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Abstract

Quality assurance (QA) is an important task in manufacturing to assess whether products meet their specifications. H owever, Q A m ight be 
expensive, time-consuming, or incomplete. This paper presents a solution for predictive analytics in QA based on machine sensor values during 
production while employing specialized machine-learning models for classification in a controlled environment. Furthermore, we present lessons 
learned while implementing this model, which helps to reduce complexity in further industrial applications. The paper’s outcome proves that the 
developed model was able to predict product quality, as well as to identify the correlation between machine-status and faulty product occurrence.
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1. Introduction

For companies aiming at quality leadership, the final quality
of any goods produced is vital for market success. Thus, com-
panies need to ensure that every product meets the expected
customer and legal requirements. The quality control (QC) of
production processes and products is one fundamental part of
general quality management. It contains the measures and ac-
tivities needed to fulfill specific quality requirements [14].

Over the years, diverse methods to ensure the quality of
products have been developed [14]. Among the most used
methods, we have Auditing, Total Quality Control (TCQ) [10],
Poka-Yoke Techniques [17], the 100% control of each pro-
duced product [9], and statistical methods like the Statistical
Process Control (SPC) [19]. Independently of the method used,
the goal is the same, to avoid the production of faulty products,
or to identify and remove them, before delivering those to the
customer.[14]. However, the relationship between cost and ef-
ficiency varies from one method to another. This is noticeable,

e.g., at the cost of highly specialized equipment for automated
inspection, or the cost of employees performing a manual in-
spection of the produced products versus the accuracy of de-
tecting all faulty products [18].

In general, the quality characteristics of a product can be
classified as attributes or variables [14]. Attributes are quali-
tative measurable characteristics, i.e., color or texture. On the
other hand, variables are precise and measurable characteris-
tics, which are shown as numbers, i.e., length or width. The
advantage of quantitative measurements is that in the event of a
defective intermediate or end product, precise measured values
are available, which enable controlled adjustment of the pro-
cess parameters, as well as the possibility of observing trends
in the collected data. This enables the employment of predic-
tive models to determine the quality of the product before the
QC process takes place [3, 11].

With the evolution of machine learning (ML) applications
[3, 4], approaches combining QC and predictive models are be-
coming more relevant. The applications range from the defect
analysis of the produced piece [6, 20], to process-oriented QC
[12, 11, 2, 16], see Section 2. Independently of the research
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area previously stated, within the scope of the related works,
there is no evidence of an evaluation framework for diverse ML
techniques applied in QC process.

Considering the high amount of data available in industries,
one approach to reduce the inspection costs and simultaneously
increase the accuracy of detecting faulty products would be to
implement an ML model capable to predict the product quality
based on the initial state of the machine. This will not only help
to detect faulty products before the QC process is performed,
it would also strengthen the current QC methods by combining
them with QC predictive models.

While implementing ML models to QC, several challenges
arise that have not yet been sufficiently addressed, e.g., what
to consider while evaluating the output from ML models for
industrial applications? (model accuracy vs applicability at in-
dustrial environments); what steps should be followed to pre-
pare the data for predictive QC methods?; and what findings
and lessons are worth to consider for further applications in the
area?. For this, we cover the methods used for quality checks
in production, as well as the bases of predictive analytics in
production (Section 2). We describe a suitable industrial plat-
form to implement the ML models (Section 3). Then, we ex-
plain the three machine learning methods implemented in this
work: Multilayer perceptrons, Support Vector Machines, and
Decision Tree (Section 4), followed by the description of the
experiment process from the data acquisition and preprocess-
ing, to the classifier optimization and testing (Section 5). Fi-
nally, we present the findings achieved after the finalization of
this project phase (Section 6), as well as present a list of lessons
learned for the implementation of the project, which might be
helpful for further implementations (Section 7).

2. Related Works

According to Delen and Damirkan, predictive analytics (PA)
consists of unraveling the inherent relationships (if any) be-
tween input and output by using data and mathematical tech-
niques [5]. PA offers a wide range of applications, and it can
be implemented, as long as sufficient data are available [3].
According to Krauß, there is a wide range of applications for
PA in the industrial and production environment. Some com-
mon industrial applications of PA are focussed in products (de-
sign and optimization), machines and assets (predictive mainte-
nance, anomaly detection, self learning-machines) and process
(scheduling, process design, predictive process control) [11].

An explorative literature review on this matter reveals that
publications that combine PA and QC became more relevant in
the last six years. This could be due to computer power limita-
tions in earlier research and the recent increase of ML applica-
tions in this area. Related works mostly belongs to two groups,
defect analysis of produced pieces and process-oriented QC.
Due to the recent advances in ML approaches specialized in
image and pattern recognition [3], a great number of publica-
tions focus on product-analysis based on images from cameras
during the production process, e.g., Escobar employed pattern
recognition for defect detection in a binary classification prob-

lem based on a l1-regularized logistic regression [6]; Sohnius
focussed on defect prediction within printed layers by employ-
ing supervised models based on features extracted directly from
the machine code and the scan of the layers surface [20]. Other
authors focussed their research on process-oriented QC, e.g.,
Krauß focussed on describing the ML pipeline to implement
automated machine learning for predictive quality in produc-
tion [12] and product quality prediction in a process chain [11];
Aumi focussed on the model development for predictive qual-
ity control of batch processes [2]; Ritter studied the ways of
process modeling on quality prediction and assurance of chip-
boards [16].

Applications that combine PA with QC might improve the
current QC processes. However, based on the previous find-
ings, there are no clear references to the impact of implementing
ML models based just on model accuracy, together with indus-
trial factors of the QC process. By employing machine learning
(ML) techniques (Section 4), together with the QC traditional
methods, it would be possible to improve the relationship be-
tween inspection costs and the probability of detecting faulty
products during the QC process, as well as, decrease the risk
of labeling NOK pieces as OK and deliver them to costumers.
However, before implementing these techniques, it is important
to define the platform where these predictive analytics models
will be implemented in a controlled and transparent industrial
environment.

3. The case: industry 4.0 demonstration cell

Our case study is an abstraction of an assembly process of
the industry. This case study is a highly flexible and transparent
platform regarding software and hardware access and manipu-
lation. The industry 4.0 demonstration cell is composed of three
independent conveyor belts, a robotic assembly arm (UR3), a
laser scanner used for quality control as well as a wide range
of sensors, all orchestrated by a SIEMENS PLC S7-1200, see
Figure 1. The executed abstracted assembly process consists of
stacking two disks of different sizes on top of each other. The
corresponding pseudo product quality is later determined using
the laser scanner and evaluating the concentricity of both disks.
If the disks’ concentricity is within a tolerance of 1.5mm, the
piece is classified as OK, if not, it is classified as NOK. By
considering that malfunctions can occur during industrial pro-
duction processes, our demonstration cell can simulate failures
in diverse areas, such as:

• Assembly errors due to the robotic arm: incorrectly posi-
tioned disks.
• Bearing damage on the conveyor belts: vibration changes

in the conveyor belt motors.
• Resistance on the conveyor belts: temperature changes in

the conveyor belt motors.
• Malfunction of the gate door due to leakage in the com-

pressed air system: cylinder stroke at the assembly barrier
is slower.
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Fig. 1: The industry 4.0 demonstration cell at the University of Siegen

• Faster operating point: disks shift position due to the high
belt speeds.
• Missing material at the end of the warehouse: production

stop due to lack of material.

Those simulated failures have an impact on the data col-
lected by the sensors. Anomalies can be observed at the vibra-
tion sensors, temperature rise, fluctuations in the air pressure
system, noticeable shifting on pieces’ position as well as the
stop of the process.

The continuous data collection and the clear correlation be-
tween the machine parameters and the quality of the product,
is the ideal play-ground to implement a sandbox for machine
learning implementations. With this in mind, our goal is to pre-
dict the quality of the product (concentricity of the assembled
parts), before the actual quality check done by the laser scanner.

4. Machine Learning Methods

To study which implementation would be more suitable
for industrial applications, we compare Multilayer Perceptrons
(MLPs), Support Vector Machines (SVM), as well as Decision
Trees on the task of quality prediction. All three will be intro-
duced next.

4.1. Multilayer perceptrons

These feedforward neural networks typically combine multi-
ple layers and activation functions [3]. A layer contains a large
weight matrix and a bias vector. To evaluate the layer the in-
put vector must be multiplied with the weight matrix before
the bias vector is added. Each layer is typically followed by
an activation function which adds non-linearity to the network
graph. Rectified linear units (ReLUs) are zero for negative in-
puts and leave positive inputs unchanged. ReLUs are the rec-
ommended activation function for modern neural networks [8],
we use these here as well. Since the linear parts of the ReLU
and the linear matrix multiplication are differentiable we can
employ stochastic gradient descent to train our classifier.

4.2. Support Vector Machines

Support Vector Machines (SVM) attempt to separate data
along hyperplanes [1]. SVM offer a convex alternative to MLPs
[21]. A convex classifier is guaranteed to converge to a global
solution regardless of its initialization. Non-separable data can
become separable if projected to a different possibly high di-
mensional space through a Kernel function. The Kernel trick
allows SVM to solve some non-linear classification problems
[21]. Radial basis functions (RBF) are commonly chosen as
kernels [21], therefore, we choose to follow this practice as
well.

4.3. Decision Tree

Decision Trees are essentially binary trees, which work with
the input features at the roots, decisions are made by moving up
the tree to top leaves. At every branch in the tree, a decision is
made, until one arrives at the decision [13]. For numerical in-
put features, each decision partitions the data [1], for example
by comparison to a threshold value. To construct the tree these
cutoff values have to be chosen at every branch. The construc-
tion problem turns into an optimization problem when a split
criterion is introduced. Common choices are cross-entropy of
Gini-coefficient [1]. During the construction splits minimizing,
the selected functions are chosen.

5. Experiments

5.1. Data acquisition

Industrial projects require to work with a variety of sensors
and controllers from different manufacturers. Thus, the risk of
incompatibility between technologies increases. To avoid these
problems, universal protocols are often implemented in indus-
trial projects. Figure 2 describes a simplified version of the real
connection diagram of the demonstration cell. In our case, the
data is acquired independently from two OPC-UA servers. This
represents the interaction between multiple servers in real pro-
duction environments.

Before collecting the data, we needed to find the variables
of interest and map their source, as well as to determine the use
cases of interest. Our study focussed on the data described in
Table 1 and the six use cases described in Table 2. The data was
manually collected by using the software ”UAExpert - v1.5.1”.
Approximately 15 hours of data were collected in different ses-
sions, while equally sampling each use case during the data ac-
quisition stage.

5.2. Data preprocessing

Once the data was collected, the next step was to clean the
raw data and organize it accordingly [3]. In our case, that means
to merge the data collected from the two OPC-UA servers, and
synchronize the time-stamp. Since our systems were not com-
pletely synchronized, as common in practice, it was needed to
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Data of interest Server Source Variable

Conveyor speed Siemens PLC - Conveyor: Gate
- Conveyor: QC
- Conveyor: Store

UR3 Position Siemens PLC - xyz Gripper position

Action Flags Siemens PLC - UR3 gripper open/close
- Grab/drop disk based on
type

Quality control SICK SIM4000 - OK-NOK label
- xy disk deviation from
the center point
- Absolute disk deviation

Gate position SICK SIM4000 - Position
- Speed
- Safe to go

Store SICK SIM4000 - Disk Size

Table 1: Industry 4.0 demonstration cell: Relevant data linked with its reference
source server.

Use Case Description

Use Case 1 Conveyor speed: Slow
Robot position: OK

Use Case 2 Conveyor speed: Slow
Robot position: NOK

Use Case 3 Conveyor speed: Fast
Robot position: OK

Use Case 4 Conveyor speed: Fast
Robot position: NOK

Use Case 5 Conveyor speed: Too Fast
Robot position: OK

Use Case 6 Conveyor speed: Too Fast
Robot position: NOK

Table 2: Industry 4.0 demostration cell: Controlled Use-Cases. Use-Cases with
the value Robot position: NOK and Conveyor speed: Too Fast will result in
NOK pieces.

Fig. 2: Industry 4.0 demostration cell: Connection diagram (simplified).

calculate the delta-time between servers by referencing each
server’s base clock. Once the delta-time was determined, a
time-stamp function was implemented to correct the time-shift

between samples and be able to merge all the data without in-
compatibilities.

Data tags interpretation is an important step in the prepro-
cessing process [3]. The raw data collected from the sensors is
usually tagged by an alphanumeric code predefined by the sen-
sor manufacturer. To work with the data, it was needed to imple-
ment diverse functions which have the task to clean the raw data
in a more human-readable form. This means to remove samples
out of clear boundaries and missing values, as well as to trans-
late the sensor code tags based on human-readable words pre-
defined by the authors. This last step, might be optional in other
implementations, however, it proves to be a great addition for
testing purposes.

Once the data was cleaned and compiled in one directory, the
next step was to split the data based on the assembly cycle. For
our purpose, we split the dataset into individual data-samples
with help of the action flagsincluded in the dataset Table 1.
Subsequently, each data-sample was automatically checked for
missing sensor values and discarded if so.

Each time-series sample was the result of data collected dur-
ing one machine assembly cycle (MAC). The starting point of
one MAC was defined as the very first moment the robotic arm
grabs the white disk from the store area and the ending point
was defined as the starting of the subsequent MAC, the grab-
bing of the next white disk in the same area. To eliminate time
as a variable in our dataset, it was needed to transform time-
series into feature data suitable describing a MAC in a way that
different MACs are easily comparable. For that reason, we de-
fined a set of sampling-conditions that helped us to collect the
relevant data during the MAC:

• Value of the robot position (xyz) while dropping both
disks in the conveyor - gate
• Mean conveyor speed value per conveyor band
• Absolute deviation (xy) value at the quality control check
• Absolute quality control value: OK - NOK

Each time-series sample was evaluated based this sampling-
condition, and the result of each evaluation was considered as
our atemporal data-sample, which we used as the base for our
classifier.

5.3. Classifier optimization and testing

The robot’s position at disk drop is marked in Figure 3. The
quality prediction problem was framed as a classification task.
The input vectors which we fed into our classifiers consist of
the arm positions at the disk drops for both disks in three di-
mensions, as well as the largest recorded belt speed of all three
belts. The interpretation of the quality measurement was used
as the training target. It can be OK or NOK which we encoded
as zero and one.

We worked with a total of 528 measurements. Each contain-
ing arm and belt data logs of individual cell run. 50 samples
were set aside at random for testing purposes, leaving 478 train-
ing samples. The random number generator seed was set to one

4
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Fig. 3: Robot arm movement patterns. We show the movement of the cell’s
robot arm, its grippers, and the encoding of the overall position in the system.
The changes in the grip flag are triggered, when the gripper opens or closes. 0
indicates an open, while one indicates a closed gripper. The position flags mark
the state of the cell’s arm. 0 means the black disk is in store, one that the black
disk is at the gate, two that the white disk is in store and three that the white
disk is located at the gate.

Approach accuracy

Naı̈ve-Baseline 64 %
Support Vector Machine 82 %
Multilayer Perceptron 88 %

Decision Tree 98 %

Table 3: Comparison of Support Vector Machine (SVM), Multilayer Perceptron
and Decision Tree classification on our anomaly detection task. The first row
shows the performance of naively predicting a broken piece every time.

to ensure the train and test set splits are identical for all experi-
ments.

We compared a total of three different classifier architectures
on the data, a Support Vector Machine (SVM), a Multilayer Per-
ceptron (MLP) and a Decision Tree structure. In this case, we
chose to train all three models using exemplary default hyper-
parameters, which we found to work well. 1

Results are shown in table 3. For 32 of the total 50 test sam-
ples quality measurements indicated a problem. This set the
baseline over the entire data set, which would be obtained by
simply labeling all samples as faulty. For the test set, we re-
quired to classify more than 64% of the data correctly. There-
fore, we expected any naive classifier to produce at least 64%
accuracy, which we had to surpass. In Table 3, we observe that
this was indeed the case for all three approaches evaluated here.

The MLP prediction results presented on Table 4b show
that even though the prediction model was not 100% accurate,
the percentage of false-positive predictions was 0%. The false-
negative results represented 12% of the test sample and the true
predictions constituted 88% of the test data.

The outcome of the models showed that the Decision Tree
performed best followed by the Multilayer Perceptron and the
Support Vector Machine. However, by reviewing the confusion
matrices presented in Table 4, Multilayer Perceptron would be

1 To allow exact reproduction of our results source code is available at
https://github.com/USi-IPEM/CIRP_CMS21

True Values
OK NOK Total

Predicted Values OK 18 0 18 + 0 = 18
NOK 8 24 8 + 24 = 32
Total 18 + 8 = 26 0 + 24 = 24 50

(a) Support Vector Machine.

True Values
OK NOK Total

Predicted Values OK 18 0 18 + 0 = 18
NOK 6 26 6 + 26 = 32
Total 18 + 6 = 24 0 + 26 = 26 50

(b) Multilayer Perceptron.

True Values
OK NOK Total

Predicted Values OK 17 1 17 + 1 = 18
NOK 0 32 0 + 32 = 32
Total 17 + 0 = 17 1 + 32 = 33 50

(c) Decision Tree.

Table 4: Confusion matrices result of the prediction of 50 test data-points. We
present the result of the predictions given by all three algorithms in detail based
on the comparison between true values vs predictions. The tables read from the
upper-left cell as: true-positive, false-positive, false-negative, true-negative.

the preferred solution to be implemented in industrial applica-
tions due to the 0% ratio in false-positive results and high accu-
racy of 88%.

6. Conclusion

Based on the explorative literature review, we observed that
the hundred percent quality check method proves to be the most
efficient method to guarantee the final product quality, however,
the high implementation cost is its biggest draw-back. On the
other hand, we have the statistical methods, which are known
to be fast and efficient, but the lack of reviewing each product
until the next batch review might imply a considerable loss of
the produced products whenever NOK products are found. This
is based on the uncertainty of when the error occurred and how
many products are affected.

Implementing ML models based on just the initial conditions
of the process and capable to predict the quality of the product,
would be a great asset for the industrial processes. Within the
limits of our work, we predicted with 98% certainty the prod-
uct quality by implementing a Decision Tree model with a 6-
variables vector as input. However, our decision for industrial
applications would be the MLP with 88% accuracy, to guaran-
tee that all passed parts are OK and avoid labeling NOK pieces
as OK. For further work, we expect to increase the accuracy
of the prediction model by collecting more data-samples and
experimenting with other, more complex, ML models.

It is important to state that this prediction model is not yet
ready to fully replace the statistical methods, nor the hundred
percent quality check method, since this research is still in its
early stages and needs further development. However, a com-
bination of SPC along prediction models could work well to-
gether, since the prediction model will evaluate each produced

5
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piece, and this might compensate for disadvantages of the sta-
tistical methods.

7. Lesson Learned

It is worth to mention the most important points learned
during the project implementation. This might help as build-
ing blocks for further research in the area. Difficulties at imple-
menting ML models in production are also described by others
authors [15].

Incompatibility between technologies; devices configured
on the same network presented troubles to share data due to net-
work restrictions, as well as the limitation to access and modify
restricted program-code given by the machine manufacture. To
overcome the situation stated above, it was necessary to repro-
gram big sections of the machine control system.

Data synchronization; two OPC-UA servers were used on
this implementation. This led to a series of data synchroniza-
tion problems due to differences in the internal clock of both
servers. To solve the issue, it was needed to write a time-stamp
synchronization script that was deployed during the data pre-
processing phase. Without harmonious time-stamps, determin-
ing the production cycle would have been impossible and the
input data for the ML model would have been useless, and the
model inaccurate.

Data interpretation; this process is considered compli-
cated, time-consuming, and a fundamental step for any ML ap-
plications. It is fundamental to understand the assembly pro-
cess, the timing from the machine movements, the boundaries
of the machine’s sensors, as well a basic correlation within the
presented data.

Missing values; to minimize the risk of false results deliv-
ered by the ML model, it would be compulsory to carefully re-
view the ML input data. Missing values can have a great impact
on the ML prediction, that is the reason why we deliberately
review all the input data and validate it with the expected out-
put from the diverse sensors. Whenever there was missing data,
and as long as we did not fabricate data, we employed statistical
methods to fill the data gap.

Adapting the industry 4.0 demonstration cell; the initial
state of the demonstrator was very limited. Even though the
process was well known, the lack of labels or flags whenever
certain actions occur, made it complicated to have accurate data
sampling from each assembly cycle. To overcome this uncer-
tainty, we modified the machine program to raise specific flags
whenever certain actions were executed.

Machine Learning; careful measurement and meaningful
preprocessing of our cell-data was key to the successful appli-
cation of all three algorithms. Without the labels, the problem
could not have been framed as a supervised classification prob-
lem.

Dataset size; as the starting point we collected as many data
points like the ones found in the iris Dataset [7]. The next step
was to collect batches of data of around 30 minutes per use case.
This process was repeated until accumulate around 15 hours of
data.
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