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Abstract—Boids (bird-oids) is a widely used model to mimic
the behaviour of birds. Shoids (sheep-oids) rely on the same
boids rules with the addition of a repulsive force away from a
sheepdog (a herding agent). Previous work assumed homogeneous
shoids. Real-world observations of sheep show non-homogeneous
responses to the presence of a herding agent. We present a
portfolio of information-theoretic and spatial indicators to track
the footprints of shoids with different parameters within the
shoid flock. The portfolio is named the Centre of Influence to
indicate that the aim is to identify the influential shoids with
the highest impact on flock dynamics. We use both synthetic
simulation-driven data and measurements collected from live
sheep herding trials by an unmanned aerial vehicle (UAV) to
validate the proposed measures. The resultant measures will
allow us in our future research to design more efficient control
strategies for the UAV, by polarising the attention of the machine
learning algorithm on those shoids with influence footprints, to
drive the flock to improve the herding of sheep.

Index Terms—Centre of Influence, Predation Risk, Situation
Awareness, Swarm Shepherding, Transfer Entropy, Unmanned
Aerial Vehicles

I. INTRODUCTION

The swarm shepherding problem has been researched in
various contexts by many authors [1]. The problem has seen
extensive use in different domains of applications including
biological immune systems [2], horse harem groups [3],
birds [4], and sheep [5], as well as ground [6] and aerial
robotics [7], [8].

The prominent and most successful solution algorithms are
biologically inspired ones. For example, Strömbom et al. [9]
designed an algorithm that switches between two behaviours
to herd the shoids successfully; collecting, and driving. A
collecting behaviour occurs where the sheepdog positions itself
behind the furthest sheep from the flock while facing the
flock’s Global Centre of Mass (GCM), defined as the Centre
of Mass (CoM) of the flock [9]. A driving behaviour occurs
where the sheepdog positions itself behind the flock while
aligning its position on a ray emitting from its location towards
the goal and passing through the flock’s GCM. The resultant
behaviour in a simulation environment was consistent with the
behaviours observed in the real environment, where sheepdogs

herd sheep. Other push (repulsion) and pull (attraction), and
influence-driven algorithms exist in the literature [10], [11].

The premise of the two behaviours adopted by Strömbom
et al. are to maintain the sheep collected, even while driving
the sheep towards the goal; hence, the GCM concept is vital.
Strömbom et al. validated their model by contrasting the
behaviours generated from the simulation against real data
collected from Australian farms. However, the model assumed
that the sheep are homogeneous point masses modelled using
boids rules [12], as did Vaughan et al. [13] when modelling
ducks.

We conducted over 50 field trials to herd a flock of Dorper
sheep, Ovis Aries [14], using a UAV. In contrast to models
such as those introduced by Strömbom et al., who assume that
sheep are homogeneous, our field observations identified that
the flock of sheep is far from being a homogeneous flock. In
particular, we observed the existence of an influencing sheep
that displays behavioural characteristics different from the rest
of the flock.

The identification of the influencing sheep could improve
the efficiency of the herding agent in collecting the sheep
by aiming to herd the influencers with the remaining sheep
expected to follow. This shifts the focus of the herding agent
from the flock’s CoM to what we call in this paper, the Centre
of Influence (CoI). We demonstrate the potential of a CoI to
offer a better rationale and a deeper understanding of the likely
connectivity between the agents in the swarm. We hypothesise
that the Centre of Influence within the swarm is where a
shepherding agent should focus their influence in order to
control a swarm, towards a goal optimally. By influencing the
leaders in the herd, the herding agent could spend less time
assigning its energy to tasks related to other sheep.

In the remainder of the paper, we begin by summaris-
ing relevant models of swarm shepherding, and how our
proposed CoI concept differs from such models. We then
present proposed new measures, experimental design, and
results from applying these measures to a simulated swarm
influence model. We conclude by detailing our future research
work to use information from the CoI to control a swarm more
efficiently.978-1-7281-2547-3/20/$31.00 ©2020 IEEE
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II. MODELS OF SWARM SHEPHERDING

Strömbom et al. successfully demonstrate a generic two-
rule switching algorithm that solves the single sheepdog
shepherding problem [9] using the predator-prey relationship.
Their model is based on empirical GPS data of an Australian
sheepdog collecting and herding a flock of Merino sheep (Ovis
aries). In this model, the underpinning sheep behaviours are
based on the classic boids parameters of separation, cohesion,
and alignment [12]. This models the sheepdog through two
simple behaviours: collecting and driving. Strömbom et al.
considered that the sheepdog sees white fluffy things in front
of it and determines whether there are gaps between them. The
sheepdog then determines whether these gaps are too large or
increasing in size and reacts to promote a cohesive flock.

Similar to the reliance of the boids model on vector analysis,
Strömbom et al. use force vectors to represent the interaction
between the point masses representing the sheep and sheepdog.
Initially, there are N shoids (which we designate as M1 shoids)
randomly positioned within the bounds of the paddock. When
the herding agent is released in the paddock, each shoid
aims to remain close to its nearest neighbours (Ωππ) while
maintaining a safe distance, Rπβ , from the herding agent. If
a shoid maintains a safe distance from the herding agent, it
continues its randomised flocking behaviour. Shoid collisions
are avoided by an inter-shoid repulsion force where the dis-
tance between shoids reduces below the repulsion distance
threshold. Once the herding agent encroaches on a shoid’s
safe distance, a predation response is enabled. The shoid is
subsequently attracted to the Local Centre of Mass (LCM)
of its Ωππ nearest neighbours, while also being repelled in
the opposite direction to the herding agent. To better replicate
natural behaviour, Strömbom et al. use weighting factors for
each force, and stochastic effects by way of a weak inertia
force and a small noise factor. The resultant linear combination
of these weighted vectors, weak inertia, and noise, is the
shoid’s next position.

The herding agent’s task is to collect all shoids present in
the environment and drive the flock to a target location. To
achieve this, we implement the herding agent per Strömbom
et. al’s previously discussed biologically inspired switching
algorithm. The herding agent behaves in one of two ways, B1

and B2, which are dictated by the position of the shoids
B1: If all shoids are within a distance f(N) of the flock’s

GCM, the herding agent aims to position itself directly
behind the flock’s GCM in relation to the target region,
known as the driving position.

B2: If at least one shoid is further than f(N) from the
flock’s GCM, a separated shoid, the herding agent aims
to position itself directly behind the separated shoid in
relation to the flock’s GCM, known as the collecting
position.

Additionally, if the herding agent assesses that it is too close
to any of the shoids, it remains stationary for a period. This
is due to an observation made during Strömbom et al.’s study
that showed sheepdogs rarely approach flocks at close range

as it caused the flock to disperse rapidly (i.e. induces a high
predation response).

The previous swarm control models share a common under-
lying fundamental assumption that the herding agent (be it a
leader or a shepherd) calculates and determines its behaviour
purely based on environmental spatial features. While valid
for specific sizes of swarms [13], it is not always practical
to calculate the required measures in applied settings due to
sensor noise, missing or incomplete data feeds, or insufficient
sensor fidelity or placement. Traditional measures also do not
consider the natural swarm environmental, social or leader
and follower hierarchies observed in our field trials, which
significantly contribute to how the swarm reacts in different
situations or to different external stimuli. We hypothesise they
are not optimal to be the sole determinants of swarm control.

We have previously conducted field experiments on herds
of six sheep [14], where we introduced a UAV as the herding
agent, known as Sky Shepherd, to measure the response of the
sheep. During the conduct of Sky Shepherd factor screening
tests, the response of sheep was measured in terms of the sheep
heart rate and distance from the Sky Shepherd. It was found
sheep would permit the Sky Shepherd to drive at a closer range
than a predator agent such as a sheepdog, with consistently
lower heart rate than sheepdog or motorbike interactions.
Predation risk occurs when a prey animal perceives a herding
agent as a source of risk, in turn responding with behaviours
(predation response) that promote self-preservation. In prey
animals such as sheep, the collective predation response results
in flocking behaviours, with the selfish herd behaviour widely
accepted as the primary motive of prey response [15].

During flocking, some sheep exhibit centre-seeking be-
haviour [16], while other sheep will seek to lead the flock
to safety [17]. Such leader-sheep display curiosity towards
the herding agent, with a successful sheepdog, for example,
using the greater jostling when driving the sheep towards the
goal [18]. Different influencing behaviours were observed in
the Sky Shepherd screening tests, which have been estimated
with an initial variation of shoid parameters in our model. We
iteratively vary these parameterisations in our heterogeneous
agent simulation model. This assists in identifying influence
measures to support herding algorithms.

III. LEADERSHIP IDENTIFICATION AND MEASURES OF
INFLUENCE

We hypothesise that influencers will exhibit behavioural
signatures that we may infer from their spatio-temporal in-
formation signatures; what we term as ’footprints’ for ease
of understanding that we mean ’where something is and
where has it been’. We don’t intend to make this investigation
an inquiry into the internal logic of influence, but as an
exploratory study to identify if the position information of a
heterogenous shoid swarm could carry information to identify
footprints in a swarm. In practice, an observer only has
access to the position of a swarm agent, without access to
either the internal parameters or behavioural logic of the



agent. Therefore, our measures are derived from time-space-
position information (TSPI). These measures seek to identify
the presence of heterogeneous behaviours, forming the basis
for a herding agent to identify areas where they may apply
force to achieve the goal.

An influence is the set of information that causes an effect
in the internal states, attitude or behaviour of a biological or
artificial cognitive agent. For example, a sheepdog influences
sheep due to the evolved sense of fear induced by the presence
of the sheepdog within the sensor range of sheep. The CoI is
inspired by the CoM presented in Strömbom et al.’s seminal
work [9]. We define the CoI as the location of agents that if
targeted to be influenced, the cascading of the influence on
other agents will be maximum. Thus, CoI refers to an area or
shoid that the herding agent could exert maximum influence
on the flock with the least energy, at a point in time.

We derive our CoI portfolio of measures from the TSPI of
the shoid and herding agents. The CoI consists of synchronic-
ity (S), predation risk (PR), and situation awareness (SA).
The reliance on spatial and information-theoretic measures to
interpret swarm systems is an established area of research
to infer higher-level behaviours and interactions within the
swarm, with various examples in the literature [3], [19]–
[22]. Our three indicators of synchronicity, predation risk, and
situation awareness, have well-established foundations in the
literature.

A. Synchronicity

We define Synchronicity as the alignment in time and
space of action resulting from a significant influence. This
definition is based on the work of Pikovsky et al. [23].
Our candidate measure for synchronicity is based on the
information-theoretic measure of transfer entropy, which has
been widely studied to understand the flow of information
between agents within complex adaptive systems, such as
swarms [20], [22], [24]. Transfer entropy is a non-parametric
approach that provides a measure of the asymmetric, directed
transfer of information between two stochastic processes [25].
Schreiber [26] first defined the transfer entropy as
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∑
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where TJ→I is a measure of information flow from agent J to
I , where p(·) and p(·|·) are the probabilities of historic states,
k is the history length, and l is the lag. The essence of what
transfer entropy is capturing here is the changing potential,
which could be seen as the surprise of an outcome; we
interpret this in our application as the change in the potential
for divergence from current behaviour.

We select transfer entropy over other approaches due to
the intuitiveness of its interpretation, and the well-established
foundation of research use [20], [22], [24], [27], [28]. Our
specific transfer entropy calculation methodology is based

on local transfer entropy [29] and implemented per [24],
demonstrating the reconstruction of local information flows
over time.

The local transfer entropy is a measure which characterises
the spatial information transfer at each temporal point within
a system. This provides insight to the dynamics of a system
through time, a level of granularity that may otherwise be
difficult to obtain [29], and which can be readily computed
and thus potentially timely in the decision-making of shep-
herding tasks. Local transfer entropy has been used to classify
swarming behaviours [24], as well as the role of influencers
within swarms [30]. The local transfer entropy is defined as

teJ→I = t(i, j, n+ 1, l) = lim
k→∞

log
p(xi,n+1|x(k)

i,n , x
(l)
i−j,n)
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i,n)

.

(2)
We assume our analysis is of a first-order Markov process and
therefore set the embedding dimension (k), embedding delay
(τ ) and lag (l) equal, such that k = τ = l = 1 [25], [29].
Under this first degree Markovian assumption, we implement
Equation 2 per [24] as

teJ→I = t(i, j, n) = log
p(xi,n|xi,n−1, xi−j,n−1)

p(xi,n|xi,n−1)
. (3)

Our evaluation quantities of interest are based on the local
transfer entropy, per Equation 3. We identify two summary
measures being the Net Transfer Entropy (NetTE) and the
Total Transfer Entropy (TotTE), defined in [22]. We define
NetTE here as

T net
J→I = NetTEJ→I = teJ→I − teI→J . (4)

The NetTE has been used in previous studies to inform about
the dynamics of a swarm, such as [22], [31], [32]. If non-
zero, the NetTE provides insight as to the asymmetry for a
pairwise interaction. In Equation 4, if the result is positive
then we can infer that J is informative, or influences, I . If the
result is negative, then we can infer that J is misinformative,
or is influenced by, I . For cases where the result is zero, we
may infer either that there is no coupling between J and I ,
or that the interaction is symmetric. Within this paper, we use
the NetTE measure to quantify the symmetry, or asymmetry,
of pairwise interactions.

We define TotTE here as

T tot
J→I = TotTEJ→I = teJ→I + teI→J . (5)

The TotTE measures the magnitude of total influence for a
pairwise interaction. This differs to the NetTE as it does not
consider directionality, providing no information as to the level
of symmetry or asymmetry. Equation 5 captures the size of a
pairwise interaction, without attribution for “how much” J or
I contribute. Within this paper, we use the TotTE measure to
quantify the intensity of pairwise interactions.

We combine Equation 4 and Equation 5 as our summary
measure for synchronicity, defined as

StJ→I = sgn
(
T net
J→I

)
∗ |T tot

J→I |. (6)



where sgn(.) returns the direction of the interaction from the
NetTEJ→I quantity. We characterise three key cases from the
perspective of the source agent (J) to the target agent (I),
being:
C1: SJ→I > 0. J is informative, or influences, I . This case

represents the synchronous leadership of J towards I .
C2: SJ→I < 0. J is misinformative, or is influenced by, I .

This case represents the synchronous followership of J
towards I .

C3: SJ→I = 0. J does not inform, or does not influence, I .
This case represents asynchronicity.

For the cases when SJ→I >> 0 or SJ→I << 0, we assert
that this indicates the intensity of the relationship between J
and I .

We are able to measure synchronicity between any two
agents in the system, be it herding agent-to-shoid (β → πi),
shoid-to-shoid (πi → πj), or GCM-to-shoid (ΓΠ → πi). To
explore intra-swarm dynamics, we consider the GCM as an
information source within our analysis. We implement the
GCM as the uniformly-weighted, average position at each
time period for all shoids (Π = {π1 . . . πN}), given as
ΓΠ = 1

|Π|
∑Π
i Pπi . Similar to Strömbom et al., we assume

shoids have an attraction to the GCM, affording an informative
perspective to understand the dynamics of swarm collective
behaviour.

B. Predation risk

We define Predation Risk (PR), based on the work of Lima
and Dill [33], as the likelihood of an agent encountering
a predator and the potential to safety, should this predator
(perceived or real) attack the same agent. We state that a
shoid exhibiting leader-like behaviours will attempt to assess
herding agent actions, therefore increasing its predation risk,
relative to its ideal position in the flock. As detailed by
Morrell et al. [34], shoids are more successful at preventing
attack by flocking to close neighbours first and joining the
main flock as the attack continues. This strategy has been
successful in simulation and associated with vervet monkey’s
(Cercopithecus aethiops) predation response to evade leopards
(Panthera pardus), and guppy fish (Poecilia reticulata) strategy
to evade diverse predatory types. Figure 1 depicts such a
situation where the herding agent seeks to shepherd the shoids
towards a defined goal location.

The bin-order (Ob) characterises the relative position and
configuration of the swarm agent to that of the shepherd. We
calculate the number of bins (B) as the ceiling-integer for the
square root value of the number of sheep in the flock, such that
B = d

√
Ne, where N is the ceiling cardinality of Π. Bins are

uniformly distributed from the closest agent to the shepherd
to the furthest, assigning a bin-order number from 1 (closest)
to B (furthest), as depicted in Figure 1. Our model assumes
that the position O1 has the highest PR, and the position OΓΠ

has the lowest PR.
While a herding agent exhibiting behaviour B1 or B2

may not exhibit a predatory attack behaviour, the flocking to
nearest neighbours first supports the flock in responding to the

Fig. 1: Agent-based herding model based on [9], with modified
shoid agents.

perceived predation risk of the herding agent. We suggest that
during the shepherding task, a shoid seeking to gain awareness
over promoting survival will seek a position in a region closest
to the shepherd (O1). In contrast, other shoids will seek a
position nearer to the GCM of the flock (OΓΠ

). Given the
predation response to seek nearest neighbours, if a shoid is
in the region O1, the highest PR will occur when there are
no neighbours (Ωππ = 0), while lowest PR will occur when
a shoid is in the GCM of the flock, with maximum nearest
neighbours (Ωππ = N − 1). We calculate PR as

PRtπi =
1

Ob
∗ N

Ωππ + 1
. (7)

Therefore, the shoid πi at time t, within region O1, with no
neighbours (Ωππ = 0), and within the interaction radius (Rππ)
will have a higher PR than the shoid πj at time t, within region
Ob, when b > 1 and/or Ωππ > 0.

C. Situation awareness

Situation awareness (SA) is a well-defined concept in many
domains, modelled here as a combination of both information-
theoretic and spatial measures. We use the definition of
Endsley [35] and define Situation Awareness as the percep-
tion of the elements in the environment within a volume
of time and space (level 1 SA), the comprehension of their
meaning (level 2 SA), and the projection of their status soon
(level 3 SA) [35]. Within this model, we simulate an agent
who positions itself to promote its ability to project (reach
higher SA).

We hypothesise that a natural tension exists between the PR
and SA of a shoid, which manifests with candidate influencers
trading-off between high SA and low PR. In our model, SA
is maximised when there exists an unobstructed line-of-sight
between a shoid and the herding agent and is minimum at the
furthest point of the convex hull from the herding agent with
the greatest number of line-of-sight obstructions. We calculate
the SA through the spatial measures of distance to the herding
agent, distance to the GCM (ΓΠ) and the number of shoids



impeding the line-of-sight for each shoid and the herding
agent. We denote the number of line-of-sight impediments as
Θ, and distance as d from πi → β ∀ πi ∈ Π. We calculate
the SA as:

SAtπi =
1

d2
πi→β

dπi→ΓΠ
∗ dΠ→β

∗Θ + 1
. (8)

We hypothesise this combination of measures will detect
an influencer shoid’s attempt to obtain greater SA. By placing
itself in a position close the convex hull boundary of the
swarm, and therefore closer to the herding agent, it is likely to
distance itself further from the GCM to perceive the elements
in its environment (level 1 SA). The general location of this
position exposes the shoid to the herding agent, and therefore
allows it to obtain a higher level of information on the status of
the current situation. It thereby allows the influencer to fully
comprehend the situation (level 2 SA) before attempting to
predict the future state (level 3 SA) of the herding agent.

IV. EXPERIMENTAL DESIGN AND ANALYSIS

A. Experimental Design

In this study, we seek to understand how our candi-
date measures of synchronicity, predation risk and situation
awareness detect aggregate flock behaviours and describe
the dynamics and associated influence of a homogeneous or
heterogeneous simulated herd. This is modelled through the
use of two distinct behaviours described in Table I, being a
classic shoid (M1) [9] and a parameterised shoid (M2). To
represent divergent behaviours, we have applied the weightings
displayed in Table I. We assume that the shepherd knows the
positions of every agent within the environment and the goal
location. Whereas, the shoids are unaware of agents outside
their sensing zone, and is unaware of the goal location. The
simulation experiment is void of sensor and actuator noise;
we acknowledge these are essential factors to consider [36]
for real-world experiments [14].

Parameter changes for shoid M2 from those described in
Strömbom et al. (shoid M1) were made to approximately
reflect observed characteristic differences in [14]. The value
representing shoid-shoid repulsion (Wππ) has been increased;
therefore, the weight of repulsion from other shoids is high,
simulating curiosity for shoid M2. The value representing
shoid attraction to LCM (WπsΛ) has been decreased to reflect
shoid M2’s role in internally influencing other flock shoids.
The value of shoid predation risk (Wπsβ) has been increased
as shoid M2 has a higher propensity to be further away from
the flock to observe the herding agent, which also manifests
as an increased repulsion from the herding agent. Parameter
changes to represent shoid M2 behaviour are based upon the
algorithm represented in Figure 2.

We demonstrate our candidate measures through an
attraction-repulsion swarm shepherding model, based on
Strömbom et al. [9]. Shoids M1 are parameterised such that
Wππ > WπΛ > Wπβ , while shoids M2 are parameterised
such that Wππ > Wπβ > WπΛ. We analyse the impact of

Fig. 2: Shoid agent algorithm to simulate flock movement
during herding.

changing the configuration makeup of the flock for a constant
simulation seed. Our simulations investigate the performance
of our measures for six (total) shoids and one sheepdog, with
the shoids varying between 0 and 6 for each agent type. The
selection for the number of shoids was to ensure consistency
with previously conducted live experimentation. We compare
the insights derived from these simulation trials to those from
our live experimentation data.

This section intends to characterise flock-level processes and
behaviours as the first step to validate our measures, which
must be completed before online analysis or use to identify
internal flock social hierarchies and leadership dynamics. We
reveal that we can recreate the qualitative narrative of interac-
tion, without observation of the underlying agent interaction.

B. Simulation Results

Figure 3a depicts our synchronicity measure from the per-
spective of the shepherd (left) or GCM (right) as the source
agent (J), to each shoid within the system. The visualisation
of synchronicity corresponds to the cases outlined in Sec-
tion III-A, with a consistent colour palette per [24]. The colour
red represents C1, the colour blue represents C2, and C3 is
white. Colour intensity represents interaction magnitude.

We observe two main periods of change at the system level,
being the initial phase where the shepherd is collecting the
shoids, and the subsequent driving phase which dominates
the remainder of the simulation. There is insufficient evidence
(H(5) = 18.9, p < 0.1) to suggest that there is a significant
difference between the synchronicity of shoids across the
measurement between the shepherd and GCM within our
simulation trials. There is also insufficient evidence to suggest
that there is a significant difference between the synchronicity
across shoids within each shepherd and GCM synchronicity
measure. We conjecture that the presence of a statistically sig-
nificant synchronicity result may contribute to defining a social
hierarchy of leadership. Where no statistically significant result
exists, we suggest that there is presently no identifiable leader
shoid. Our simulated results represent a plausible instance
of the observed field trial behaviours. The developed CoI
portfolio allows us to identify variance in behaviour between
shoids of a swarm, allowing us to characterise the contribution
of individual shoids.



TABLE I: Agent parameterisation for the simulated swarm shepherding model environment.

Description Classic shoid (M1) Parameterised shoid (M2) Herding Agent
Shoid-shoid Repulsion Radius (Rππ) 2 3
Shepherd detection distance (Rπβ ) 30 30 30
Shoid-shoid Repulsion weight (Wππ) 2 3
Shoid attraction to LCM (WπΛ) 1.05 0.5
Shoid Predation Risk weight (Wπβ ) 1 1.5
Speed (S) 1 1 1.5

(a) Synchronicity for the Shepherd (left) and Flock GCM (right),
where J is the agent of interest and I is each shoid.

(b) Summary of Situation Awareness (left) and Predation Risk (right)
for each shoid.

Fig. 3: Summary measures for simulated data over t = 300 time steps.

The variation between the synchronicity of shoids is ob-
served in Figure 3a. We observe that during the collecting
phase of the simulation that there is an increase of synchronous
contact with the shepherd, which corresponds to a reduction
in synchronous contact with the GCM. The external source
present competes with the internal dynamics of the flock for
control and influence, reducing the level of synchronicity for a
discrete period. This is shown by an increase of synchronicity
with the shepherd (Cases C1 and C2), corresponding to a
reduction in synchronicity, representative of asynchronicity,
with the GCM (Case C3). The key insight here is that the
active influence of the shepherd reduces the effectiveness of
the shoids attraction to the GCM, forcing a change in the
configuration state of the flock. Throughout the phases fol-
lowing, a more consistent profile of synchronicity is observed
with both the shepherd and GCM. This potentially indicates
configuration stability within the internal dynamics of the
flock, such that a steady-state has been achieved.

The granularity of the PR measure is susceptible to flock
size (N ), requiring care to interpret if void of synchronicity
or SA. The results in Figure 3b reveal shoid 6 as the only
shoid seeking to lower their PR throughout, reflected by the
continual variation of PR values. It can be inferred that shoid
6 has a higher attraction to the LCM W 6

πΛ > W i
πλ where

i = {1, . . . , 5}. A statistically significant difference (H(5) =
117.87, p < 0.001) exists between the predation risk of shoid
agents within the Figure 3b.

There exists a distinct period of high SA within the initial
herding agent contact, and collection of the shoids. SA can
characterise the flock configuration change, representing a
heightened awareness during this change. This is evident
throughout the initial and collecting phase, revealing
shoids 4–6 are closer to the shepherding agent, which nor-
malises during the subsequent driving phase. Note that we
depict a transformation of SA, log(SA), for ease of readability
in all SA figures presented. A statistically significant difference
(H(5) = 157.16, p < 0.001) exists between the situation
awareness of shoid agents within the Figure 3b, allowing for
identifying of differences between each shoid.

Considering measures across S, PR, and SA, we can
identify further features of the flock. From approximately time-
step 200, we see a jostling between shoid 1 and shoid 2 that
is indicative ideally of behaviour to promote their SA. This is
also reflected with lower synchronicity with the GCM. Also
reflected are periods when a shoid is responding more to the
herding agent, with higher PR and greater jostling within the
flock to project SA. As discussed in Section III, our portfolio
of measures are designed to detect the evolutionary dynamics
in the flock. The typical story they tell is one of the changes
in the system, such as the internal state of configuration or
principal-agent of influence, or control.



(a) Synchronicity for the Shepherd (left) and Flock GCM (right),
where J is the agent of interest and I is each shoid.

(b) Summary of Situation Awareness (left) and Predation Risk (right)
for each shoid.

Fig. 4: Summary measures over a discrete period of contact (t = 40) for live experiment data.

C. Sky Shepherding Field Data Results

Contrasting the simulated data to live experimental data
using real sheep, we can characterise when the Sky Shepherd
asserts dominance in the system over any of the sheep in the
flock. Notably, we have identified that the flock experiences
change through our measures, not stabilising until after contact
with the Sky Shepherd. The researcher’s observational notes
reveal that this is representative of the system as the flock
remained disjoint through to the end of this trial (which was
ended due to high sheep heart rate), as per University of New
South Wales Animal Ethics Committee approval 19/122B.
Figure 4 shows 40 seconds of interaction between a flock
of 6 sheep and the Sky Shepherd. This time slice has been
selected to depict the interaction of the Sky Shepherd with
the flock and the associated response to this external stimulus.

A statistically significant difference (H(5) = 20.18, p <
0.05) exists between the synchronicity of sheep across both
shepherd and GCM measures within our experimental trials,
Figure 4a. There is a lack of evidence to suggest that there
is a significant difference between the synchronicity across
sheep within each shepherd and GCM synchronicity measure.
This indicates our flock is acting with a tacit goal, such as
preserving the safety of the flock members.

A statistically significant difference (H(5) = 36.1, p <
0.001) exists between the predation risk of sheep within our
experimental trials, Figure 4b. The response of Sheep 4 during
the Sky Shepherd field trials indicates she was the last to
respond to the Sky Shepherd and flock influence, which is
reflected by a sudden and sustained change in PR, minimal
reaction to the Sky Shepherd and lower interaction with GCM.
We also observe that the PR increases during periods of flock
configuration change, returning to a relative baseline after
these periods.

A statistically significant difference (H(5) = 183.1, p <

0.001) exists between the situation awareness of sheep within
our experimental trials, Figure 4b. We identify Sheep 1 as
the influencer within the flock, with her longer synchronicity
with the Sky Shepherd, and highest SA, identifying her as the
first to respond. The influence of Sheep 1 within the flock is
also reflected in a change of synchronicity with the GCM in
Figure 4a, as she influences the flock to move away from the
Sky Shepherd. Sheep 5 is the first to follow her, with Sheep 4
trailing behind. We observe that the mean SA increases under
external influence, returning to a baseline level over a longer
period when compared to the period of increase.

V. CONCLUSION

We have proposed a portfolio of measures that indicate
the CoI to identify impacts on flock dynamics. The proposed
three measures reveal footprints within a swarm with rich
information to reveal the most influential agent in the herd.
The selected candidate measures have successfully described
the nonlinear dynamics of a simulated swarm, initially illus-
trating the approach with shoids; based on the M2 model
developed, the designed metrics assist with identifying agents
with influence in the flock, thereby verifying the prospect of
the proposed new metrics. Our biologically inspired model
comes from observing the interaction of a shepherd and flock
of sheep.

Using our developed CoI metrics, we have been able to
identify influencer sheep within collected experimental data
from biological agents. Future work will need to enable
classification of types of influence within the flock to sup-
port developing greater efficiency in shepherding algorithms,
thereby supporting the development of artificial intelligence
when compared to classical approaches [37]. This will provide
an opportunity to refine the proposed model and include
further granularity in subordinate measures, such as head



position and body orientation, relative to the position of the
shepherding agent.

There are many domains of application for this research,
both biological and artificial, for control and other purposes.
The CoI approach may aid in discovering new methods to
understand dynamic hierarchies, as well the influence of
external agents to a system—allowing us to develop robust
artificial intelligence, capable of understanding the variance
that exists in biological models.

Our preliminary experimentation with both simulated and
live data indicates that our measures can successfully describe
the aggregate flock system properties and identify disparate
influences through a comparative analysis. However, what we
cannot characterise yet is the individual contribution of each
agent in the system and classify these behaviours to infer
the constituent agent makeup and infer social hierarchies.
Additionally, a more in-depth sensitivity analysis will include a
longitudinal analysis to describe the effect of parameter varia-
tion between agents in the system, as well as further investigate
the performance of our measures on live experimental data.
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