prediction
accuracy in both datasets. Furthermore, in the detection rate shown in Figure 5, which stands for

19

Figure 4: Program A Models Accuracy

the accuracy rate for the attack classes, the NSL-KDD models were generally able to detect more
attacks than the UNSW-NB15 models. RF again achieves the overall highest DR of 99.71% with
NSL-KDD and 97.87% with UNSW-NB15 Once more, NB achieved the lowest DR for both
datasets with its UNSW-NB15 model achieving the poorest DR of just 23.76%.

Figure 5: Program A Models Detection Rate

A high detection rate and very low false alert rates are generally the targets in IDS. The FAR
depicted in Figure 6 shows notable alert rate differences between the NSL-KDD and UNSW-
NB15 models. All the UNSW-NB15 models, except NB which has the lowest FAR of 0.02%,

20

have higher percentages of false alerts than their corresponding NSL-KDD models. The highest
FAR of 15.14% is achieved by SVM on UNSW-NB15. The summation of the FAR percentage
for all the NSL-KDD models is 2.07, averaging 0.414% per model, whereas for the UNSW-NB15
models is 46.33 percentage, averaging 9.266% FAR per model, this is 22.38 times less than the
average of NSL-KDD models.

Figure 6: Program A Models False Alert Rate

Overall, the prediction accuracy, DR, and FAR of models built with NSL-KDD appear to
be higher than those built using UNSW-NB15, a typical understanding is that NSL-KDD is
indeed better; however, it can be observed that UNSW-NB15, unlike NSL-KDD which have
few and outdated attack families, contains different modern low footprint attack families which
exhibit similar behavior to normal network traffic, this will essentially make it difficult for many
classifiers to accurately detect its attack patterns. This reflects, precisely, the contemporary real-
world network traffic scenarios, thus UNSW-NB15 can be considered more complex and reliable
for evaluating modern-day IDSs than NSL-KDD. The current real-world environment is much
more challenging than the ones depicted by the outdated NSL-KDD dataset.

5.4. Comparison with Similar Works

To assess the effectiveness of the models, we compare the best-performing models in each
dataset with the recent studies utilizing similar datasets and feature selection in the modeling
process. The comparison was performed based on the major evaluation metrics as depicted in
Table 12.

From Table 12, our methods achieve the best prediction accuracies (ACC) of 99.87% and
98.5% with NSL-KDD as well as detection rates (DR) of 99.79% and 99.17% with the UNSW-
NB15 dataset. The best false alert rate (FAR) is achieved by [57] for NSL-KDD and [20] for
UNSW-NB15 using ANN and soft-max classifier respectively. Their low FAR results may be
driven by their use of neural network-based classifiers which are proving to be good in IDS
classification tasks recently [59]. With the lowest ACC of 85.56% and second to-worst FAR

21

Table 12: State-of-the-art Comparisons

Ref Dataset FS Algorithm ACC DR FAR
[19] NSL-KDD Modified-RIGFS SVM 99.6 99.7 0.566
[55] NSL-KDD IG-Filters Voting classifier 86.67 86.7 0.12
[56] NSL-KDD NSGAII-ANN RF 99.4 99.4 6
[57] NSL-KDD MCF ANN 98.81 97.25 0.02
[58] NSL-KDD PIO DT 88.3 86.6 8.8
This work NSL-KDD DT-based RF 99.87 99.79 0.05
[20] UNSW-NB15 DSAE Soft-max classifier 89.13 - 0.75
[37] UNSW-NB15 DT-based RF 86.41 97.95 27.73
[56] UNSW-NB15 NSGAII-ANN RF 94.8 94.8 6
[43] USWN-NB15 - DT 85.56 - 15.78
This work UNSW-NB15 DT-based RF 98.5 99.17 2.94

(15.78%) achieved by [43], which is the only work not utilizing feature selection, this com-
parison further highlights the importance of feature selection in addition to demonstrating the
effectiveness of RF in IDS modeling. We achieved second best FAR in each of the datasets,
however, it is important to note that in IDS, not detecting an attack can be more harmful than
misclassifying normal traffic [60], thus DR can be more important than FAR and any other met-
rics and hence, our method can be considered as quite good and very effective for real-world
scenarios.

6. Conclusions

Network and computer systems are continually facing increasing attacks while existing pro-
tective mechanisms are failing, thus more effort should be exerted towards analyzing and im-
proving such protective methods, as well as in developing more sophisticated ones to secure
networks and systems and address current challenging environments. This study analyzes the
effects of feature selection and normalization techniques on NSL-KDD and UNSW-NB15 IDS
datasets using five machine learning algorithms. Accuracy, Detection rate, False alert rate, and
Computational time were used to evaluate and compare the models. The following conclusions
can be deduced:

• Both normalization and feature selection are indispensable in building effective and effi-
cient IDS models faster, as they both improve the performance and computational time
of models built with the two datasets. Normalization is shown to be more important than
feature selection, especially when using algorithms such as SVM [53] for better accuracy.

• Generally, RF models achieved remarkably higher performances across all datasets, hence
RF is the most robust among the oft-used ML algorithms in IDS. SVM requires normal-
ization and takes higher computational time than the other algorithms. NB models take the
lowest time but achieve the lowest performances on average, making it the least effective
algorithm for modeling IDS in this work and the poorest in comparison to many supervised
ML algorithms [61].

• Compared to NSL-KDD, UNSW-NB15, which contained more modern low-footprint at-
tack families, is found to be more complex and suitable for building and evaluating modern-

22

day IDS than NSL-KDD, which contained fewer outdated attack families. Thus, we rec-
ommend using UNSW-NB15 for building reliable IDS models.

• It is interesting to note that most of the reviewed works using methods other than one-
hot encoding generally achieve lower performance results compared to our work. Thus,
although its effect is not quite clear, the use of the One-hot encoding method certainly
influenced the classifiers’ performances. In future work, it will be interesting to study the
effect of various encoding methods in IDS modeling.

7. Limitations and Future Work

While the overall results have shown great promises and distinctive conclusions, particularly
concerning the effects of the preprocessing techniques and the UNSW-NB15 and NSL-KDD
datasets, there exist some limitations and open gaps for future research as follows:

• Dataset and Algorithms: Among the many available IDS dataset benchmarks and machine
learning algorithms, only two datasets are used in this study with five algorithms. It would
be interesting to use more datasets and more algorithms for broader insights.

• Alternative feature selection and normalization: There are three feature selection methods;
the Wrapper method is considered in this study. However, other methods can be explored
in future studies. The same wrapper method can also be used in a different approach, such
as changing the evaluation algorithm or the search strategy. Similarly, the use of different
normalization methods can also be investigated.

• Multi-classification: This work primarily focused on the binary classification of normal
and attack network traffic; however, IDS datasets typically contain diverse attack types.
Thus, multi-classification work can be done to enable further analysis of the effect of
preprocessing techniques on distinctive classes of attacks.

• Reduction of FAR: A good IDS should have high detection rates and very low false alert
rates. While the models built with the UNSW-NB15 datasets generally achieved higher
Detection Rates (DR), a higher number of False Alerts (FAR) is also observable. Although
this highlights the complexity of the dataset, further work can be performed to reduce it.

Declaration of competing interest

The authors declare that there are no conflicts of interest.

Acknowledgement

The authors wish to thank numerous reviewers whose comments and feedback have con-
tributed to and improved this work.

Notes

A preliminary version of this paper appeared as a preprint [62]. In addition to some slight
corrections, the paper is significantly improved.

23

References

[1] T. Sowmya, E. Mary Anita, A comprehensive review of AI based intrusion detection system, Measurement: Sensors
28 (2023) 100827. doi:10.1016/j.measen.2023.100827.
URL https://linkinghub.elsevier.com/retrieve/pii/S2665917423001630

[2] R. A. Bridges, T. R. Glass-Vanderlan, M. D. Iannacone, M. S. Vincent, Q. G. Chen, A Survey of Intrusion Detection
Systems Leveraging Host Data, ACM Computing Surveys 52 (6) (2019) 128:1–128:35. doi:10.1145/3344382.
URL https://dl.acm.org/doi/10.1145/3344382

[3] K. Albulayhi, Q. Abu Al-Haija, S. A. Alsuhibany, A. A. Jillepalli, M. Ashrafuzzaman, F. T. Sheldon, IoT Intrusion
Detection Using Machine Learning with a Novel High Performing Feature Selection Method, Applied Sciences
12 (10) (2022) 5015. doi:10.3390/app12105015.
URL https://www.mdpi.com/2076-3417/12/10/5015

[4] W. Wang, X. Zhang, S. Gombault, S. J. Knapskog, Attribute Normalization in Network Intrusion Detection, in:
2009 10th International Symposium on Pervasive Systems, Algorithms, and Networks, 2009, pp. 448–453, iSSN:
2375-527X. doi:10.1109/I-SPAN.2009.49.
URL https://ieeexplore.ieee.org/document/5381578

[5] S. M. Kasongo, Y. Sun, Performance Analysis of Intrusion Detection Systems Using a Feature Selection Method
on the UNSW-NB15 Dataset, Journal of Big Data 7 (1) (2020) 105. doi:10.1186/s40537-020-00379-6.
URL https://journalofbigdata.springeropen.com/articles/10.1186/s40537-020-00379-6

[6] A. Özgür, H. Erdem, A review of KDD99 dataset usage in intrusion detection and machine learning between 2010
and 2015, Tech. Rep. e1954v1, PeerJ Preprints (Apr. 2016). doi:10.7287/peerj.preprints.1954v1.
URL https://peerj.com/preprints/1954

[7] K. Siddique, Z. Akhtar, F. Aslam Khan, Y. Kim, KDD Cup 99 Data Sets: A Perspective on the Role of Data Sets
in Network Intrusion Detection Research, Computer 52 (2) (2019) 41–51. doi:10.1109/MC.2018.2888764.
URL https://ieeexplore.ieee.org/document/8672520

[8] S. Kumar, S. Gupta, S. Arora, A comparative simulation of normalization methods for machine learning-based
intrusion detection systems using KDD Cup’99 dataset, Journal of Intelligent & Fuzzy Systems 42 (3) (2022)
1749–1766. doi:10.3233/JIFS-211191.
URL https://www.medra.org/servlet/aliasResolver?alias=iospress&doi=10.3233/JIFS-211191

[9] Y. Zhou, G. Cheng, S. Jiang, M. Dai, Building an efficient intrusion detection system based on feature selection
and ensemble classifier, Computer Networks 174 (2020) 107247. doi:10.1016/j.comnet.2020.107247.
URL https://linkinghub.elsevier.com/retrieve/pii/S1389128619314203

[10] S.-H. Kang, K. J. Kim, A feature selection approach to find optimal feature subsets for the network intrusion
detection system, Cluster Computing 19 (1) (2016) 325–333. doi:10.1007/s10586-015-0527-8.
URL http://link.springer.com/10.1007/s10586-015-0527-8

[11] O. Depren, M. Topallar, E. Anarim, M. K. Ciliz, An intelligent intrusion detection system (IDS) for anomaly
and misuse detection in computer networks, Expert Systems with Applications 29 (4) (2005) 713–722.
doi:10.1016/j.eswa.2005.05.002.
URL https://linkinghub.elsevier.com/retrieve/pii/S0957417405000989

[12] P. Somwang, W. Lilakiatsakun, Computer network security based on Support Vector Machine approach, in: 2011
11th International Conference on Control, Automation and Systems, 2011, pp. 155–160, iSSN: 2093-7121.
URL https://ieeexplore.ieee.org/document/6106397

[13] S. S. Sivatha Sindhu, S. Geetha, A. Kannan, Decision tree based light weight intrusion detection using a wrapper
approach, Expert Systems with Applications 39 (1) (2012) 129–141. doi:10.1016/j.eswa.2011.06.013.
URL https://linkinghub.elsevier.com/retrieve/pii/S0957417411009080

[14] J. Song, Z. Zhu, P. Scully, C. Price, Selecting features for anomaly intrusion detection: A novel method using fuzzy
c means and decision tree classification, in: G. Wang, I. Ray, D. Feng, M. Rajarajan (Eds.), Cyberspace Safety and
Security, Springer International Publishing, Cham, 2013, pp. 299–307.

[15] S. Thaseen, C. A. Kumar, An analysis of supervised tree based classifiers for intrusion detection system, in: 2013
International Conference on Pattern Recognition, Informatics and Mobile Engineering, IEEE, 2013, pp. 294–299.
doi:10.1109/ICPRIME.2013.6496489.
URL http://ieeexplore.ieee.org/document/6496489/

[16] G. James, D. Witten, T. Hastie, R. Tibshirani, An Introduction to Statistical Learning: with Applications in R,
Springer Texts in Statistics, Springer US, New York, NY, 2021. doi:10.1007/978-1-0716-1418-1.
URL https://link.springer.com/10.1007/978-1-0716-1418-1

[17] H. G. Gotorlar, M. P. Aghababa, J. Bagerzadeh, M. S. Osalu, Improving intrusion detection using a novel normal-
ization method along with the use of harmony search algorithm for feature selection, in: 2015 7th Conference on
Information and Knowledge Technology (IKT), 2015, pp. 1–6. doi:10.1109/IKT.2015.7288796.
URL https://ieeexplore.ieee.org/document/7288796/

24

[18] C. Khammassi, S. Krichen, A GA-LR wrapper approach for feature selection in network intrusion detection, Com-
puters & Security 70 (2017) 255–277. doi:10.1016/j.cose.2017.06.005.
URL https://www.sciencedirect.com/science/article/pii/S0167404817301244

[19] B. Setiawan, S. Djanali, T. Ahmad, Increasing Accuracy and Completeness of Intrusion Detection Model Using
Fusion of Normalization, Feature Selection Method and Support Vector Machine, International Journal of Intelli-
gent Engineering and Systems 12 (4) (2019) 378–389. doi:10.22266/ijies2019.0831.35.
URL http://www.inass.org/2019/2019083135.pdf

[20] F. A. Khan, A. Gumaei, A. Derhab, A. Hussain, A Novel Two-Stage Deep Learning Model for Efficient Network
Intrusion Detection, IEEE Access 7 (2019) 30373–30385. doi:10.1109/ACCESS.2019.2899721.
URL https://ieeexplore.ieee.org/document/8643036

[21] S. Ramı́rez-Gallego, S. Garcı́a, H. Mouriño-Talı́n, D. Martı́nez-Rego, V. Bolón-Canedo, A. Alonso-Betanzos, J. M.
Benı́tez, F. Herrera, Data discretization: taxonomy and big data challenge, WIREs Data Mining and Knowledge
Discovery 6 (1) (2016) 5–21. doi:10.1002/widm.1173.
URL https://wires.onlinelibrary.wiley.com/doi/10.1002/widm.1173

[22] R. Jin, Y. Breitbart, C. Muoh, Data Discretization Unification, in: Seventh IEEE International Conference on Data
Mining (ICDM 2007), 2007, pp. 183–192, iSSN: 2374-8486. doi:10.1109/ICDM.2007.35.
URL https://ieeexplore.ieee.org/document/4470242/

[23] M. Azizjon, A. Jumabek, W. Kim, 1D CNN based network intrusion detection with normalization on imbalanced
data, in: 2020 International Conference on Artificial Intelligence in Information and Communication (ICAIIC),
2020, pp. 218–224. doi:10.1109/ICAIIC48513.2020.9064976.
URL https://ieeexplore.ieee.org/document/9064976

[24] K. A. Taher, B. Mohammed Yasin Jisan, M. M. Rahman, Network Intrusion Detection using Su-
pervised Machine Learning Technique with Feature Selection, in: 2019 International Conference on
Robotics,Electrical and Signal Processing Techniques (ICREST), IEEE, Dhaka, Bangladesh, 2019, pp. 643–646.
doi:10.1109/ICREST.2019.8644161.
URL https://ieeexplore.ieee.org/document/8644161/

[25] M. A. Umar, Z. Chen, Y. Liu, A Hybrid Intrusion Detection with Decision Tree for Feature Selection, Information
& Security: An International Journal (2021). doi:10.11610/isij.4901.
URL https://isij.eu/article/hybrid-intrusion-detection-decision-tree-feature-selection

[26] A. Khraisat, I. Gondal, P. Vamplew, J. Kamruzzaman, Survey of intrusion detection systems: techniques, datasets
and challenges, Cybersecurity 2 (1) (2019) 20. doi:10.1186/s42400-019-0038-7.
URL https://cybersecurity.springeropen.com/articles/10.1186/s42400-019-0038-7

[27] W. Haider, J. Hu, J. Slay, B. Turnbull, Y. Xie, Generating realistic intrusion detection system dataset
based on fuzzy qualitative modeling, Journal of Network and Computer Applications 87 (2017) 185–192.
doi:10.1016/j.jnca.2017.03.018.
URL https://linkinghub.elsevier.com/retrieve/pii/S1084804517301273

[28] N. Moustafa, J. Slay, UNSW-NB15: a comprehensive data set for network intrusion detection systems (UNSW-
NB15 network data set), in: 2015 Military Communications and Information Systems Conference (MilCIS), IEEE,
Canberra, Australia, 2015, pp. 1–6. doi:10.1109/MilCIS.2015.7348942.
URL http://ieeexplore.ieee.org/document/7348942/

[29] G. Creech, J. Hu, Generation of a new IDS test dataset: Time to retire the KDD collection, in: 2013 IEEE
Wireless Communications and Networking Conference (WCNC), 2013, pp. 4487–4492, iSSN: 1558-2612.
doi:10.1109/WCNC.2013.6555301.
URL https://ieeexplore.ieee.org/document/6555301

[30] M. Ring, S. Wunderlich, D. Scheuring, D. Landes, A. Hotho, A survey of network-based intrusion detection data
sets, Computers & Security 86 (2019) 147–167. doi:10.1016/j.cose.2019.06.005.
URL https://www.sciencedirect.com/science/article/pii/S016740481930118X

[31] P. Cerda, G. Varoquaux, B. Kégl, Similarity encoding for learning with dirty categorical variables, Machine Learn-
ing 107 (8) (2018) 1477–1494. doi:10.1007/s10994-018-5724-2.
URL https://doi.org/10.1007/s10994-018-5724-2

[32] M. Keshk, N. Koroniotis, N. Pham, N. Moustafa, B. Turnbull, A. Y. Zomaya, An explainable deep
learning-enabled intrusion detection framework in IoT networks, Information Sciences 639 (2023) 119000.
doi:10.1016/j.ins.2023.119000.
URL https://linkinghub.elsevier.com/retrieve/pii/S0020025523005856

[33] M. Alkasassbeh, S. Al-Haj Baddar, Intrusion Detection Systems: A State-of-the-Art Taxonomy and Survey, Ara-
bian Journal for Science and Engineering 48 (8) (2023) 10021–10064. doi:10.1007/s13369-022-07412-1.
URL https://doi.org/10.1007/s13369-022-07412-1

[34] D. H. Lakshminarayana, J. Philips, N. Tabrizi, A Survey of Intrusion Detection Techniques, in: 2019 18th IEEE
International Conference On Machine Learning And Applications (ICMLA), IEEE, Boca Raton, FL, USA, 2019,

25

pp. 1122–1129. doi:10.1109/ICMLA.2019.00187.
URL https://ieeexplore.ieee.org/document/8999075/

[35] M. R. Ayyagari, N. Kesswani, M. Kumar, K. Kumar, Intrusion detection techniques in network environment: a
systematic review, Wireless Networks 27 (2) (2021) 1269–1285. doi:10.1007/s11276-020-02529-3.
URL https://link.springer.com/10.1007/s11276-020-02529-3

[36] A. L. Buczak, E. Guven, A Survey of Data Mining and Machine Learning Methods for Cyber
Security Intrusion Detection, IEEE Communications Surveys & Tutorials 18 (2) (2016) 1153–1176.
doi:10.1109/COMST.2015.2494502.
URL https://ieeexplore.ieee.org/document/7307098

[37] M. A. Umar, C. Zhanfang, Y. Liu, Network Intrusion Detection Using Wrapper-based Decision Tree for Feature
Selection, in: Proceedings of the 2020 International Conference on Internet Computing for Science and Engineer-
ing, ACM, Male Maldives, 2020, pp. 5–13. doi:10.1145/3424311.3424330.
URL https://dl.acm.org/doi/10.1145/3424311.3424330

[38] J. Han, J. Pei, H. Tong, Data mining: concepts and techniques, fourth edition Edition, The Morgan Kaufmann
series in data management systems, Morgan Kaufmann is an imprint of Elsevier, Cambridge, MA, United States,
2023, oCLC: on1346308160.

[39] M. T. Hagan, H. B. Demuth, M. H. Beale, O. De Jésus, Neural network design, 2nd Edition, Martin T. Hagan, s.L,
2014.

[40] X. Wu, V. Kumar, J. Ross Quinlan, J. Ghosh, Q. Yang, H. Motoda, G. J. McLachlan, A. Ng, B. Liu, P. S. Yu, Z.-H.
Zhou, M. Steinbach, D. J. Hand, D. Steinberg, Top 10 algorithms in data mining, Knowledge and Information
Systems 14 (1) (2008) 1–37. doi:10.1007/s10115-007-0114-2.
URL https://doi.org/10.1007/s10115-007-0114-2

[41] T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning, Springer Series in Statistics, Springer,
New York, NY, 2009. doi:10.1007/978-0-387-84858-7.
URL http://link.springer.com/10.1007/978-0-387-84858-7

[42] B. P. Yadav, S. Ghate, A. Harshavardhan, G. Jhansi, K. S. Kumar, E. Sudarshan, Text categorization Performance
examination Using Machine Learning Algorithms, IOP Conference Series: Materials Science and Engineering
981 (2) (2020) 022044. doi:10.1088/1757-899X/981/2/022044.
URL https://iopscience.iop.org/article/10.1088/1757-899X/981/2/022044

[43] N. Moustafa, J. Slay, The evaluation of Network Anomaly Detection Systems: Statistical analysis of the UNSW-
NB15 data set and the comparison with the KDD99 data set, Information Security Journal: A Global Perspective
25 (1-3) (2016) 18–31. doi:10.1080/19393555.2015.1125974.
URL http://www.tandfonline.com/doi/full/10.1080/19393555.2015.1125974

[44] N. Moustafa, The UNSW-NB15 data set description (2015).
URL https://research.unsw.edu.au/projects/unsw-nb15-dataset

[45] M. Tavallaee, E. Bagheri, W. Lu, A. A. Ghorbani, A detailed analysis of the KDD CUP 99 data set, in: 2009 IEEE
Symposium on Computational Intelligence for Security and Defense Applications, 2009, pp. 1–6, iSSN: 2329-
6275. doi:10.1109/CISDA.2009.5356528.
URL https://ieeexplore.ieee.org/document/5356528

[46] C. Institute, NSL-KDD | Datasets | Research | Canadian Institute for Cybersecurity | UNB (2009).
URL https://www.unb.ca/cic/datasets/nsl.html

[47] I. H. Witten, E. Frank, M. A. Hall, C. J. Pal (Eds.), Data mining: practical machine learning tools and techniques,
fourth edition Edition, Morgan Kaufmann, Amsterdam, 2016.

[48] M. Samadi Bonab, A. Ghaffari, F. Soleimanian Gharehchopogh, P. Alemi, A wrapper-based feature selection for
improving performance of intrusion detection systems, International Journal of Communication Systems 33 (12)
(2020) e4434. doi:10.1002/dac.4434.
URL https://onlinelibrary.wiley.com/doi/10.1002/dac.4434

[49] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, E. Duchesnay, Scikit-learn: Machine
learning in Python, Journal of Machine Learning Research 12 (2011) 2825–2830.
URL https://scikit-learn.org/stable/modules/tree.html

[50] G. Holmes, A. Donkin, I. Witten, WEKA: a machine learning workbench, in: Proceedings of ANZIIS ’94 - Aus-
tralian New Zealnd Intelligent Information Systems Conference, IEEE, Brisbane, Qld., Australia, 1994, pp. 357–
361. doi:10.1109/ANZIIS.1994.396988.
URL http://ieeexplore.ieee.org/document/396988/

[51] S. L. Salzberg, C4.5: Programs for Machine Learning by J. Ross Quinlan. Morgan Kaufmann Publishers, Inc.,
1993, Machine Learning 16 (3) (1994) 235–240. doi:10.1007/BF00993309.
URL https://doi.org/10.1007/BF00993309

[52] G. Shobha, S. Rangaswamy, Machine Learning, in: Handbook of Statistics, Vol. 38, Elsevier, 2018, pp. 197–228.

26

doi:10.1016/bs.host.2018.07.004.
URL https://linkinghub.elsevier.com/retrieve/pii/S0169716118300191

[53] C.-W. Hsu, C.-C. Chang, C.-J. Lin, A Practical Guide to Support Vector Classication (2016).
URL https://www.csie.ntu.edu.tw/ cjlin/papers/guide/guide.pdf

[54] E. Lewinson, Python for finance cookbook: over 50 recipes for applying modern Python libraries to finance data
analysis, Packt, Birmingham, UK, 2020, oCLC: 1139921653.

[55] M. Abdullah, A. Balamash, A. Alshannaq, S. Almabdy, Enhanced Intrusion Detection System using Feature Se-
lection Method and Ensemble Learning Algorithms, International Journal of Computer Science and Information
Security (IJCSIS) 16 (02) (2018) 48–55.
URL https://sites.google.com/site/ijcsis/

[56] A. Golrang, A. M. Golrang, S. Yildirim Yayilgan, O. Elezaj, A Novel Hybrid IDS Based on Modified NSGAII-
ANN and Random Forest, Electronics 9 (4) (2020) 577. doi:10.3390/electronics9040577.
URL https://www.mdpi.com/2079-9292/9/4/577

[57] S. Sarvari, N. F. Mohd Sani, Z. Mohd Hanapi, M. T. Abdullah, An Efficient Anomaly Intrusion Detec-
tion Method With Feature Selection and Evolutionary Neural Network, IEEE Access 8 (2020) 70651–70663.
doi:10.1109/ACCESS.2020.2986217.
URL https://ieeexplore.ieee.org/document/9058689/

[58] H. Alazzam, A. Sharieh, K. E. Sabri, A feature selection algorithm for intrusion detection system based on Pigeon
Inspired Optimizer, Expert Systems with Applications 148 (2020) 113249. doi:10.1016/j.eswa.2020.113249.
URL https://linkinghub.elsevier.com/retrieve/pii/S0957417420300749

[59] R. Vinayakumar, K. P. Soman, Prabaharan Poornachandran, S. Akarsh, Application of Deep Learning Architectures
for Cyber Security, in: A. E. Hassanien, M. Elhoseny (Eds.), Cybersecurity and Secure Information Systems,
Springer International Publishing, Cham, 2019, pp. 125–160. doi:10.1007/978-3-030-16837-7 7.

[60] A. Kaushik, H. Al-Raweshidy, A novel intrusion detection system for internet of things devices and data, Wireless
Networks 30 (1) (2024) 285–294. doi:10.1007/s11276-023-03435-0.
URL https://link.springer.com/10.1007/s11276-023-03435-0

[61] R. Caruana, A. Niculescu-Mizil, An empirical comparison of supervised learning algorithms, in: Proceedings of
the 23rd International Conference on Machine Learning, ICML ’06, Association for Computing Machinery, New
York, NY, USA, 2006, p. 161–168. doi:10.1145/1143844.1143865.
URL https://doi.org/10.1145/1143844.1143865

[62] M. A. Umar, C. Zhanfang, Effects of Feature Selection and Normalization on Network Intrusion Detection (Jun.
2020). doi:10.36227/techrxiv.12480425.v2.
URL https://www.techrxiv.org/doi/full/10.36227/techrxiv.12480425.v2

27

