loading page

Non-binary Spin Wave Based Circuit Design
  • +3
  • Abdulqader Mahmoud ,
  • Frederic Vanderveken ,
  • Florin Ciubotaru ,
  • Christoph Adelmann ,
  • Said Hamdioui ,
  • Sorin Cotofana
Abdulqader Mahmoud
Author Profile
Frederic Vanderveken
Author Profile
Florin Ciubotaru
Author Profile
Christoph Adelmann
Author Profile
Said Hamdioui
Author Profile
Sorin Cotofana
Author Profile


By their very nature, Spin Waves (SWs) excited at the same frequency but different amplitudes, propagate through waveguides and interfere with each other at the expense of ultra-low energy consumption. In addition, all (part) of the SW energy can be moved from one waveguide to another by means of coupling effects. In this paper we make use of these SW features and introduce a novel non Boolean algebra based paradigm, which enables domain conversion free ultra-low energy consumption SW based computing. Subsequently, we leverage this computing paradigm by designing a non-binary spin wave adder, which we validate by means of micro-magnetic simulation. To get more inside on the proposed adder potential we assume a 2-bit adder implementation as discussion vehicle, evaluate its area, delay, and energy consumption, and compare it with conventional SW and 7nm CMOS counterparts. The results indicate that our proposal diminishes the energy consumption by a factor of 3.14x and 6x, when compared with the conventional SW and 7nm CMOS functionally equivalent designs, respectively. Furthermore, the proposed non-binary adder implementation requires the least number of devices, which indicates its potential for small chip real-estate realizations.
Oct 2022Published in IEEE Transactions on Circuits and Systems I: Regular Papers volume 69 issue 10 on pages 3888-3900. 10.1109/TCSI.2022.3187654