
 1

Comprehensive Study of Software Testing: Categories, Levels,

Techniques, and Types

Mubarak Albarka Umar
School of Computer Science and Technology,

Changchun University of Science and Technology,

7186 Weixing Road, Jilin, China

Email: 2018300037@mails.cust.edu.cn

ABSTRACT

Software Testing is the process of evaluating a software program to ensure that it performs its intended purpose.

Software testing verifies the safety, reliability, and correct working of a software. The growing need for quality

software makes software testing a crucial stage in Software Development Lifecycle. There are many methods of

testing software, however, the choice of method to test a given software remains a major problem in software

testing. Although, it is often impossible to find all errors in software, employing the right combination of methods

will make software testing efficient and successful. Knowing these software testing methods is the key to making

the right selection. This paper presents a comprehensive study of software testing methods. An explanation of

Testing Categories is presented first, followed by Testing Levels and their comparison, then Testing Techniques

and their comparison. For each of the Testing Levels and Testing Techniques, examples of some testing types and

their pros and cons are given with a brief explanation of some of the important testing types. Furthermore, a clear

and distinguishable explanation of two confused and contradictory terms (Verification and Validation) and how

they relate to Software Quality is provided.

Keywords: Software Testing, Testing Categories, Testing Levels, Testing Techniques, Testing Types, Software

Quality, Verification and Validation.

1. INTRODUCTION
Software testing is an integral phase in Software Development Life Cycle (SDLC) process [1], it involves many

technical and non-technical aspects (such as specification, design, implementation, installation, maintenance and

management issues) in software engineering [2]. Around 50% of software projects’ development time and effort

are put in software testing [3], [4], [2]. Software testing is defined as the process of evaluating a software program

with the intent of finding fault or errors in software. Testing is done to; ensure that a software performs its intended

purpose correctly [3], access, achieve and preserve the quality of a software [4], [5], and thereby verify that a

software is fit for use [2]. In SDLC, the software is not considered finished until it has passed its testing [6], and

the earlier an error is detected, the cheaper it is to fix it. The overall purpose of testing is not to demonstrate that

software is free of errors but to give confidence that the software is working well before installation.

The “software we write [develop] today potentially touches millions of people” [3] across various walks of life

and has become an integral part of our routines, this indicates the need for safe and reliable software.

Unfortunately, humans are prone to err, and so the fundamental facts of humans’ core involvement in software

development make errors an inevitable inclusion in a software [4]. Software errors (bugs) can cause serious effects

in live operation [4] and even death [7]. It is important to treat such errors early because they get costlier with

progress in the development phase. For instance; a report released by the National Institute of Standards and

Technology (NIST) estimated that software bugs are costing the USA economy $59.5 billion annually [8], Jones

also highlighted in his survey [9] that $500 billion is lost annually due to poor software quality and the cost be

reduced through testing the software. The eminent and massive effects of software bugs cannot be overestimated

and hence, the need for software to be tested before delivered.

In the context of Software Quality, Verification and Validation (V&V) are often confusing terms. However, testing

help in achieving quality software through Verification and Validation (V&V) methods. Verification is a Quality

Control (QC) process that is concerned about building the software right, and Validation is a Quality Assurance

(QA) process that is concerned with building the right software. Thus, Verification checks the conformity to the

standard of software by verifying the correctness of one life cycle’s deliverable transformation to the next while

Validation checks back against the requirements of the customers. Verification is an internal process which

involves set of activities to ensure that software correctly implements specific functions, it is usually done by the

development team while, Validation requires some external process and involves set of activities to ensure that

the developed software is traceable to customer requirements [10], it is mostly done with the stakeholders to

provide a degree of software assurance. Verification usually begins before Validation and then they run in parallel

until the release of the software. The use of V&V methods during software development helps in the early detection

of an error, and hence, it can be fixed at a low cost [4].

 2

There are two testing categories (approaches): Static and Dynamic [2], [11], [12]. There are generally three main

software testing techniques which are all under dynamic testing approach [12]: White-box, Black-box and Grey-

box testing [13], [14], [15]; each of the dynamic testing can be performed at different testing levels and they

comprise of several types of testing. There are four general software testing levels: unit testing, integration testing,

system testing, and acceptance testing [6], [2], [14],[16] and various types of testing comes under these levels [17].

The remaining part of this paper is organized as follows; Section Two presents the software testing approaches,

followed by software testing levels, how they relate to the SDLC process, and their comparison in Section Three.

Then in Section Four software testing techniques are thoroughly discussed, their comparison is also provided.

Section Five provided a brief explanation of some of the most important types of testing and finally, the conclusion

is made in Section Six.

2. TESTING CATEGORIES (APPROACHES)
Static and Dynamic testing are the two testing approaches that are occasionally inseparable but are mostly

discussed separately [2]. The Static testing approach is done without executing the program and is called

“verification activities”, while the Dynamic testing approach involves executing the program with real inputs,

most of the current literature refers to the dynamic testing as “testing” [11].

Static Testing Approach: involves source code only and it deals with program and symbolic analysis, model

checking, error handling, and code inspection to ensure functional requirements, design, and coding standards are

observed and estimate software quality without any reference to actual executions [2]. Desk checking, Code

walkthrough, and Formal inspections are the commonly used techniques here [18], [19].

Dynamic Testing Approach: involves actual code executions [11] to ascertain and/or approximate software quality

and it deals with a combination of inputs, use of structurally dictated testing procedures, and automation of testing

environment generation [2] to test the internal design of the software. Most of the testing we perform is in this

category as seen in Figure 1.

Figure 1: Software Testing Categories

3. SOFTWARE TESTING LEVELS
Unit testing: This testing emphasizes on individual units or modules in isolation. It is a testing in which the smallest

testable portion of software is tested to verify its functionality against its specification. The unit can be a

constructor or destructor at class level in an object-oriented environment [20] or a structure in procedural

programming paradigm. Control-flow testing and data flow testing are some of the types of Unit testing. Unit

testing is usually done by developers [6].

 3

Integration Testing: involves testing two or more combined units that must work together to ensure an error-free

flow of control and data (such as consistency of parameters, file format, and so on) among combined units and

their overall correct design and integration. User interface, use-case, interaction, and big bang (integrate and test

all modules at once) are some of the integration testing types. This kind of testing is performed by testers [6].

System Testing: involves testing an integrated complete software to check against its compliance with its

requirements. It verifies the overall interaction of components to ensure the unanimous working of all modules

and programs without error. It involves various types of both functional (tests functionality of software) testing

and non-functional (tests quality of software) testing such as performance, reliability, usability, and security

testing. System testing is performed by the testing team [6].

Acceptance Testing: This testing is performed to validates the software against customer requirements. This

testing is done to ensure that the software does what the customer wants it to do and check the acceptability of the

system. User Acceptance Testing (UAT), as sometimes called, comprises of two testing types: Alpha testing: is a

testing performed by both development team and users using made-up data, and Beta testing in which users start

using the software with real data and carefully observer the software for errors [6].

Figure 2: Software Testing Levels

Table 1: The Software Testing Levels compared [12].

Criteria Unit Integration System Acceptance

Purpose
Correct working of

unit/module

Correct working

of integrated units

Whole system works

well when integrated

Customer’s

expectations are met

Focus Smallest testable part

Interface and

interaction of

modules

Interaction and

working of all

modules as one

Software working per

given specifications

Testing time
Once a new code is

written

Once new

components are
added

Once the software is

complete

Once the software is

operationally ready

Performed by Developer
Development

team
Testing team

Development team and

End-users

Testing

techniques

Usually Whitebox,

and Greybox

Whitebox, and

Blackbox

Usually Blackbox,

and Greybox
Black-box testing

Automation

Automatable using

JUnit, PHPUnit,

TestNG, etc.

Automatable

using Soap UI,

Rest Client, etc.

Automatable using

Webdriver

Automatable using

Cucumber

Scaffolding
Complex (require

drivers and/or stubs)

Moderate (may

require drivers

and/or stubs)

No drivers/stubs

required

No drivers/stubs

required

4. SOFTWARE TESTING TECHNIQUES
These are the various techniques that are used in testing software to ensure it performs as expected. Testing

techniques specify the strategy used in developing test cases for conducting the testing and in analyzing test results

[2] while increasing test coverage (since exhaustive testing is not possible) to achieve more effective testing. They

help identify test conditions that are otherwise difficult to recognize. There are several testing techniques with

each technique covering different aspects of the software to reveal its quality. Utilizing all the testing techniques

in testing a given software is not possible, but the tester can select and use more than one technique depending on

the testing requirements, software type, budget, and time constraint. The higher the number of testing techniques

combined, the better the testing result, coverage, and quality [21]. There are three essential testing techniques [13]:

White-box, Black-box, and Grey-box testing.

 4

Figure 3: Software Testing Techniques

4.1. WHITE-BOX TESTING
This is a testing technique in which the internal structure and implementation of software being tested are known

to the tester. In white-box testing, full knowledge of source code is required because test cases selection is

grounded on implementation of the software entity; internal view of the system and tester’s programming skills

are used to design test cases [18]. Tester selects inputs to exercise program paths and compare the output with the

expected output. White-box testing is also called Structural, Transparent Box, Glass Box, Clear Box, Logic Driven,

Open Box Testing. White-box testing, although usually done at the unit level, is also performed at integration and

system levels of the software testing process [13]. Some white-box testing types include: Control Flow, Data flow,

Branch, Loop, Path Testing [13]. Some commonly used structural testing types are discussed below.

Figure 4: White-box Testing [22]

Table 2: Pros and Cons of White-box Testing

Advantages Disadvantages

Code optimization can be performed Specialized tools are required such as debugging

tools and code analyzers.

Easy to identify data and cover more test cases due

to tester’s knowledge of the code.

It’s often expensive and difficult to maintain

Errors in hidden codes are revealed Impossible to find and test all the hidden error and

deal with them without going out of time

 5

SOME COMMON WHITE-BOX TESTING TYPES

4.1.1. CONTROL-FLOW TESTING
Control flow testing is a type of white-box testing in which control flow graph (CFG) paths, nodes, and conditions

are selected, test cases are written for executing these paths, and each path, node or statements are traversed at

least once to check the flow of control and determine the order of execution. By examining the control structure,

the tester can select and design test cases [23]. Typically, a test case is an entire path from entry to exit nodes of

the CFG. The selected set of paths is used to achieve a certain degree of testing thoroughness. Control-flow testing

is most applicable to new software for unit testing [24].

A typical CFG of a program comprises of a set of nodes and edge, with each node representing a set of statements.

There are five types of CFG nodes, viz.: unique entry and exit nodes, decision node (containing a conditional

statement that can have a minimum of 2 control branches (such as a switch or if statements)), then merge node

(which mostly represent a point where multiple control branches merge), and statement node having a sequence

of statements. The control must flow from the first statement and exit from the last statement, and the CFG may

have an additional edge between nodes for the reverse order flow of control (i.e. from the last to the first statement)

[25]. There are several conventions for flowgraph models with subtle differences (e.g., hierarchical CFGs,

concurrent CFGs). Control-flow testing supports the following test coverage criteria [25]:

• Statement/Node Coverage: Executes each statement in the program at least once

• Edge Coverage: Executes each statement in the program at least once using all possible outcomes at least

once on every decision in the program.

• Condition Coverage: Executes each statement in the program at least once using all possible outcomes at

least once on every condition in each decision.

• Path Coverage: Executes each complete path in the program at least once. Except for loops, which usually

has an infinite number of complete paths.

Table 3: Pros and Cons of Control-Flow Testing

Advantages Disadvantages

Catches 50% of all bugs caught during unit testing [24] Cannot detect specification errors as well as Interface

mismatches and mistakes

Very effective testing method for code that follows

unstructured programming

Cannot catch all initialization mistakes

Enable experienced testers to bypass drawing CFG by

doing path selection on the source

Time-consuming and required programming

knowledge

4.1.2. DATA FLOW TESTING
Data-flow testing is a type of white-box testing in which Control flow graph (CFG) paths are used to detect

inappropriate definition or usage of data in predicates, computations, and termination (killing). It examines patterns

in which a piece of data is used to identifies potential bugs [23]. Data flow testing searches for unreasonable things

that can happen to data. Data flow anomalies are identified based on the associations between variables and values

(unused initialized variables or uninitialized used variables). Data flow testing focuses on variables definition, use

occurrence, and both predicate and computational use at different points within the program. There are two main

data flow testing forms:: (1) define/use testing, uses some simple rules and test coverage metrics; (2) program

slices - uses segments of a program [26]. Data flow testing uses the following Test Coverage Criteria in creating

test cases for the test [23]:

• All-defs (AD) coverage: Has a path from every definition to at least one use of that definition

• All-uses (AU) coverage: For every use of a variable, there is atleast one path from the definition to its use.

• All-c-uses (ACU) coverage: For every variable, there is a path from each of its definition to each of its c-

use. Any defined variable with no subsequent c-use is dropped from contention.

• All-c-uses/some-p-uses (ACU+P) coverage: For every variable, there is a path from each of its definition

to each of its c-use. If there is any defined variable with no c-use following it, then p-use is considered.

• All-p-uses (APU) coverage: For every variable, there is a path from each of its definitions to each of its

p-use. Any defined variable with no subsequent p-use is dropped from contention.

• All-p-uses/some-c-uses (APU+C) coverage: For every variable, there is a path from each of its definition

to each of its p-use. If there is any defined variable with no p-use following it, then c-use is considered.

• All-du-paths (ADUP) coverage: For each def-use pair, all paths between definitions and uses must be

covered. It is the strongest data-flow testing strategy since it is a superset of all other data flow testing

strategies. Moreover, this strategy requires the greatest number of paths for testing.

 6

Table 4: Pros and Cons of Data-Flow Testing

Advantage Disadvantage

Can define intermediary Control flow analysis criteria

between all-nodes and all-paths testing

Unscalable Data-Flow Analysis algorithm for large

real-world programs

Handles variable definition and usage Test case design difficulties compared with control

flow testing.

It spans the gap between all paths and branch testing Infeasible test objectives which might lead to wastage

of time on testing in vain [27].

Identify multiple variable declarations Can have an infinite number of paths due to loops

4.2. BLACK-BOX TESTING
This is a software testing technique in which the internal structure/ implementation of software being tested is not

known to the tester. It can be functional (such as integration testing) or non-functional (such as performance

testing), though usually functional. Test cases are built around requirement specifications. In Black-box testing,

the emphasis is given on evaluating fundamental aspects of software using thorough test cases, and generally, on

maintaining the integrity of external information [13]. For a given test case, the tester verifies proper acceptance

of inputs and correct production of outputs against test oracle. This testing can be applied at all levels of software

testing processes such as Unit, Integration, System and Acceptance Testing levels, although done mostly on

System testing and Integration testing. Black-box testing is also called Opaque, Functional, Specification-based,

Close-box, Behavioral, and Input-Output testing. Some Black-box testing types include: Equivalence Partitioning,

Cause-Effect Graph, Fuzzing, Boundary Value Analysis, Decision Table, State Transition, Orthogonal Array, and

All Pair Testing [22]. Some common black-box testing types are discussed below.

Figure 5: Black-box Testing [22]

Table 5: Pros and Cons of Black-box Testing

Advantages Disadvantages

Code knowledge is not required, tester’s perception

is very simple

Limited coverage, few test scenarios are

designed/performed.

User’s and developer’s view are clearly separate Some parts of the backend are not tested at all.

Access to code is unrequired, quicker test case

development

Inefficient testing due to the limited knowledge of

code possesses by a tester.

Efficient and suitable for large parts of code Test cases are difficult to design without clear

specification

SOME COMMON BLACK-BOX TESTING TYPES

4.2.1. EQUIVALENCE PARTITIONING TESTING (EP)
The testing technique of dividing the input domain of a program into different equivalence classes to reduce the

number of test cases. One element from each equivalence class (EC) is then selected as test cases. This method is

used to avoid test redundancy and give a sense of complete testing. EC Testing can be weak or strong. In Weak

Equivalence Class Testing (WECT), the number of test cases is defined by chosen one variable value from each

equivalence class and then taking the maximum value from the chosen variables, while test cases in Strong

Equivalence Class Testing (SECT) is based on the cartesian product of partition class, i.e., testing all interactions

of all equivalence classes [28].

 7

Table 6: Pros and Cons of Equivalence Partitioning Testing

Advantages Disadvantages

Provide a sense of complete testing and eradicates the

need for exhaustive testing

Suitable only for range-wise and discrete values input

data

Enables large domain of inputs or outputs coverage

with a smaller subset selected from an equivalence

class

Assumes that the data in the same equivalence class is

processed in the same way by the system

Avoid test redundancy by selecting a subset of test

inputs from each class.

Cannot handle boundary value errors. Need to be

supplemented by boundary value analysis

4.2.2. BOUNDARY VALUE ANALYSIS TESTING (BVA)
This is a black box test selection technique that aims at finding software errors at the boundaries of equivalence

classes. Unlike the Equivalence Partitioning technique (uses only input domain), BVA uses both input and output

domains in creating test cases. BVA complements EP in such that while EP selects tests from within equivalence

classes, BVA focuses on tests at and near the boundaries of equivalence classes [28]. Tests derived using either of

the two techniques may overlap.

Table 7: Pros and Cons of Boundary Value Analysis Testing

Advantages Disadvantages

Complements Equivalence Partitioning testing by

handling equivalence class boundary errors.

Generate a high number of test cases

Works well with variables that represent bounded

physical quantities

Can’t be used for Boolean and logical variables

Can be used at unit, integration, system and

acceptance test levels

Function nature and variable meaning are not

considered

Computationally less costly in creating test cases Not that useful for strongly-typed languages

4.3. GREY-BOX TESTING
Grey-box (translucent) testing technique that takes the straightforward technique of black-box testing and

combines it with the code-targeted systems in white-box testing. Some knowledge of the internal working of the

software is required (usually of the part to be tested) in designing tests at the black-box level. More understanding

of the internals of software is required in grey-box testing than in black-box testing, but less compared to white

box testing [13]. Gray box testing is much more effective in integration testing and is the best approach for

functional or domain testing, also a perfect fit for Web-based applications [29]. Some grey-box testing types

include: Orthogonal Array, Regression, Pattern, and Matrix Testing. Some of these testing are discussed.

Figure 6: Grey-box Testing [22]

Table 8: Pros and Cons of Grey-box Testing

Advantages Disadvantages

Provides combined benefits of both white-box and

black-box testing

Complete white-box testing cannot be done due to

inaccessible source code/binaries

Can handle design of complex test scenario more

intelligently

Defect association is difficult in distributed systems.

Maintain boundary between independent testers and

developers

Gray box testing is not suitable for algorithm testing.

 8

SOME COMMON GREY-BOX TESTING TYPES

4.3.1. REGRESSION TESTING
Regression testing is a grey-box testing strategy that is performed every time changes are made to the software to

ensure that the changes behave as intended and that the unchanged part is not negatively affected by the

modification. Errors that occurred at unchanged parts of the software are called regression errors. Regression

testing starts with a (possibly modified) specification, a modified program, and an old test plan (which requires

updating) [30].

Table 9: Pros and Cons of Regression Testing

Advantages Disadvantages

Tests can be automated thereby saving time and

improving the quality of software.

Tedious and time-consuming if done without

automated tools

It ensures that a fix doesn't adversely affect working

functionality.

Testing is required even on making slight changes to

the program

Improves and maintain software quality One of the main causes of software maintenance

expensiveness.

4.3.2. ORTHOGONAL ARRAY TESTING (OAT)
This is a type of testing that uses pair-wise combinations of data or entities as test input parameters to increase the

scope. The selected pairs of parameters should be independent of one another. OAT is handy when maximum

coverage is required with minimum test cases and a huge number of test data having many permutations and

combinations. It’s extremely valuable for testing complex applications and e-comm products [31].

Table 10: Pros and Cons of Orthogonal Array Testing (OAT)

Advantages Disadvantages

Test pair-wise combinations of all the selected

variables

Increase in Test case complexity as input data

increases

Creates fewer Test cases which cover the testing of all

the combination of all variables.

Tedious and time-consuming if done manually.

Improves productivity because of reduced test cycles

and testing times.

COMPARISON OF SOFTWARE TESTING TECHNIQUES
There is no one particular technique that is better, however, depending on the testing requirements and needs

one technique can have some advantages over others and vice. In testing any software, exploring and

combining many testing techniques helps in eliminating more bugs thereby increasing the overall quality of

the software than sticking to one technique. The table below presents comparisons of the three discussed

testing techniques using some criteria.
Table 11: Comparison of Testing Techniques

Criteria White-box Black-box Grey-box

Required

knowledge

Full knowledge of the

internal working of the

software.

Knowledge of the internal

working of software is not

required.

Limited knowledge of the

internal workings of the

software.

Performed by Usually testers and

developers.

End-users, developers, and

testers

End-users, developers, and

testers

Testing focus Internal workings, coding

structure, and flow of data

and control.

Evaluating fundamental

aspects of the software

High-level database diagrams

and data flow diagrams.

Granularity High Low Medium

Time

consumption

Very exhaustive and time-

consuming

Exhaustive and the least

time-consuming.

Partly time-consuming and

exhaustive.

Data domain

testing

Data domains and internal

boundaries can be better

tested.

Can be performed through

trial-and-error method.

Can be done on identified

Data domains and internal

boundaries

Algorithm

testing

Suitable for testing

algorithms.

Unsuitable for testing

algorithms.

Inappropriate for testing

algorithms.

Also known as Transparent-box, Open-box,

Logic-driven, or code-based

testing.

Closed-box, data-driven,

functional, or Specification-

based testing.

Translucent testing

 9

5. SOFTWARE TESTING TYPES
Testing Types: are the various testing that are performed at a particular test level based on a proper test technique

to address testing requirements in the most effective manner [12]. There are many types of testing each serving

different purposes. In a survey conducted by the International Software Testing Qualifications Board (ISTQB)

[32], some of the most important types of testing are:

Table 12: Software Testing Types

Testing Type Object Technique Type Testing Level

Functional Testing Test functions of a software Blackbox testing Acceptance

and System level

Performance Testing Testing software responsiveness

and stability under a particular

workload

Blackbox testing Any level

Security Testing Protect data and maintain

software functionality

Whitebox testing Any Level

Usability Testing Check ease of use of software Blackbox testing Acceptance

and System level

Use case Testing Checking that path used by user

is working as intended

Blackbox testing Acceptance, System

and Integration level

Exploratory Testing Validate experience of user Ad-hoc testing Acceptance

and System level

6. CONCLUSION

Delivering quality software is the main goal of any software project. Software Testing has been widely used and

remains a truly effective means of assuring the quality of software. In this paper, some important software testing

concepts, their advantages, and disadvantages are discussed, comparisons of software testing techniques and
software testing levels are presented. Learning about and successful usage of these software testing methods in

software development will help testers carry out software testing in a more effective manner thereby improving

software quality.

REFERENCES
[1] A. Dennis, B. H. Wixom, and D. Tegarden, Systems Analysis and Design with OOP Approach with UML

2.0, 4th Editio. USA: John Wiley & Sons, Inc., 2009.

[2] L. Luo, ‘A Report on Software Testing Techniques’, Pittsburgh, USA.

[3] G. J. Myers, C. Sandler, and T. Badgett, The Art of Software Testing 3rd Edition, Third Edit. Canada.:

John Wiley & Sons, Inc., 2012.

[4] D. R. Graham, ‘TESTING, VERIFICATION AND VALIDATION’, Int. J., vol. XVI, pp. 1069–1101,

1979.

[5] E. Miller, Software testing & validation techniques. [Washington D.C.]: IEEE Computer Society Press,

1981.

[6] A. Dennis, B. H. Wixom, and R. M. Roth, Systems Analysis and Design 5th Edition, 5th Editio. USA:

John Wiley & Sons, Inc., 2012.

[7] S. Rogerson, ‘The Chinook Helicopter Disaster’, 2002. [Online]. Available:

https://www5.in.tum.de/~huckle/chinook_software.pdf.

[8] N. I. of S. andTechnology (NIST), ‘Software Errors Cost U.S. Economy $59.5 Billion Annually: NIST

Assesses Technical Needs of Industry to Improve Software-Testing’, Web.archive.org, 2002. [Online].

Available:

https://web.archive.org/web/20090610052743/http://www.nist.gov/public_affairs/releases/n02-10.htm.

[Accessed: 11-May-2019].

[9] C. Jones, ‘Software Quality in 2012: a Survey of the State of the Art’, 2012.

[10] B. W. Boehm, Software engineering economics. Englewood Cliffs, N.J.: Prentice-Hall, 1981.

[11] P. Ammann and J. Offutt, Introduction to Software Testing. Cambridge University Press, 2008.

[12] Altexsoft, ‘Quality Assurance - Quality Control and Testing: The Basics of Software Quality

Management’, Kharkiv, Ukraine, 2016.

[13] E. Khan, ‘Different Forms of Software Testing Techniques for Finding Errors’, Int. J. Comput. Sci. Issues,

vol. 7, no. 3, pp. 11–16, 2010.

[14] K. Sneha and G. M. Malle, ‘Research on software testing techniques and software automation testing

tools’, 2017 Int. Conf. Energy, Commun. Data Anal. Soft Comput. ICECDS 2017, pp. 77–81, 2017.

[15] M. A. Jamil, M. Arif, N. Sham, A. Abubakar, and A. Ahmad, ‘Software Testing Techniques : A Literature

Review’, no. November, 2016.

[16] P. Borba, Testing techniques in software engineering : Second Pernambuco Summer School on Software

Engineering, PSSE 2007, Recife, Brazil, December 3-7, 2007, Revised Lectures. Springer-Verlag, 2010.

 10

[17] C. Padmini, ‘1- Beginners Guide To Software Testing’, pp. 1–41, 2013.

[18] S. Nidhra and J. Dondeti, ‘Black Box and White Box Testing Techniques’, Int. J. Embed. Syst. Appl., vol.

2, no. 2, pp. 29–50, 2012.

[19] ‘Software Testing - Wikipedia’. [Online]. Available: https://en.wikipedia.org/wiki/Software_testing.

[Accessed: 05-May-2019].

[20] R. V. Binder, Testing Object-Oriented Systems: Objects, Patterns, and Tools. Addison-Wesley

Professional, 1999.

[21] I. Jovanovic, ‘Software Testing Methods and Techniques’, IPSI BgD Trans. Internet Res., vol. 5, no. 1,

pp. 30–41, 2009.

[22] Mohd. Ehmer Khan and Farmeena Khan, ‘A Comparative Study of White Box , Black Box and Grey Box

Testing Techniques’, Int. J. Adv. Comput. Sci. Appl., vol. 3, no. 6, pp. 12–15, 2012.

[23] J. Badlaney, R. Ghatol, and R. Jadhwani, ‘An Introduction to Data-Flow Testing’, Control, pp. 1–8, 2006.

[24] S. Mancoridis, ‘CS576 Dependable Software Systems - Topics in Control-Flow Testing’. [Online].

Available: https://www.cs.drexel.edu/~spiros/teaching/CS576/slides/2.control-testing.pdf. [Accessed: 05-

May-2019].

[25] N.-W. Lin, ‘Software Testing (CS5812) - Control Flow Testing’. [Online]. Available:

https://www.cs.ccu.edu.tw/~naiwei/cs5812/st4.pdf.

[26] M. New, ‘Data Flow Testing Swansea University UK’.

[27] T. Su et al., A Survey on Data-Flow Testing, vol. 50, no. 1. 2017.

[28] L. Briand, ‘Software Verification and Validation - WBT’, 2010. [Online]. Available:

https://www.uio.no/studier/emner/matnat/ifi/nedlagte-

emner/INF4290/v10/undervisningsmateriale/INF4290-WBT.pdf. [Accessed: 03-May-2019].

[29] ‘Software Testing Class - Grey box’. [Online]. Available: https://www.softwaretestingclass.com/gray-

box-testing/.

[30] L. Briand, ‘Software Verification and Validation (INF4290) - Regression Testing’, 2010. [Online].

Available: https://www.uio.no/studier/emner/matnat/ifi/nedlagte-

emner/INF4290/v10/undervisningsmateriale/INF4290-RegTest.pdf.

[31] Alex Samurin, ‘Explore the World of Gray Box Testing’, 2003. [Online]. Available:

http://extremesoftwaretesting.com/Articles/WorldofGrayBoxTesting.html. [Accessed: 19-May-2019].

[32] ISTQB, ‘Worldwide Software Testing Practices Report’.

International Software Testing Qualifications Board (ISTQB) (2017). Worldwide Software Testing

Practices Report. [online] ISTQB, pp.1-40. Available at: https://www.istqb.org/documents/ISTQB 2017-

18_Revised.pdf [Accessed 21 May 2019].

