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Deep Orthogonal Multi-Frequency Fusion for
Tomogram-Free Diagnosis in Diffuse Optical

Imaging
Hanene Ben Yedder, Ben Cardoen, Majid Shokoufi, Farid Golnaraghi, and Ghassan Hamarneh

Abstract— Identifying breast cancer lesions with a
portable diffuse optical tomography (DOT) device can im-
prove early detection while avoiding otherwise unnecessar-
ily invasive, ionizing, and more expensive modalities such
as CT, as well as enabling pre-screening efficiency. Critical
to this capability is not just the identification of lesions
but rather the complex problem of discriminating between
malignant and benign lesions. To accurately capture the
highly heterogeneous tissue of a cancer lesion embedded
in healthy breast tissue with non-invasive DOT, multiple
frequencies can be combined to optimize signal penetra-
tion and reduce sensitivity to noise. However, these fre-
quency responses can overlap, capture common informa-
tion, and correlate, potentially confounding reconstruction
and downstream end tasks. We show that an orthogonal
fusion loss of multi-frequency DOT can improve recon-
struction. More importantly, the orthogonal fusion leads to
more accurate end-to-end identification of malignant ver-
sus benign lesions, illustrating its regularization properties
in the multi-frequency input space. While the deployment
of portable DOT probes requires a severely constrained
computational budget, we show that our raw-to-task model,
for direct prediction of the end task from signal, signifi-
cantly reduces computational complexity without sacrific-
ing accuracy, enabling a high real-time throughput, desired
in medical settings. Furthermore, our results indicate that
image reconstruction is not necessary for unbiased classi-
fication of lesions with a balanced accuracy of 77% and 66%
on the synthetic dataset and clinical dataset, respectively,
using the raw-to-task model. Code is available at https:
//github.com/sfu-mial/FuseNet.

Index Terms— Diffuse optical tomography, image recon-
struction, deep learning, multi-frequency, tissue estimation,
lesion classification, diagnosis, multitask learning, transfer
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learning, handheld probe.

I. INTRODUCTION

BREAST cancer is the most frequently diagnosed cancer
among women [1]. Pre-screening is usually carried out

using self-breast examinations, which can suffer from high
false-positive rates, or clinical breast examinations [2]. Al-
though breast lumps are often benign, such as lipoma, cyst,
or hamartoma, lesion malignancies may appear with a non-
palpable sign; hence, regular screenings are critical [3]. While
mammography is the most commonly used screening tool
today, it has potential cumulative health risks due to its reliance
on ionizing radiation and low sensitivity in patients with
thick breast tissue [4]. Furthermore, the acquisition device’s
complexity and size limit patient screening throughput [5].

Imaging modalities based on near-infrared light are emerg-
ing as tools for biomedical diagnosis, given the non-ionizing
nature of infrared light as well as their ability to penetrate a
few centimeters into human structures, such as the skull, brain,
and breast [6]. The recent progress of optical sensors makes
optical-based modalities increasingly attractive. Diffusion op-
tical tomography (DOT) uses near-infrared light to image soft
tissues, offering several advantages in terms of safety, costs,
portability, and sensitivity to functional changes [7]. This
technique has shown great potential in investigating functional
brain imaging [8], [9] and breast cancer screening [10], [11].
Fig. 1-A shows a typical breast screening workflow in the
medical setting.

DOT measures the distribution of tissue optical properties
as a function of absorption and scattering coefficients. These
properties are closely correlated to physiological markers
and allow indirect quantitative assessment of tissue malig-
nancy [7], [12]. Indeed, marked variations between healthy and
tumor tissue are observed in terms of optical properties and
chromophore components (e.g., oxy/deoxy hemoglobin and
collagen) [13]. In particular, normal breast tissue and lesions
can be separated in terms of optical coefficients at several
wavelengths [12], [14].

These properties make DOT a potential promising tool in
pre-screening of patients in a clinical setting, saving them
from unnecessary exposure to more precise but potentially
harmful ionizing modalities such as CT. In such a setting, there
is a clear need for both low latency, i.e., method inference
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Fig. 1. Typical breast cancer screening workflow. (A) Images recon-
structed by an inverse model, from signals collected by the acquisition
hardware, are analyzed for assessment, diagnosis, and treatment prog-
nosis. (B) Screening pipelines can be divided into two paradigms: (i)
Accurate reconstruction followed by image based classification. (ii) A
direct prediction model omits image reconstruction to focus solely on the
ultimate task and can help overcome sub-task errors, e.g., reconstruc-
tion induced false positives, marked by red triangles in this scenario, in
paradigm (i).

speed, preferably real-time, and accurate reconstruction and
classification.

A DOT scanner is comprised of an array of emitters and
receivers, using low-powered LEDs or lasers, to measure the
optical transmission [15] or reflection [10] of light beamed
into the tissue at various locations on the tissue surface.
While an optimized probe design enables a reduced hardware
complexity and better portability, it increases the complexity of
the reconstruction task, especially when the number of sources
is limited [16]. DOT can be classified into three modes:
continuous wave, frequency domain, and time domain. Given
the tradeoff between imaging performance and cost, frequency
domain methods tend to be the most cost-effective mode
where tissue optical properties can be directly inferred from
the back-scattered signal’s amplitude and phase [17]. Further-
more, sampling at different frequencies in a sufficiently broad
bandwidth enables converting frequency-domain signals to the
time-domain using the inverse Fourier transformation [18]. In
this work, we focus on the frequency-domain DOT.

A. DOT Reconstruction Algorithms
Given that a photon can experience many alterations of its

path in random directions until it is absorbed, DOT image
reconstruction is an ill-posed inverse problem, subject to
artifacts [19]. Reconstruction quality and depth sensitivity are
inversely proportional to the distance between source and
detector and noise level, and strongly depend on the recon-
struction method [20]. In addition, the highly heterogeneous
nature of malignant cancerous tissue further complicates the
reconstruction task [21]. A portable design with limited power
budget, significantly reducing the number of available sensors-
detectors pairs and the available computational envelope for
reconstruction, complicate matters further, by increasing the
ill-posedness of the reconstruction problem.

While difference imaging approaches rely on a reference
measurement to recover the change in the tissue’s optical
properties, e.g., a reference tissue, a phantom, or the previous

TABLE I
REGULARIZATION APPROACHES IN STATE-OF-THE-ART

DL-RECONSTRUCTION METHODS. D: DESIGN APPROACH; FF:
FEED-FORWARD, I: ITERATIVE UNROLLED BASED MODEL; M:

MULTI-MODAL/FREQUENCY; S/P: IN SILICO/PHANTOM DATA; AND C:
CLINICAL PATIENT DATA.

D M S/P C Approach to mitigate ill-posedness

[29]–[31] FF × ✓ × CNN learns the nonlinear end-to-end mapping
[25] FF × ✓ × Promote appearance similarity
[27], [32] I × ✓ × Augment Gauss-Newton algorithm with deep learning
[33] FF ✓ ✓ × Micro-CT structural prior
[26] FF × ✓ × Model based on Lippmann-Schwinger equation
[34] FF × ✓ × Reflection model as sum of features from different depths
[35] I × ✓ × Data-driven unrolled network promoting appearance similarity
[36]–[38] FF ✓ ✓ ✓ Multi-modal representation learning (US+DOT)
[16] FF × ✓ ✓ Deep spatial-wise attention network
Ours FF ✓ ✓ ✓ Orthogonal multi-frequency representation learning

condition like a rest stage in brain DOT, absolute imaging
approaches use a single set of measurements to reconstruct
optical coefficients. In this manuscript, we focus on absolute
imaging.

Traditional image reconstruction techniques commonly rely
on non-linear methods minimizing an objective function, it-
eratively until convergence, e.g., gradient and Newton-type
methods [22]. Based on an initial homogeneous tissue opti-
cal properties estimate, the difference between the measured
signal and the modelled data is used to iteratively update the
estimate until achieving convergence within acceptable limits
with the measured data. Regularization terms are leveraged
to ensure convergence by restricting the space of all possible
solutions into only a subset of physically plausible ones. A
comprehensive review is presented in [20].

Even though non-linear methods follow directly from the
underlying mathematical problem formulation, in practice they
have a high computational cost as each iteration needs to be
optimized independently at reconstruction time, prohibiting
real-time reconstruction. Furthermore, the reconstruction ac-
curacy is easily compromised as the number of sources and
detectors is reduced, and reconstruction of complex shapes
can become challenging [19]. To address these shortcomings,
researchers have explored deep learning (DL) as an alternative
approach [23], [24]. A deep learning model for DOT recon-
struction is typically trained in a supervised setting on in silico
or phantom training data pairs. By incorporating complex
and diversified data samples, the model can selectively enrich
its feature space to improve performance on real-world data.
Recent studies, e.g., [16], [25]–[27], have shown image recon-
struction and classification are faster and more accurate when
deep learning algorithms are used instead of conventional
reconstruction methods. One advantage deep learning based
algorithms have over classical reconstruction methods is that
they can exploit implicitly learned feature encodings from the
DOT sensor data, whereas classical reconstruction algorithms
can exploit only priors encoded by human designers [23].
Recent advances tackle the problem of ill-posedness in a
variety of ways. We summarize the closely related approaches
in a tabulated overview (Table I), and refer the interested
reader to [24], [28] for a more in-depth review.
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B. Multi-frequency DOT

Frequency-domain systems use intensity modulated sources,
ranging from a few MHz to 1 GHz, to illuminate the tissue and
collect the amplitude and phase of diffusing waves. A multi-
spectral image can be obtained using several LEDs or lasers
of multiple wavelengths as illumination. The different LEDs
are used consecutively to capture an image per wavelength or
combined as one multi-spectral image [39].

The primary motivation for multi-frequency DOT is to
exploit the different but complementary responses of chro-
mophore, tissue components, to multi-frequency excitation,
given that chromophores absorb photons at different rates at
different modulation frequencies [40]. This wavelength sensi-
tivity is leveraged to analyze optical spectra and reconstruct
images of the exposed tissue for diagnostic purposes, given
that recovered chromophore concentration changes can convey
information about functional brain vascular events and the
characterization and monitoring of breast lesions [41]. The
captured multi-frequency data can provide more spatial and
contextual information, enabling more robust and accurate
identification and discrimination of disease-correlated biolog-
ical anomalies [12].

While higher frequencies allow for a better separation of op-
tical properties, such as absorption and scattering coefficients,
as well as a better detection of small and shallow objects,
the limit of the signal-to-noise ratio (SNR) decreases with
increased modulation frequency [42], [43], and penetration de-
creases as frequency increases. Utilizing multi-frequency data
for improving DOT image reconstruction and diagnosis has
been an active field of research, illustrating that the accuracy
of the optical coefficient can be improved using measurements
with multiple modulation frequencies [39], [44]–[46]. Recent
studies, summarized in a tabulated overview (Table II) have
shown that using measurements with multiple modulation
frequencies can improve the recovery of optical coefficients
and provide higher SNR and lower error [39], [47]. Improve-
ment, however, depends on frequencies selection scheme and
utilized instrument given the specific noise impact [46]. This
finding is supported by Zimek et al. [48], who reported that
adding dimensions can harm discriminative potential if those
dimensions do not improve the signal-to-noise ratio.

Augmenting DOT with ultrasound is finding recent adoption
as well, an example of multi-modal fusion [49], [50], [51]. The
aforementioned art is based on conventional reconstruction
algorithms. To the best of our knowledge, no deep learning-
based method has explored the merit of exploiting multiple
frequencies in DOT-reconstruction and diagnosis.

C. Multi-frequency as Data Fusion

Data fusion models mimic higher cognitive abstraction in
the human brain by synthesizing information from multiple
sources for improved decision-making. While data fusion is
non-trivial, the resulting contribution of multiple data sources
or multimodal data can significantly improve the performance
of deep learning models [55], [56]. The underlying motivation
for collecting multi-modal data is to learn the optimal joint
representation from rich and complementary features of the

TABLE II
MULTI-FREQUENCY DOT FOR IMAGE RECONSTRUCTION AND

DIAGNOSIS. DI: DIMENSION; FREQ: FREQUENCY RANGE; D: DATASET,
S: SIMULATION, P: PHANTOM, C: CLINICAL; AND

MF:MULTI-FREQUENCY.

Leveraging different modulation frequency schemes DI Freq
(MHz) D

[47] Improve joint optical coefficients recons. 2D 100-250 S
[39] Enhance fused MF image quality 2D 100-1000 S
[52] Compensate physiological and noise interference in recons. 3D 361-382 P
[53] Frequency shifting for reduced recons. ill-posedness 2D 100+5*i, ∀i ∈ {0, .., 100} S
[54] Minimize the effect of phase data and improve contrast 2D {78, 141, 203} P
[46] Evalutate the impact of modulation frequency selection 2D 50-500 S
[14] Discrimination between malignant and benign tissue 2D 283-472 C

same object or scene. In the context of combining multiple
information sources to learn more powerful representations,
the terms ‘early’ and ‘late’ fusion are commonly used [57].
Early fusion refers to concatenating input data from multiple
sources in separate channels before presenting it as input to the
network, while late fusion involves processing each input data
individually and aggregating their output. Mid-fusion restricts
cross-data flow to later layers of the network, allowing early
layers to specialize in learning and extracting data-specific
patterns [58].

Attention mechanisms have been shown to be suitable for
the fusion of features that usually suffer from confounding
issues such as conflicting or cancelling information, corre-
lation, and noise. Attention provides an approach to learn
to select informative subsets of the data, as well as the
relationship between data streams, before fusing them into a
single comprehensive representation [56], [59]. Transformer
based models, based on a multi-head attention architecture,
have recently gained increased adoption [58], [60]. However,
the high computational cost and complexity, scaling adversely
with input sequence length, remain a significant challenge,
especially given the real-time requirement.

Self-supervised learning (SSL) based on a joint embedding
architecture, driven by the maximization of the information
content of the network branches’ embedding, opened the door
to the application of joint-embedding SSL to multi-modal
signals [61]. The idea is to produce independent embedding
variables, removing confounding effects such as partial cor-
relation and avoiding modal collapse between data streams
by encouraging architecture diversity between branches, using
loss based normalized cross-correlation matrix [62] or explicit
variance-preservation term for each embedding [61].

Imposing orthogonal constraints in linear and convolutional
neural network layers can act as a form of regularization that
can help improve task performance and be beneficial for the
network’s generalization [63], [64]. Orthogonality in feature
space was proposed to encourage intra-class compactness and
inter-class separation of the deep features, and has shown
improvement in classification tasks [65]. Multi-modal orthog-
onalization has been used to force uni-modal embeddings to
provide independent and complementary information to the
fused prediction [66]. Another advantage is that an orthogonal
encoding can enforce the learning of a more sparse correlation-
free representation. The resulting smaller encoding can reduce
architecture dimensions, and serve as an implicit regulariza-
tion.
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D. Towards Direct Medical Image Analysis in DOT

Traditional computational pipelines in biomedical imaging
involve solving tasks sequentially (Fig. 1-B.i, e.g., segmenta-
tion followed by classification or detection). Although each
of these two tasks is usually solved separately, the useful
clinical information extracted by the second task is highly
dependent on the first task’s results. While a ‘joint’ or multi-
stage model where different tasks are lumped together, for
example, image reconstruction then classifying diagnosis, can
benefit from feature sharing and joint parameters tuning for
both tasks, significant computational resources are required
to optimize sub-tasks that may not necessarily lead to end-
task improvements. In contrast, in the direct medical image
analysis [67] (DMIA) paradigm, end task results are directly
inferred from raw/original data (e.g., raw sensors or whole
image/volume) as illustrates Fig. 1-B.ii. Therefore, the model
can focus solely on the end task, reclaiming some of the
computational resources for improved results while requiring
fewer resources. For instance, Wu et al. [68] trained a neural
network for joint reconstruction and lung nodule detection
from raw acquisitions and showed performance improvement
compared to a two-stage approach. Hussain et al. [69] had
shown that a segmentation-free kidney volume estimation can
help overcome segmentation errors and limitations and reduce
the false-positive area estimates. In a similar perspective,
Taghanaki et al. [70] investigated a segmentation-free tumor’s
volume and activity estimation in PET images. Recently,
Abhishek et al. [71] illustrated that, in the context of cancerous
skin lesions, predicting the management decisions directly can
be a simpler problem to address than predicting the diagnosis
followed by management decisions, as one action can be
prescribed to multiple subsets of disease classes.

E. Contributions

We make the following contributions in this paper:
(i) We investigate the benefit of multi-frequency data on

the quality of DOT reconstruction and breast lesion diagnosis.
Previously, many works have addressed the multi-frequency
reconstruction problem or diagnosis, albeit using conven-
tional methods. Despite the importance of multi-frequency
acquisition for chromophore reconstruction, no deep learning
framework has investigated multi-frequency fusion nor joint
reconstruction and diagnosis to date. Here, we present a novel
approach designed to recover the optical properties of breast
tissue from multi-frequency data with a deep orthogonal fusion
model followed by a diagnosis.

(ii) To the best of our knowledge, this is the first deep
learning-based method that investigates the merits of tackling
the diagnosis prediction task from raw sensor data directly
without image reconstruction in DOT (direct prediction 1).
Results with and without reconstruction are contrasted using a
modular pipeline, highlighting the potential of the raw-to-task

1While our direct prediction contribution omits the ‘tomogram‘ part of
DOT, and thus works directly on near-infrared (NIR) sensor data, our fusion
contribution applies both to tomogram reconstruction as well as tomogram-
free reconstruction. Thus, we continue to use DOT throught the paper instead
of NIR.

model for improved accuracy, while reducing computational
complexity.

(iii) We extend a fusion network [59] by training models
using an orthogonalization loss function [65] to maximize
the independent contribution of each modulation frequency
data and emphasize their collective strength, with improved
predictive performance compared to a single frequency model.

Section II, introduces our proposed model for multi-
frequency DOT fusion and defines the two prediction pipelines
(raw-to-task and joint reconstruction and diagnosis). Physics-
based computational simulation and real patient datasets are
detailed in Section III-A.1. In silico performance results are
presented in Section III-B and results on real-world data in
Section III-C. We conclude the paper by discussing insights
and limitations on interpretability, speed, and adaptive dy-
namic treatment in Section IV.

II. METHODOLOGY

Solving the inverse problem in DOT recovers the spatial
distribution of a tissue’s optical properties x ∈ RW×H based
on the measured boundary data yi ∈ RS×D×N , from S
sources (emitters) with D sensors (detectors) at different mod-
ulation frequencies i ∈ {1, N}. The learned inverse function
F−1(·) maps the raw measurements y to an image estimate x̂
while remaining faithful to the underlying physics constraints.
Learning the inverse function F−1(·) is carried out by solving:

θ∗ = argmin
θ

L
(
F−1(yi; θ);x

)
+ λR(F−1(yi; θ)) , (1)

where L and R are the network loss function and the regular-
ization, θ are the optimized network weights that parameterize
F−1. The reconstruction of an image based on the fusion of all
raw signals from diverse modulation frequencies is considered
as well by using the fusion network described in Section II-
A. While reconstructing an accurate 2D/3D image/volume
from collected measurements has been the mainstream task
in DOT, in a clinical setting, the ultimate purpose is not
necessarily obtaining the image itself but rather making an
informed clinical diagnosis or management decision, such as
lesion detection and classification into predefined classes. To
compare the impact of omitting the reconstruction and directly
predicting the end task, we implemented two architectures:
The first, FuseNet, reflects classical approaches, i.e., a classi-
fication module is appended to the output of the reconstruction
layer to make a prediction, where the result of the multi-
spectral reconstruction is used to supervise the classification
task (Section II-B). Whereas the second, Raw-to-Task, uses
the same classification module to make a prediction based on
the fused raw data directly, i.e., no reconstruction is considered
in between. The ultimate goal is to study the ability of deep
learning to provide superior prediction based on the raw signal
only while reducing model complexity and computational cost
(Section II-C).

A. Fusion Network

Given multi-frequency raw data paired with known diagno-
sis outcomes, the objective is to learn a robust multi-frequency
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Fig. 2. Architecture overview of the proposed DOT image recon-
struction and diagnosis method. (A) single-frequency and (B) multi-
frequency signals (y) along with corresponding ground truth diagnosis
labels (ldiag) and images (x) are used to train the model. In the
single-frequency variant of our method (A), y, is used as input to the
image reconstruction, then the resulting image is used for diagnosis
prediction. In multi-frequency, note the two variants: (B.1) per-frequency
reconstruction and (B.2) multi-spectral reconstruction and diagnosis. For
both single and multi-frequency, the red dashed lines depict the raw-to-
task flow, where the image reconstruction is skipped and the diagnosis
is predicted directly from y. The bottom panel shows the details of the
multi-frequency fusion, reconstruction, and prediction modules.

representation in a supervised learning setting. While many
fusion strategies have been proposed in computer vision,
natural language processing, and multimodal biomedical data,
strategies for fusing data in multi-frequency DOT data remain
unexplored in deep learning-based approaches. Inspired by
recent methods for multimodal data fusion [59], [66], we
adopt a similar attention-based mechanism to control the
expressiveness of features from each input frequency before
constructing the multi-frequency embedding, while uniquely
feeding the raw data directly with no further pre-processing.
Let Y ∈ RS×D×N×M be a training mini-batch including
M tissue samples, each collected using N frequencies such
that Y = [Y1, Y2, ..., YN ] where for each frequency i, Yi =
[yi1, ...y

i
M ] includes data for M samples. When N > 1, input

measurements from each frequency are combined using the
fusion branch (Fusion, Fig. 2). To reduce the impact of noisy
input features and compress the size of the feature space, each
Yi is first passed through a fully connected layer of length l,
with ReLU activation, outputting Y s

i ∈ Rl×1×M , followed
by an attention mechanism that scores the relevance of each
feature in Yi. We define frequencies ̸ i as the set {j} such
that j ∈ {1, .., N} \ {i}, i.e., for frequencies other than i. A
linear transformation WA of frequencies Y̸i, that would score

the relative importance of each feature in i, is learned. WA

is a learned weight matrix parameters for feature gating. The
attention weights vector ai is then applied to Y s

i , an element-
wise product of scores and features, to form the attention-
weighted embedding Y s′

i ∈ Rl×1×M :

Y s′

i = ai ∗ Y s
i = σ (WA ∗ [Y̸i]) ∗ Y s

i . (2)

Finally, attention-weighted embeddings are passed through a
fully connected layer of length l2, with ReLU activation,
then combined through a Kronecker product between all
frequency embeddings to capture possible interactions. Each
vector is appended by 1 to capture partial interactions between
frequencies [59]. The final fused embedding is then defined
as:

F =

[
1

Y s′

1

]
⊗

[
1

Y s′

2

]
⊗ . . .⊗

[
1

Y s′

N

]
. (3)

F ∈ Rl′×l′×l′×M , for N = 3 and l′ = l2 + 1, is a N-
dimensional hypercube of all frequency interactions.

B. Joint Multi-frequency Reconstruction and Diagnosis
The task is to recover tissue optical properties and diagnosis

outcome given raw signal data. While a single frequency
model SF-JRD (Fig. 2-A), used as a baseline, relies on a single
frequency measurement to reconstruct spatially distributed
optical coefficients and predict diagnosis, a multi-frequency
model (FuseNet) relies on a joint representation from multi-
ple frequency measurements (Fig. 2-B). The multi-frequency
model, including a network with multiple branches as shown
in (Fig. 2-B), inputs N measurements of the same scanned
tissue at N modulation frequencies. A multi-spectral image
that combines all frequency measurements, using the fusion
branch encoding (Fig. 2-B.2), is reconstructed and passed to
a classification module for diagnosis prediction. Furthermore,
a per-frequency image is reconstructed using each modulated
frequency signal. As depicted in (Fig. 2-B), the FuseNet model
outputs are xi

Rec ∀i ∈ {1, .., N}, xFusion
Rec , and ydiag which

denote the per-frequency reconstructed image (Fig. 2-B.1), the
multi-spectral reconstructed image, and the predicted diagnosis
label (Fig. 2-B.2), respectively.

Using multiple inputs, per frequency network reconstruction
branches (Fig. 2-B) learn independent representations, where
features derived from each input measurement (Yi) are only
useful for the corresponding output xi

Rec. Furthermore, given
the differences in initialization, the branches can converge
to disconnected modes in weight space, thereby behaving
as independently trained neural networks. Empirically, we
observe that they converge to distinct optima. For this multi-
task reconstruction and prediction model, we extend the multi-
task framework [16] and train a model to simultaneously
reconstruct a per-frequency image, localize the lesion, and
predict the diagnosis.

The reconstruction branch (Fig. 2) implements the design
detailed in the multi-task framework [16] with a fully con-
nected layer, 128×128, followed by a convolutional layer and
4 residual attention blocks with 32 channels, filters of size of
3 and ReLU activation, to produce the final reconstruction
image. While the first and last layers are shallow feature
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extractors, the attention blocks extract hierarchical attention-
aware features with modules of the form: two convolutions
followed by squeeze and excite modules. This deep spatial-
wise attention network attends to the most important features
by reweighting features according to their interdependencies
in feature space and filtering noisy ones. In contrast to the
difference approach, which uses a reference measurement
of healthy tissue to compute the contrasted inverse image,
our reconstruction module is designed to learn the mapping
directly, from the measured data to the desired output, without
the need for any prior knowledge or references that can bias
the search space. Furthermore, obtaining such a reference
measurement from a homogeneous background in a clinical
setting, such as a breast cancer screening, is not trivial; hence,
we consider absolute imaging, where the network learns the
inverse mapping between sensor measurements and the image
domain directly.

The prediction branch (Fig. 2) includes 2 convolutional lay-
ers with max pooling and two final classification layers. Raw
data from different frequencies are passed to the reconstruction
branch except for the multi-spectral subnetwork, where raw
data from different frequencies are first fused via the fusion
branch. The fused features are passed to the reconstruction
branch, which outputs a multi-spectral image followed by a
classification layer to output the final classification prediction.
The multi-task loss (LMULTI ) encompasses all three tasks:
reconstruction, lesion localization, and diagnosis as a sum of
losses for each task is defined as follows:

LMULTI = LREC + LDIAG (4)

where LREC and LDIAG denote the reconstruction loss and
the diagnosis losses, respectively.

1) Reconstruction loss: We adopt the reconstruction loss
defined by Ben Yedder et al. [16]. The mean square error
loss LMSE combined with the location loss LLOC guide the
image reconstruction and lesion localization of the network as
per (5). LMSE recovers the pixel-wise representation of the
image.

LREC = LMSE + β LLOC,

LLOC = ||DT (F−1(yi, θ), x)−DT (x)||,
(5)

where DT denotes the distance transform and computes the
Euclidean distance between the image pixel location and the
lesion boundaries, θ denotes the parameters of the multi-task
model, and β ∈ [0, 1] is a hyper-parameter controlling the
contribution of LLOC .

2) Diagnosis loss: The diagnosis loss, LDIAG, is a weighted
sum of the categorical cross entropy loss LCE , and the
orthogonal projection loss LOPL:

LDIAG = LCE + γLOPL, (6)

TABLE III
SUMMARY OF VARIANTS OF OUR METHOD ARCHITECTURES INPUT AND

OUTPUT DETAILS’. N: NUMBER OF MODULATION FREQUENCIES; S:
SOURCES; D: DETECTORS; H: HEIGHT; W: WIDTH.

Input
Output

Direct prediction Joint reconstruction and diagnosis

Single-Freq Y1 ∈ RS×D
ydiag ∈ R

xRec ∈ RW×H

ydiag ∈ R

SF-DP SF-JRD

Multi-Freq Y ∈ RS×D×N
ydiag ∈ R

xi
Rec ∈ RW×H ∀i ∈ {1, .., N}

xFusion
Rec ∈ RW×H

ydiag ∈ R

Raw-to-Task FuseNet

where: LCE = LCE (x, ldiag | Θ)

= −
ndiag∑
j=1

ldiag,j · log
(
ϕ (x | Θ)j

)
,

LOPL = (1− s) + |d|

s =
∑
i,j∈B
yi=yj

⟨fi, fj⟩ , d =
∑
i,k∈B
yi ̸=yk

⟨fi, fk⟩ ,

(7)

ndiag , ldiag denote the number of classes in the diagnosis
prediction tasks and ground truth label, respectively. ϕ(x|Θ)j
denotes the predicted probability for the jth class by the
model parameterized by Θ. γ ∈ [0, 1] is a hyper-parameter
balancing the contribution of the LOPL. |x| is the absolute
value operator, < x, y > the cosine similarity operator applied
on two vectors, and B denotes the mini-batch size.

The orthogonal projection loss LOPL, as defined in [65], is
used to maximize separability between classes by enforcing
class-wise orthogonality in the intermediate feature space and
simultaneously ensuring inter-class orthogonality (d term) and
intra-class clustering ((1-s) term) within a mini-batch.

C. Direct Prediction: Raw to Task Model

The ultimate aim of DOT-based screening is the early iden-
tification and classification of breast cancer lesions. Therefore,
we investigate if focusing exclusively on the end task, at the
cost of omitting the reconstruction of a 2D image, can perform
better or worse compared to classification with the interme-
diate reconstruction. Without the need to reconstruct a 2D
image, the architecture and computational complexity reduce
significantly, leading to a reduction in power consumption and
data computation latency. The classification module is used to
make predictions based on the fused raw data, where combined
features, extracted from different frequencies using the fusion
branch (Section II-A), are passed to a convolutional layer
for the prediction task and a final classification layer with
the associated loss (Fig. 2-dashed lines). The diagnosis loss
function, LDIAG, is used to train the model given the raw
input measurement where:

LCE = LCE ((yi, .., yN ) , ldiag | Θ)

= −
ndiag∑
j=1

ldiag,j · log
(
ϕ (y | Θ)j

)
,

(8)
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TABLE IV
OPTICAL COEFFICIENTS DISTRIBUTIONS ON THE IN SILICO DATASET

FOR WAVELENGTHS IN 690-850 NM SPECTRUM [72]

Healthy tissue Benign Malignant

Absorption
νa(cm−1)

690 0.042 ± 0.013

0.08 ± 0.04

0.110 ± 0.066
750 0.046 ± 0.024 0.100 ± 0.060
800 0.052 ± 0.015 0.118 ± 0.096
850 0.032 ± 0.005 0.124 ± 0.089

Scattering
νs(cm−1)

690 12.9 ± 2.3

19.4 ± 8.4

13.5 ± 4.7
750 8.70 ± 2.2 11.6 ± 3.9
800 10.5 ± 1.2 12.2 ± 1.7
850 8.40 ± 0.4 9.10 ± 1.9

yi denotes the ith measurement of the raw data and ϕ(y(i)|Θ)j
denotes the predicted probability for the jth class given an
input y(i) by the model parameterized by Θ. The orthogonal
projection loss LOPL (7) is used to maximize separability
between classes in the feature space.

FuseNet, Raw-to-Task, SF-JRD and SF-DP models are
trained separately while using the same modules: fusion,
reconstruction, and prediction modules. Table III summarises
different models input and output details.

D. Transfer Learning Network

In medical imaging settings, transfer learning [73] can be
used to bridge the gap between simulated and clinical data
by transferring knowledge learned from simulated data to
improve the performance of models on clinical data [74]. This
is particularly important in medical imaging and relatively new
imaging devices such as DOB probes, where obtaining large
quantities of annotated clinical data can be challenging and
expensive. Similar to Ben Yedder et al. [16], we use transfer
learning to render an in silico trained network applicable to
real world data and reduce the disparities between real-world
acquisition yp and in silico simulated data ys. A multi-layer
perceptron (MLP) network is used to tackle the domain shift
by minimizes the transfer learning loss LTL over Np sets of
real data measurements obtained using a phantom solution and
their corresponding tissue-equivalent simulated data:

θ∗ = argmin
θ

LTL(θ)

where

LTL(θ) =

Np∑
i=1

||ϕ(ypi ; θ)− ysi ||

+ α

Np∑
i=1

D−w+1∑
j=1

||ϕ(yp[j−w j+w]; θ)− ys[j−w j+w]||

(9)

w is the size of the sliding window, D is the number of
detectors, α is a hyper-parameter that is used to control the
contribution of the windowed mean absolute error loss. At
inference time, the final reconstructed and diagnosis results
are computed as:

x̂∗ = F−1(ϕ(yp)). (10)

III. RESULTS

We present results on both in-silico and clinical data. Results
were obtained by training the model on the in-silico data.
A transfer learning network, adapted from [16] and trained
on a phantom dataset, bridges the distributions shift that is
unavoidable when switching between in silico and real world
data. A Gaussian noise was added to the signal, mimicking real
world signal fluctuation, to improve model robustness to sensor
noise and mimic the real-world drift of device characteristics
on different clinics in between calibrations. This noise model
depicts the highly variable noise to each individual detector
as caused by sensor noise and interference of refracting light.
Consistent with previous work [16], [26], [75], we set σ = 10%
of the maximum sensor value. Besides the simulated noise, the
probe accounts for ambient light, the predominant source of
noise, as well by capturing a frame without any active emitters
and then subtracting it from the actual data measurement,
taken during clinical tests, prior feeding it into our model.
Performance evaluation captures image reconstruction quality,
diagnosis accuracy, and speed. The next section provides
details.

A. Experimental Design

1) Dataset: We simulate light propagation into tissue at
different light wavelengths, 690, 750, 800, and 850 nm,
illuminating the tissue sequentially, using the physics-based
Toast++ software [76]. Probe geometry, with two LED sources
and a row of 128 detectors placed in the same straight line, as
illustrated in Fig. 1-B, was configured to reflect real physical
DOT probe geometry [10], used clinically, in terms of the
number and geometry of sources and detectors and the used
frequencies. We collect training samples from synthesized
tissues with known optical properties and labels. Lesions are
modeled as tissue with perturbed optical coefficients embedded
in an otherwise homogeneous diffusive medium. A set of
2D images with various lesion sizes, shapes, and positions
discretized into finite element nodes (triangular meshes) is
synthesized. In order to mimic real breast tissue optical
parameters’, we base the optical properties on realistic optical
coefficient values [14], [72] as summarized in Table IV. A
total of 4000 sample data pairs (256-D × 4 vectors, 2D
image, label) are used to train and test our method. Each
sample includes the collected measurement vectors, one for
each frequency, the ground truth image, and the diagnosis
label. Training dataset size is chosen as a compromise between
training time and in-silico performance. We focused on the
diversity of simulated scenarios while also being mindful
of computational resources. While we note that in silico
and phantom data can result in very large datasets [77], we
focused on the diversity of simulated scenarios and adopted a
dataset with various lesions number, size, and depth to emulate
realistic conditions where the optical properties of the anomaly
and surrounding tissues were taken from available in vivo
breast tissue experimental data.

Our recently developed hand-held breast scanner (DOB-
probe) [10], [78] was used to collect real patient data to
test our method. The probe includes two source LEDs, with
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TABLE V
SUMMARY OF CLINICAL DATA

Tumor Position Tumor size (cm) Tumor Type

Patient 1 Left Breast 1× 0.8× 0.7 BI-RADS 7
2.5× 0.8× 0.8

Right Breast 1.1× 0.8× 0.7 Benign
Patient 2 Left Breast 2.2× 1.7× 1.7 BI-RADS 4
Patient 3 Left Breast 1× 1× 1 Non-invasive ductal
Patient 4 Left Breast 2.5× 1.7× 3.5 BI-RADS 5
Patient 5 Right Breast 2.4 BI-RADS 4
Patient 6 Right Breast 2.3× 2.2× 1.5 BI-RADS 4
Patient 7 Left Breast 1.7× 1.4× 1.2 BI-RADS 5
Patient 8 Left Breast 1.6× 0.8× 0.8 BI-RADS 5
Patient 9 Right Breast 2.2× 2.1× 2.3 Invasive ductal

wavelengths of 690, 750, 800, and 850 nm illuminating the
tissue consecutively and a row of 128 co-linear detectors. Note
that the frequencies share variable overlap in the spectrum
[14], motivating further the need for orthogonal encoding. To
train the transfer learning module breast-mimetic phantoms,
with known inhomogeneity locations, and DOB-probe were
used to collect measurements [16].

Following the ethics and institutional review board approval
protocol, clinical data were collected from 9 participants
diagnosed with breast tumors [79]. In a normal clinical pre-
screening exam, a breast is usually divided into four quadrants,
and different measurements are collected on each quadrant.
Given that the used probe is in clinical trials [10], [16],
[39], patients with known cancer localization are considered,
and sweeps over the lesion location and the opposite healthy
breast are collected. This step was essential to proving that
the technology we introduced works well with human tissue.
For each patient, height, weight, age, and gender, as well
as details of the subjects’ breast cancer, briefly summarized
in Table V, were recorded. Patients were placed in a supine
position, and scans at multiple points over the lesion location
and healthy breast were collected. On average, four differ-
ent measurements (scans) were taken on each breast. Even
though no reconstruction ground truth is available for real-
world data, it is invaluable to detect robustness and real-world
performance, with partial ground truth known from other
modalities on the same patients. The precise location, size, and
type of the tumor lesion were determined via mammography,
ultrasound, or biopsy. Note that these details were only used
for model performance evaluation and metrics calculation,
while raw sensor signal only was inputted to the model.
Another advantage of our direct prediction approach is that
the absence of pixel-wise ground truth is less problematic
compared to reconstruction based classification, as only the
diagnosis label is required.

2) Implementation: Models were implemented in the Keras
TensorFlow framework and trained for 100 epochs on an
NVIDIA Titan X GPU. By optimizing the model’s perfor-
mance on the validation set, we set all hyper-parameters as
follows: batch size to 16, learning rate to 10−4, optimizer set to
Adam, and initialization to Xavier. Early stopping was used if
the validation loss had not improved within 10 epochs. The in
silico data was divided in a 80/10/10% training/validation/test
split, and hyper-parameters β (5), α and D (9), and γ (6) were
set to 0.2, 0.5, 4 and 0.5, respectively. The fully connected

Ground Truth R1 R2 R3 R4 RFusion

a

b

c

d

e

Fig. 3. Qualitative reconstruction performance of absorption coeffi-
cients using the FuseNet++ on in silico samples with varying ground
truth lesion sizes, locations, and numbers. Our multi-spectral results
(RFusion) show an overall superiority in terms of generally improved
background/foreground contrast and a better differentiation between
lesion sizes and lesion localization compared to per-frequency recon-
struction results (R1 to R4) at wavelengths 690, 750, 800, and 850
nm, respectively.

units for the fusion branch were set to 32 and 16 for l and l2,
respectively.

3) Evaluation metrics: To quantify the models’ robustness,
we look at (i) lesion localization error (Loc. Error); (ii) peak
signal-to-noise ratio (PSNR); (iii) structural similarity index
(SSIM); and (iv) Fuzzy Jaccard for reconstruction quantifi-
cation, while the balanced accuracy (BA), F1 score (F1),
precision P, recall R, Matthews correlation coefficient (MCC),
and confusion matrix are reported for the classification task
quantification.

BA =
1

2
(

TP

TP + FN
+

TN

TN + FP
)

P =
TP

(TP + FP )
,

R =
TP

(TP + FN)
,

F1 = 2
P ∗R
P +R

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(11)

True positive (TP) is the number of correctly predicted
samples as positive, while false positive (FP) is the number of
wrongly predicted samples as positive. False negative (FN)
is the number of wrongly predicted samples as negative,
while true negative (TN) is the number of correctly predicted
negative class samples over the number of classes in the
prediction tasks. Recall quantifies the number of positive class
samples properly identified by the model, while precision
measures the number of correct positive predictions made
by the model. BA, used when quantifying performance on
imbalanced data, measures the average accuracy obtained
from all classes. MCC measures the quality of multi-class
classifications and is informative in cases of skewed class
distributions.

For the computational cost at inference, we quantify the
forward pass of the model, measured in ms per example.
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 Matthews Correlation CoefficientsPrecision Recall F1 Score Balanced Accuracy 

Multi-Frequency

FuseNetSingle Freq FuseNet++ Raw-to-TaskConcat-All Raw-to-Task++

Fig. 4. Quantitative diagnosis performance of different models when one vs multi-frequency are used. Overall results show improved prediction
performances in multi-frequency models. Note the significant improvement when FuseNet is used compared to a simple concatenation (Concat-All).
Results using the FuseNet++ enforce the benefit of feature space orthogonality. Raw-to-task++, in which all network capacity is dedicated to the
end task, shows an overall performance gain.

TABLE VI
QUANTITATIVE RESULTS ON IN SILICO TEST DATASET.LOSSES ARE DEFINED IN SECTION 2-B; LOC.ERROR: LESION LOCALIZATION ERROR; PSNR:
PEAK SIGNAL-TO-NOISE RATIO; SSIM:STRUCTURAL SIMILARITY INDEX; BA: BALANCED ACCURACY; F1: F1 SCORE. †: VALUE NOT SUPPORTED BY

METHOD, ‡: IMAGE RECONSTRUCTION SKIPPED.

Loss Loc. Error
(pixel, ↑)

PSNR
(dB, ↑)

SSIM
(↑)

Fuzzy Jaccard
(↑)

Runtime
(ms, ↓)

BA
↑

F1
↑LREC LCE LOPL

Single-Freq ✓ ✓ † 17.7 ± 21.9 19.1 ± 4.8 0.80 ± 0.05 0.60 ± 0.17 23 0.65 0.65
Concat-All ✓ ✓ † 20.4 ± 18.4 19.6 ± 6.2 0.73 ± 0.17 0.61 ± 0.18 28 0.63 0.65
FuseNet ✓ ✓ - 17.6 ± 23.3 20.2 ± 4.1 0.88 ± 0.05 0.62 ± 0.19 31 0.72 0.72
FuseNet++ ✓ ✓ ✓ 15.7 ± 12.7 21.2 ± 4.4 0.89 ± 0.03 0.64 ± 0.18 32 0.74 0.74
Raw-to-Task † ✓ - ‡ 15 0.74 0.72
Raw-to-Task++ † ✓ ✓ ‡ 15 0.77 0.75

To evaluate the performance of our models, we contrast the
results when using one frequency with many frequencies in
the FuseNet and the Raw-to-task model. We present results
on in-silico data and clinical data.

B. Results on Synthetic Data
Trained on the in silico data and tested on a separate test set

of 240 images, we compare the reconstruction and prediction
performance of our FuseNet and the prediction performance
with the Raw-to-Task counterpart.

1) Joint reconstruction and diagnosis: Figure 3, illustrates
reconstruction results on selected in silico samples with dif-
ferent lesion sizes, numbers, locations, and depths. In order to
offer clinicians more details, results based on each frequency
separately (Ri) as well as results that use all frequencies
are shown, with the latter showing more consistent perfor-
mance. The joint model successfully exploits the presence of
the different frequencies and generally shows an improved
background/foreground contrast. For example, the difference
in signature for 3 small but proximate lesions is marked in
different frequency results (R1 to R4) (row c), while a more
accurately reconstructed sphere size is provided by the fusion
result RFusion in row (d). Detecting heterogeneity in lesions is
critical for correct treatment estimation given that it is a proxy
indicator of evolutionary pressure in the lesion, selecting for
more resistant cancer sub-populations. Table VI presents the
quantitative results of the ablation study, where the contribu-
tion of different losses and modular choices of the architecture
to model performance are quantified. Rows 1 to 4 highlight the
benefit of using multi-frequency fusion on the reconstruction
task. A naive multiple frequencies concatenation will not
necessarily improve results, which agrees with the findings
reported by Applegate et al. [46], illustrating the impact of
adding noisy dimensions on performances. Nonetheless, we
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Fig. 5. Diagnosis prediction confusion matrices when (A) one vs (B)
multi-frequency inputs are used. Note the improvement in accuracy of
unbiased lesion classification (benign, malign) vs healthy when multiple
frequencies are used, as illustrated by the higher values along the
diagonal. Results of FuseNet++ highlight the benefit of encouraging or-
thogonality in enhancing benign vs malignant separability while reducing
healthy false negative. Raw-to-task++ further improves separability at
the expense of minimal false negative (2%).

see improved results for FuseNet. When fusion branch and
LOPL are used jointly (FuseNet++), the features contribution
from each frequency is maximized in contrast to simple
features concatenation (Concat-All) at the price of a minimal
computational increase (only 9%).

Prediction performance highlighted in Table VI and Fig. 4
show an overall improvement when more input frequencies
are available, with a boost in performance when FuseNet and
FuseNet++ are used. Confusion matrices (Fig. 5-A,B) show
a clear discrimination between healthy and lesion features
when more data, in the form of more frequencies, is available.
Further, improved benign and malignant discrimination is
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 Matthews Correlation Coefficients Balanced Accuracy Precision Recall F1 Score 

Single Freq FuseNet++ Raw-to-Task++

Multi-Frequency

Fig. 6. Quantitative diagnosis performance when one vs multi-frequency are used on clinical dataset. Overall results show improved prediction
performances in multi-frequency models compared to single frequency and indicate that image reconstruction is not necessary for unbiased
classification and can even lead to biased results. Note the marked improvement when Raw-to-task++ is used compared to FuseNet++.

observed when feature orthogonality is leveraged (Fig. 5-B)
as well as a reduction in healthy false negative.

2) Direct prediction: In Figure 5, similarly to the joint
model, the direct prediction model results using a single
frequency input (SF-DP) (Fig. 5-A) are contrasted with raw-
to-task prediction results using multiple frequencies as input
(Fig. 5-B). A clear discrimination between features is ap-
parent when more data, in the form of multiple frequencies,
is available, especially when discriminating between healthy
and lesion; the primary application in DOT-based screening
deployments. Raw-to-task model significantly reduces com-
putational complexity (Table VI-Runtime), enabling lower
latency and higher throughput in real medical settings. Next,
we tested the contribution of individual loss function terms
and architecture component on overall diagnosis performance.
Figure 4 shows the diagnosis performance on the test set for
the best value of γ and highlights the benefits of the feature
orthogonality constraint in breast cancer diagnosis, where
tumoral and non-tumoral breast lesion differentiation is chal-
lenging. Contrasting FuseNet++ and Raw-to-task++ (Fig. 4-
5) illustrates performance gain when all network capacity is
dedicated to the end task rather than intermediate ones.

C. Results on Clinical Data

Figure 7 presents the reconstruction performance on breast
scans from patients diagnosed with breast tumors. The probe
is placed close to the likely location of each identified lesion,
and a set of scans are made. The opposite healthy breast,
for each patient, is scanned as a contrastive reference. Weak
labels were attributed to each set of scans regardless of the
probe’s closeness to the tumor localization. As a partial ground
truth, patients underwent mammography and/or Ultrasound
scans to obtain estimated lesion dimensions and biopsies to
confirm tumor type. While lesions are accurately reconstructed
in most cases, as shown in Fig. 7, with clear foreground and
background discrimination in RFusion as well as R1 to R4,
healthy cases, capturing only background readings, highlight
a better robustness of orthogonal fusion, RFusion, to noise.

Figure 6 reports quantitative prediction performance on
single vs. multi-frequency data and highlights the overall
improved performance when more frequencies are used. Note
the biased classification results when image reconstruction
supervises the prediction task, FuseNet++, compared to direct
prediction from raw data, Raw-to-task++.
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Fig. 7. Qualitative reconstruction results in clinical patients with benign
and malignant tumors. Approximate lesion sizes and locations were
obtained with joint modalities (details in Table V). Note, in (A), the ability
of FuseNet++ to reconstruct lesions, while, in (B-F), the robustness of
orthogonal fusion to noise (RFusion) compared to (R1 to R4) (healthy
row) is highlighted.
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TABLE VII
QUANTITATIVE RESULTS ON CLINICAL DATASET USING RAW-TO-TASK++

Precision Recall F1-score Number of scans
Healthy 0.71 0.65 0.68 32
Benign 0.11 0.5 0.18 2

Malignant 0.78 0.68 0.73 44
Weighted-Avg 0.73 0.66 0.69 78
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Fig. 8. Clinical data diagnosis prediction confusion matrices when (A)
one vs (B) multi-frequency inputs are used. Note the improvement in
accuracy of lesion classification in the Raw-to-Task model, despite the
imbalance in the data.

The confusion matrix, Fig. 8, shows improved discrimina-
tion between healthy and lesion features with the raw-to-task
model. If we consider that a key feature of the reconstruction
based classification is the interpretable angle of such results,
we note that the raw-to-task model has the added advantage,
in addition to improved performances, that it omits potentially
confounding explanations, where reconstruction artifacts can
mislead experts. Indeed, in recent work on explainable artifi-
cial intelligence, such confounding explainers were identified
as a roadblock [80]. Table VII reports raw-to-task model
diagnosis performances on each data class to highlight the
clinical data imbalance compared to a balanced training data
scheme.

In Figure 9, we illustrate some failure cases at the limit of
detection capability, with false positives (Fig. 9-A,B, marked
with red triangles) and false negatives (Fig. 9-C). For screening
purposes, false negatives are more critical; false positives
would eventually be resolved by follow-up diagnosis. Note that
the discriminatory power of the detection is limited by tumor
depth, shape, and noise level. It may require several scans over
breast tissue in order to be captured. The failure cases here
are from a single scan measurement only, not aggregated

Although the transfer learning network, trained using phan-
tom data, bridges to some extent the disparity between in silico
(training) data and real-world data, its performance on clinical
data reveals that it can still be misled by significant real-world
variations, such as differences in illumination and noise levels.
Additionally, since each tumor is unique, tumor heterogeneity
can result in distinct acquisition signatures that may not be
present in the training data. These failure cases highlight the
need for more clinical data (patient data) to better train the
transfer learning module. Current results present a proof of
concept, where validation on larger and more diverse datasets
is still required.

D. Effect of Lesion Localization on Accuracy
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Fig. 9. Examples of reconstruction failure cases. (A,B) highlight false
positive reconstruction cases, marked with red triangles, that remain
less critical than false negative cases where a tumor is missed (C). Note
the noisy reconstruction in R1 to R4, suggesting a quite noisy input
signal.
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Fig. 10. Effect of lesion depth and radius on model prediction accuracy.
Note how the more superficial (closer to the skin surface) and larger
lesions are more accurately detected.

We quantify the effect of lesion location on lesion detection
accuracy in Figure 10, where we classify whether a lesion
is present or not. The penetration depth into breast tissue
is approximately half the distance between the source and
detectors [18], ∼2.5 cm for our DOT probe. Our results
confirm the expected reduction in lesion detection accuracy
as the lesions decrease in size or increase in depth.

IV. DISCUSSION

In order to be an effective tool in clinical settings, a
clinician’s trust is essential. A combination of good per-
formance, as quantified by accuracy and other metrics, and
an interpretable model increases trust. Neither deep learning
based reconstruction nor classical iterative algorithms provide
a path from pixel to sensor value in a way that a clinician
can easily understand. While a reconstructed image may seem
to increase interpretability, it is typically not created in an
interpretable way and is not necessarily causally related to
the classification decision. Omitting the reconstructed image,
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while increasing performance, would not therefore reduce the
trust a clinician has in our direct to task contribution.

Cancer treatment regimens, especially for treatment-
resistant lesions, are shifting towards adaptive or dynamic
treatment models, such as the recent game theory-driven
treatment of resistant prostate tumor patients [81]. However,
these require accurate, unbiased, and specialized task-specific
models. Our raw-to-task approach can be extended to develop
models specializing in multiple tasks, not just diagnostics.
Examples are prediction of lesion type, progression, local-
ization, and tumor heterogeneity, all the way to successful
treatment regimens ahead of time, paving the way for adaptive
personalized medicine and disease management [71].

A key focus of this work was to leverage orthogonality
in mitigating confounding factors induced by multi-frequency
fusion. However, as noted as early as 1936 by Fisher et al.
[82], orthogonal representations need not be informative, and
thus, in a deep learning setting can also lead to orthogonal
or independent encodings that are less or uninformative, as
we encountered in our own experiments. The heterogeneity
of lesions, especially malignant ones, ensures that no two
malignant lesions will likely be the same, thus driving the
need for diagnostic capability that focuses on identifying the
diverse lesion types, not necessarily the reconstructed image.

V. CONCLUSION

We introduce deep learning based multi-frequency orthogo-
nal fusion for diffuse optical tomography with end-to-end clas-
sification of malignancy of breast lesions. Orthogonal fusion of
multi-frequency improved both image reconstruction quality
and accuracy of tumoral and non-tumoral breast lesions’
discrimination. In addition, we show that raw-to-task learning
can improve classification without requiring reconstruction in
a real time setting.
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