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Abstract While some engineering fields have benefited1

from systematic design optimization studies, wave en-2

ergy converters have yet to successfully incorporate such3

analyses into practical engineering workflows. The cur-4

rent iterative approach to wave energy converter design5

leads to suboptimal solutions. This short paper presents6

an open-source MATLAB toolbox for performing de-7

sign optimization studies on wave energy converters8

where power take-off behavior and realistic constraints9

can be easily included. This tool incorporates an adapt-10

able control co-design approach, in that a constrained11

optimal controller is used to simulate device dynam-12

ics and populate an arbitrary objective function of the13

user’s choosing. A brief explanation of the tool’s struc-14

ture and underlying theory is presented. In order to15

demonstrate the capabilities of the tool, verify its func-16

tionality, and begin to explore some basic wave energy17

converter design relationships, three conceptual case18

studies are presented. In particular, the importance of19

considering (and constraining) the magnitudes of device20

motion and forces in design optimization is shown.21
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1 Introduction24

At present, designs for wave energy converters (WECs)25

span a wide range of concepts. While it is unclear which26

of these concepts will achieve economic viability, the27

design trade-offs particular to each concept are also not28

well-defined. Furthermore, the degree to which any of29

these concepts approach some optimal is also unclear.30

Design optimization studies can play an important31

role in the refinement and maturation of technology32

concepts. Additionally, a so-called control co-design (CCD)33

approach, which integrates control system design into34

full system design process, has been demonstrated for35

a range of mechanical and electro-mechanical systems36

(Garcia-Sanz 2019), including a recent study that ap-37

plied CCD in a full-system constrained design optimiza-38

tion of an offshore wind turbine (Hegseth et al 2020).39

CCD is composed of three main areas: co-optimization,40

co-simulation and control-inspired paradigms. In this41

paper, only the co-optimization aspect is considered,42

where a lower fidelity multi-physics model is used to43

carry out a system wide optimization, including the44

control system.45

For resonant WECs in particular, which exhibit tightly-46

coupled dynamics between the controller and device,47

a CCD approach appears to be especially useful, per-48

haps even critical (O’Sullivan and Lightbody 2017; Jin49

et al 2019). In a system with tightly-coupled dynam-50

ics, the dynamics of various subsystem (e.g., the WEC51
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controller and hydro-mechanical systems) are of over-52

lapping frequency bands. Conversely, in a wind turbine53

the blade pitch controller acts to reflect changes in wind54

conditions, which happen on much longer time-scales55

(over the course of minutes) than blade rotational and56

tower passing rates, which are on the order of roughly57

0.5 Hz.58

WEC developers and designers currently lack a sys-59

tematic, configurable, and tested design optimization60

tool. As a result, many WEC designs are based on61

an iterative design-build-test (or often design-model-62

simulate) loop, which is inefficient and can lead to sub-63

optimal designs. While a fair amount of WEC design64

optimization studies have been conducted over the last65

decade (see, e.g., Blanco et al 2018; Kurniawan and66

Moan 2013; McCabe 2013), several key limitations have67

restricted the impact of these studies on practical WEC68

design. WEC design optimization studies to-date have69

primarily relied on models that are unable to explicitly70

incorporate dynamic and kinematic constraints. Addi-71

tionally, the models employed are unable to incorporate72

nonlinearities or can only do so at the cost of imprac-73

tically long computation times.74

The present study uses an open-source WEC de-75

sign optimization tool. The key contributions and fun-76

damental aspects of this tool are:77

– Explicitly model constraints - Dynamic and kine-78

matic constraints, such as maximum stroke length79

and maximum power take-off (PTO) force, are crit-80

ical to ensuring realistic design solutions (Garcia-81

Rosa et al 2015). Instead of deeming solutions that82

exceed constraints as infeasible and disregarding them83

(see, e.g., McCabe 2013), the pseudo-spectral model84

applied in the present study allows for explicit in-85

corporation of constraints.86

– Efficiently model nonlinear dynamics - Most87

previous WEC design optimization studies have em-88

ployed frequency domain models, which are inca-89

pable of handling nonlinearities. Conversely, it is90

possible for studies to be executed with time do-91

main models (Garcia-Teruel et al 2019), but this92

approach is computationally expensive. The pseudo-93

spectral models employed in this study are capable94

of efficiently handling nonlinearities. In general, any95

nature of nonlinearity can be included by represent-96

ing the physics in the pseudo-spectral domain.97

– Arbitrary or fixed structure controller - No98

fixed controller structure (e.g., proportional damp-99

ing feedback resonating control, latching, or veloc-100

ity tracking model predictive control) specification101

is required. The optimal controller can be calculated102

as the solution to the numerical optimal control103

problem, or the optimal tuning of a fixed structure104

control.105

– Open-source tool - An open-source piece of soft-106

ware, named “WecOptTool,” which is available on-107

line,1 has been developed to perform this study and108

support future work.109

The subsequent sections of this paper are structured110

to further expand on these point. First the theoreti-111

cal basis and algorithmic structure are discussed (Sec-112

tion 2). Next, three simple case studies are performed113

to demonstrate and verify WecOptTool’s functionality114

in the areas of WEC geometry and PTO co-design and115

explore some basic design considerations (Section 3). In116

particular, these case studies have been selected to both117

illustrate the key aspects of WecOptTool and to be-118

gin an exploration of the WEC control co-design space.119

Conclusions are presented in Section 4.120

2 Methods121

2.1 WecOptTool Conceptual Framework122

WecOptTool provides WEC developers with a frame-123

work to easily apply a control co-design approach. In124

Fig. 1, the algorithmic procedure is visually classified125

into three columns or lanes:126

– User Inputs (Green) - aspects of the tool that the127

user can interact with128

– Data Classes (Blue) - objects used to store and129

transfer information within a study130

1 https://github.com/SNL-WaterPower/WecOptTool.
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Fig. 1: WecOptTool schematic of data flow to determine

an optimal control co-design. The flow from left to right

defines the necessary user inputs, how those inputs are

mapped to the solvers to determine an optimal design.

– Solvers (Yellow) - physics models and optimization131

algorithms that process data132

Any WEC can be optimized by specifying the blocks133

in the User Inputs lane. Consider, for example, the fa-134

mous Salter Duck (Salter 1974). First, the kinematics135

of this device must be defined; for the Salter Duck this136

is a pitching rotation about an axis. Next, the aspects137

of the Duck to be optimized must be chosen, and some138

bounds provided for their values. These design variables139

could include geometric parameters, such as the length140

of the Duck’s “bill,” as well as aspects of the PTO sys-141

tem, such as maximum force, or generator winding re-142

sistance. The wave climate in which the device will op-143

erate (i.e., the sea states in Fig. 1) must be described.144

Additionally, the type of controller to be used should be145

selected (more details on these options in Section 2.2).146

Finally, an objective function is defined to provide a147

measure of fitness based on performance and cost.148

These user inputs are employed to construct a set149

of Data Class objects (see blue center lane in Fig. 1),150

which are then passed to a set of Solvers (yellow right-151

most lane). The hydrodynamics solver currently used in152

WecOptTool is the boundary element method (BEM)153

tool NEMOH (Babarit and Delhommeau 2015). Cur-154

rently, the optimal control solver uses one of the three155

offered methods (proportional, complex-conjugate, and156

pseudo-spectral – the theoretical basis of these approaches157

is discussed in Section 2.2) to find the WEC velocity,158

PTO forces, power and other dynamic responses of the159

current WEC design. These responses, along with mea-160

sures of cost, can be passed to the objective function for161

use by the optimization routine. By design, WecOpt-162

Tool is meant to leverage existing optimization algo-163

rithms and tools, such as those built into MATLAB164

and other third party tools.165

2.2 Control design and simulation166

To evaluate device performance, WecOptTool relies pri-167

marily on a pseudo-spectral (PS) solution method (see,168

e.g., Elnagar et al 1995). This numerical optimal con-169

trol method allows for the efficient simulation of non-170

linear dynamics and constrained optimal control of a171

WEC (Bacelli and Ringwood 2014; Bacelli 2014; Herber172

and Allison 2013). The importance of this approach can173

be understood by considering the bounds of the WEC174

control problem.175

The upper bound of power absorption for a WEC176

is represented by the well-known “complex conjugate177

control,” (CC) in which perfect impedance matching178

allows for maximum power absorption (see, e.g., Falnes179

2002). The intrinsic impedance of a WEC is defined as:180

Zi(ω) = B(ω) + bv + i

(
ω(m+A(ω))− KHS

ω

)
, (1)181

where ω is the radial frequency, B(ω) is the radiation182

damping, bv accounts for viscous and frictional damp-183

ing, m is the rigid body mass, A(ω) is the added mass,184

and KHS is the hydrostatic stiffness. The response of185

the device can thus be defined by186

V (ω) =
Fexc(ω)− Fu(ω)

Zi(ω)
, (2)187

where Fexc is the wave excitation spectrum.188

Optimal power transfer occurs when the PTO force,189

Fu is set such that190

Fu(ω) = −Z∗
i (ω)u(ω). (3)191
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where Z∗
i denotes the complex conjugate of Zi and u192

is the velocity. In addition to being acausal in the gen-193

eral sense, this approach specified by (3) is also im-194

practical due to the large motions and forces that often195

result. While analysis of this limit can provide some196

useful insight, it is also clear to see that using an un-197

constrained optimal controller could result in unrealis-198

tic performance (Budal and Falnes 1975), and therefore199

unrealistic values for an objective function within a de-200

sign optimization study.201

Proportional damping (P) control, which is analo-202

gous to that applied in other energy generation fields in203

which a simple braking force is applied to the generator,204

is a proportional control on velocity:205

Fu = −Bpto V, (4)206

where the PTO damping coefficient Bpto is calculated207

by an unconstrained numerical optimization for a given208

sea state.209

We can see that (2) is a linear frequency domain210

model. Thus, when simulated in this manner, the P211

and CC controllers cannot readily incorporate nonlin-212

earities. Solving for the WEC response in the time do-213

main for an optimization tool is computationally pro-214

hibitive. Fortunately, as described more fully by Ba-215

celli (2014), nonlinearities can be incorporated into a216

pseudo-spectral problem without increasing computa-217

tional time to unmanageable levels. For example, in-218

stead of a linear viscous damping product Fv(ω) =219

Bv(ω) · V (ω), as applied in (1), viscous damping ef-220

fects can be described by a quadratic term, e.g., Fv =221

Bv2V |V |.222

The PS controller in WecOptTool has been config-223

ured to maximize power absorption subject to a set of224

constraints. For the PS controller, the dynamics of the225

device are solved by forming an optimization problem in226

which the dynamics are represented as constraints and227

the objective function is formulated to maximize power.228

The system states (in this case WEC position and ve-229

locity) and control inputs are composed by a set of basis230

functions – in this case we use Fourier series. A solution231

is obtained by setting the weights for the basis functions232

so as to minimize the objective function within the con-233

Maximum PTO force: Fmax
u
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Fig. 2: WaveBot case study design variables.

straints (Elnagar et al 1995; Herber and Allison 2013)234

Additionally, realistic constraints, such as limitations235

on the PTO force or stroke length, can be imposed (Ba-236

celli and Ringwood 2014; Bacelli 2014). Currently, We-237

cOptTool applies a sequential quadratic programming238

(SQP) solution method (Nocedal and Wright 2006) for239

the pseudo-spectral problem. For the CCD problem,240

this approach offers a number of distinct advantages to241

frequency domain and time-domain models as described242

in Section 1 (explicit constraints, efficient nonlinear so-243

lutions, and arbitrary or fixed controller structures).244

Currently, the PS controller in WecOptTool uses an245

arbitrary control structure. Thus, while the WEC may246

eventually be deployed with a causal feedback controller247

(Bacelli and Coe 2020; Bacelli et al 2019; Scruggs et al248

2013), a latching controller (Budal and Falnes 1979;249

Evans 1976; Iversen 1982), or a velocity tracking model250

predictive control (Cretel et al 2011; Hals et al 2011),251

the arbitrary PS controller in WecOptTool provides a252

convenient realistic stand-in for design studies. The PS253

controller in WecOptTool is not intended for real-time254

implementation, but instead represents a control design255

and analysis tool.256

3 Case studies257

The design of the experimental “WaveBot” (Coe et al258

2016) is considered herein to provide a case study on259

which to apply WecOptTool and demonstrate impor-260

tant concepts in WEC co-control design. Fig. 2 shows261
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Table 1: Summary of case study parameters. See Fig. 2, for illustration of variables.

Design variable Case A Case B Case C

Outer radius, r [m] r = 0.88 r ∈ [0.25, 2] r ∈ [0.25, 2]

Maximum PTO force, Fmax
u [kN] Fmax

u = 2 Fmax
u =∞ Fmax

u ∈ [0.1, 1]

Maximum stroke, zmax [m] zmax =∞ zmax = 0.6 zmax =∞

an illustration of the device and the design variables em-262

ployed in these case studies. Three different case studies263

of the WaveBot are considered: (A) a simple fixed de-264

sign performance assessment demonstrating and verify-265

ing the CC, P, PS controllers, (B) a single design vari-266

able study comparing the CC, P, and PS controllers,267

and (C) a multi-objective study using only the PS con-268

troller. For efficiency and to improve clarity, all studies269

were conducted using a simple regular wave with an270

amplitude of A = 0.0625 m and a period of T = 3.33 s.271

These case studies are summarized in Table 1.272

It is important to note the case studies in this pa-273

per are conceptual in nature. While more complex and274

realistic studies are possible with WecOptTool, these275

case studies have been deliberately selected to verify276

functionality and to demonstrate key concepts in WEC277

CCD. Although simplistic, these case studies describe278

phenomena and approaches that are fundamental to279

the engineering practice of WEC control co-design. A280

strong understanding of these concepts is essential for281

future applications of WecOptTool to more complex282

studies.283

3.1 Case A: Performance with CC, P, and PS284

controllers285

Case A is not a design optimization study, but instead286

a simple comparison of the three controller types’ per-287

formance using a single device design. Thus, the device288

design was fixed, and the performance in a regular wave289

with A = 0.0625 m, T = 3.33 s was simulated for the290

CC, P, and PS controllers. The PS controller was set291

to limit the PTO force to less than 2 kN. The results of292

these simulations are shown in Fig. 3 and Fig. 4, which293

show the spectral and time-history results, respectively.294

The average mechanical powers for the three controllers295

in Case A were CC: 121 W; P: 28 W; and PS: 97 W. Note296

that as the PTO force limit for the PS controller is in-297

creased, the power from this controller will approach298

that of the CC controller.299

Fig. 3 shows a spectral analysis of results from the300

Case A simulations, with magnitude along the upper301

row and phase along the lower row. Each of the three302

columns of plots relate to a specific controller. The spec-303

tra of excitation force (Fe), velocity (u), and PTO force304

(Fu) resulting from each simulation are plotted. We can305

verify the linear behavior of the CC and P controllers by306

reviewing the left and center columns in Fig. 3, respec-307

tively. The linear behavior of these controllers is evident308

in that energy exists only at the excited frequency of309

1.89 rad/s (T = 3.33 s). Also note how the CC controller310

creates a resonant condition, where the velocity has the311

same phase as the excitation force, whereas the P con-312

troller does not achieve this phase alignment. From the313

results of the PS controller on the far right of Fig. 3, it314

can be seen that the velocity at 1.89 rad/s is nearly in315

phase with the excitation force. The slight mismatch is316

due to the PTO force limit.317

Observe how super-harmonics are generated by the318

force limited PS controller, spilling energy into addi-319

tional frequencies, which are integer multiples of the320

fundamental. These additional harmonics outside of the321

fundamental excited frequency (1ω0 = 1.89 rad/s) are322

a clear demonstration of the nonlinearities introduced323

by the PS controller. In order to maximize power while324

limiting the PTO force (|Fu| < 2 kN), the PS controller325

finds this nonlinear solution.2326

2 Note that, as discussed in Section 2.2, it would also be
possible to include additional nonlinearities within the WEC
dynamics for the PS controller (e.g., nonlinear damping due
fluid viscosity and/or friction, switching in the PTO, etc.).
In this example, we have chosen not to include such effects
so as to provide a more direct comparison with the C and
P controllers, which have been programmed in the frequency
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Fig. 3: Case A: Spectral analysis of CC, P, and PS simulation results for a single device design.
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Fig. 4: Case A: Comparison of time histories of CC, P,

and PS controllers for a single device design.

The time histories of the Case A simulations shown327

in Fig. 4 tell a similar story and verify the expected be-328

havior of these controllers. The six axes in Fig. 4 from329

top to bottom show the wave elevation (η), excitation330

force (Fe), position (z), velocity (u), PTO force (Fu),331

and power (P ), where negative power is absorbed by332

the WEC. The PS controller follows the CC controller333

until it reaches the force limitation of 2 kN. The large334

domain for efficiency and can thus not readily incorporate
nonlinear dynamics.

magnitude of instantaneous power created by the CC335

controller, both negative (resistive) and positive (reac-336

tive), is also evident.337

3.2 Case B: Optimal design for CC, P, and PS338

controllers339

The differences between these controllers and the im-340

portance of control co-design can further be demon-341

strated by considering how the optimal device design342

varies with different control strategies. To better un-343

derstand this we conduct three separate optimization344

studies using the CC, P, and PS controllers. These stud-345

ies are performed on the following problem.346

min
r

P̄ (r)

(r0 + r)3

s.t. r ∈ [0.25, 2]

(5)347

Here, r is the WEC’s outer radius as shown in Fig. 2.348

The radius of the WaveBot as-built (that tested by Coe349

et al 2016) is r0 = 0.88 m. The average power is P̄ ,350

where negative power is absorbed by the device. The351

maximum stroke of the PS controller was constrained352

to zmax ≤ 0.6 m.353

At this stage, the specification of an objective func-354

tion for WEC design optimization is quite challenging355

given the diverse spectrum of WEC archetypes and the356

lack of commercial projects. The objective function de-357

fined by (5) is similar to those suggested by a number358

of previous studies, in that it is a ratio of power to359

some representation of cost – volume in this case, but360
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Table 2: Case B: Comparison of optimal WaveBot de-

signs for different controllers.

Controller Opt. radius, ropt Obj. fun. value

CC 0.25 -86.1

P 1.00 -5.0

PS 0.40 -47.7

surface area has also been recommended (Garcia-Teruel361

et al 2019; Blanco et al 2018; Kurniawan 2013; McCabe362

2013). Garcia-Teruel et al (2019) present a useful com-363

parison where various combinations of these factors are364

used to form different objective functions, thus leading365

to different optimal WEC designs. Note that (5) uses a366

polynomial expansion in the denominator, as was done367

previously by Neary et al (2018) to counteract the effect368

where small devices are disproportionately favored.369

The study was completed with both a “brute-force”370

approach and using the MATLAB hybrid method solver371

fminbnd. The set of geometries considered are shown in372

Fig. 5. Table 2 shows the results of this study for each of373

the three control types. The results are also illustrated374

in Fig. 6.375

As can be seen from Fig. 6 and Table 2 the results376

from the three different controllers vary dramatically.377

The power produced by the CC controller is often an378

order of magnitude greater than the P controller. Note379

that, accounting for friction, the power absorbed by the380

CC controller matches the theoretical limit for an ax-381

isymmetric body (Budal and Falnes 1975).382

Additionally, the power produced by the CC con-383

troller does not vary strongly based on the outer ra-384

dius design variable. This occurs because the complex-385

conjugate controller can so effectively maximize absorp-386

tion that the geometry of the WEC (assuming it is of387

the same general scale) plays a less important role. This388

is not necessarily realistic, a problem which can be fur-389

ther illustrated by considering the position amplitudes390

shown in Fig. 6. The CC controller can only accomplish391

this feat at low frequencies by moving the WEC with392

an amplitude of more than 1 m (in a 0.06 m amplitude393

wave). Obviously this motion violates the assumptions394

of the underlying models, but would also likely require395

an unfeasible design. Observe also that for radius val-396

ues of r > 0.55 m, the PS and CC results match, but397

for r < 0.55 m, the motion constraint becomes active398

for the PS controller.399

Referring back to the overall results of the study in400

Table 2, note that the three controllers result in differ-401

ent optimal designs. While this is not surprising based402

on the conclusions drawn from Case A (Section 3.1)403

and the results shown in Fig. 6, and also aligns with404

previous findings (Garcia-Rosa and Ringwood 2016),405

this outcome underscores the importance of incorporat-406

ing realistic physical constraints when applying CCD.407

A WEC device’s performance, and therefore the objec-408

tive function value, is strongly tied to the controller,409

thus it follows that designing the controller in parallel410

with the full system is critical.411

3.3 Case C: Multi-objective design study412

It is often beneficial for practical WEC design studies to413

employ a multi-objective optimization. For the Wave-414

Bot in particular, which is a lab device with no full-scale415

deployment plan, and therefore no detailed means of es-416

timating LCOE, such an approach is especially useful.417

In a multi-objective study, a set of “responses” can be418

selected without applying any relative weighting factors419

that may be challenging, or impossible, to determine.420

In this way, a better understanding for how the design421

variables interact can be developed.422

In this case, we consider the following problem:423

min
r,Fmax

u

(
P̄ , (r0 + r)3, zmax

)
s.t. r ∈ [0.25, 2]

Fmax
u ∈ [0.1, 1]× 103

(6)424

Here P̄ and (r0 + r)3 are the average power and a vol-425

umetric function, as were used in Case B. The third426

response, zmax, is the maximum displacement position427

of the WEC (PTO “stroke”). As before, the outer ra-428

dius, r, is a design variable with the range [0.25, 2] m.429

However, in Case C, the additional design variable for430

the maximum PTO force, Fmax
u , is added with a range431

of [0.1, 1] kN. Note that since it is considered the best432

suited solution for a CCD optimization study, only the433
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mal designs from fminbnd.

pseudo-spectral control method was used in Case C (as434

previously discussed, complex-conjugate and propor-435

tional damping control are more useful for theoretical436

studies). This study was performed with the MATLAB437

function paretosearch, which uses a pattern search al-438

gorithm.439

The results of this case study are shown in Fig. 7. As440

with any multi-objective study, no single device design441

is shown to be most fit, but the designer can begin to442

gain some intuition on how these different design vari-443

ables and responses interact. Reviewing Fig. 7, we can444

see that smaller designs require larger PTO strokes to445

achieve the same amount of power absorption (a sim-446

ilar finding was noted by Kurniawan 2013). Based on447

this, a designer could weigh the factors that affect cost448

(longer PTO pistons vs. increasing hull displacement –449

and the numerous factors tied to these variables, such450

as structural reinforcement, mooring design, etc.).451

To find a single solution along the Pareto front, it452

is typical to find a “knee” in the curve or surface, in453

which a marginal improvement of one objective function454

would lead to large decline in others (see, e.g., Branke455

et al 2004). One potential knee on the surface shown456

in Fig. 7 has been marked with a ‘+.’ Here, the WEC457

produces an average of 58 W, with a volume function458

of (r0 + r)3 = 3.9 m3, and a maximum PTO stroke of459

0.14 m.460

4 Conclusion461

An open source WEC design optimization tool, that462

provides an adaptable engineering approach to control463

co-design, has been demonstrated and verified via three464

different case studies. These studies highlight the util-465

ity of the tool, in particular the important contribution466

of utilizing a pseudo-spectral numerical optimal con-467

trol solution that can realistically represent constrained468

WEC controllers. The inclusion of the pseudo-spectral469

method allows for efficient and realistic control co-design470

studies to be performed.471
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Future development of WecOptTool will introduce472

both linear and nonlinear classes of fixed structure con-473

trollers. Additionally, further recent developments in474

formulations for integrated PTO modeling will be in-475

corporated into WecOptTool to allow for more detailed476

studies. By treating an array of WECs as an abstract477

multi-input, multi-ouput system, WecOptTool can also478

potentially be applied to WEC array design and used,479

for example, to determine device spacing within the ar-480

ray. To support more straightforward utilization by a481

wider range of users, additional WEC archetypes will482

be examined in case studies and provided as examples483

with the WecOptTool source code. Further case studies484

will also seek to investigate the formulation of objective485

functions for WEC design optimization studies, and to486

perform such studies using realistic WECs with real-487

world deployment locations.488
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