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Abstract

In the recent advancement of machine learning methods for realis-
tic image generation and image translation, Generative Adversarial Net-
works (GANSs) play a vital role. GAN generates novel samples that look
indistinguishable from the real images. The image translation using a
generative adversarial network refers to unsupervised learning. In this
paper, we translate the thermal images into visible images. Thermal to
Visible image translation is challenging due to the non-availability of ac-
curate semantic information and smooth textures. The thermal images
contain only single-channel, holding only the images’ luminance with less
feature. We develop a new Cyclic Attention-based Generative Adversar-
ial Network for Thermal to Visible domain transformation (TVA-GAN)
by incorporating a new attention-based network. We use attention guid-
ance with a recurrent block through an Inception module to reduce the
learning space towards the optimum solution. TVA-GAN is tested and
evaluated for thermal to visible face synthesis over the WHU-IIP and Tufts
Face Thermal2RGB datasets. The results using the proposed TVA-GAN
is promising for face synthesis as compared to the state-of-the-art GAN
methods.

GAN, Attention-GAN, Synthesized Loss, Cycle Synthesized Loss, Thermal-
Visible Transformation, Thermal-Visible Face Synthesis, Recurrent-Inception
module, Attention Block.

1 Introduction

Visible image generation using thermal images is a very challenging task rather
than using Infrared or Near-Infrared images. Near-infrared (NIR) images are
close to redlight wavelengths between 700 nm - 1400 nm. NIR images are very
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close to human vision and discard the color wavelength pieces of information.
This results in most articles looking similar to the image converted into gray
scale images. Most NIR cameras at night utilizing IR LEDs for illumination
are limited in range, usually not more than 500m. While on the other hand,
thermal images are far-infrared images with wide-area emission detection. Ther-
mal Infrared (TIR) cameras are sensitive to heat radiation produced by a body.
Heat is the electromagnetic waves emitted by a body above the absolute zero
temperature, which contains different wavelengths. Both NIR and TIR images
capture non-overlapping electromagnetic spectrum. However, thermal images
and near-infrared images are very different from each other since thermal images
are more specific to capturing images for a particular range of temperature only.
Thus, the thermal images(TIR) have more noisy data than the NIR images. So,
it is more challenging to generate the actual visible domain images from the
corresponding thermal domain images.

In the current scenario of deep learning [1], the image generation tasks handle
various applications of computer vision, including image restoration [2], image
synthesis [3], face synthesis [4] [5] and many more. We consider the visible
face synthesis from the thermal face image as an image-to-image translation
problem due to the images’ inter-domain transformation. The image-to-image
translation [6] method is inspired from the language transformation problem
proposed by Mark Twin [7]. Here the language is first transformed from French
to English and then back to French, and the final results are compared with
the source text string for better translations. The image-to-image translation is
effectively handle by Generative Adversarial Networks(GANs) which works on
the principle of training a model which learns by balancing false results against
true results. With the modern influence of deep learning, different Generative

Adversarial Network (GAN) methods [3], [9], [L0], [11] have been proposed to
deal with the image-to-image translation [12] [13], [14], [15] problems. GAN
based models have been also utilized for different applications such as image
segmentation [16], image colorization [17], image super-resolution [18], image
style transfer [19], and face photo-sketch synthesis [20].

Deep learning methods are prevalent for image-to-image translation in multi-
domain scenarios in computer vision, and bio-metrics [1] [21]. The deep learning

methods consist of two domains: supervised and unsupervised learning meth-
ods. The supervised framework needs tremendous manual work for labeling the
data. Generative Adversarial Networks(GANs) have gained massive popularity
because of their ability to generate realistic samples within training samples
distribution. In proposed TVA-GAN used a thermal face image to feed into the
generator network for producing a synthesized real-looking visible face image as
the output. The GAN-based image-to-image translation methods comprise two
networks: generator and discriminator networks. The discriminator network
includes a Convolutional Neural Network (CNN) for two-class classification be-
tween the real and fake samples. The generator network is an auto-encoder [6] [2]
that produces high-quality images within the given training set distribution.
The significant commitments of this paper are as follows:



e We propose an Attention-based Generative Adversarial Network (TVA-
GAN) for thermal to visible face transformation using an image-to-image
translation framework.

e The proposed TVA-GAN’s learning space narrowed down towards optimal
learning by using attention guidance and the deep feature extraction using
the inception network, which helps to learn more local sparse structure and
performs better than the traditional methods.

e We proposed a novel generator architecture for TVA-GAN using Recur-
rent Inception block with attention mechanism to improve the training of
Attention network.

e We tested the proposed TVA-GAN for thermal to visible face synthesis
using real thermal face images and found improvement over various state-
of-the-art methods.

The rest of the paper is described in the following manner: a concise literature
review for image translation and thermal to visual transformation is presented
in Section 2; The proposed TVA-GAN with network analysis and losses are
described in Section 3; The experimental setup is described in Section 4; The
experimental results and observations are described in Section 5; and Lastly,
the conclusion of the paper is provided in Section 6.

2 Related Work

In the area of methods using machine learning, feature classification using clas-
sifiers for recognition task proposed by Jun Li et al. named hallucinating faces
using thermal infrared images. In the methods using machine learning, feature
classification using classifiers for recognition task proposed by Jun Li et al. [22]
named hallucinating faces using thermal infrared images. In comparison, Choi
et al. [23] pre-processed the thermal image and normalize the intensity values
of images. Choi et al. used Self quotient image(SQI) with the Gaussian filter-
ing (DOG) difference for the recognition task. Cunjian Chen et al. [24] used
Pyramid Scale Invariant Feature Transform (PSIFT) for matching the images in
thermal and visible domains. These non-deep learning based methods’ primary
aim is to reduce the domain gap for learning features.

Among deep learning approaches,Vishal M. Patel et al. used polarimetric
thermal faces and generative adversarial networks [25] for high-quality visible
faces synthesis. The Polarimetric Thermal Database [26] is used in [25] for Face
Recognition, which contains polarimetric images with more facial features than
actual thermal images. The database consists of only grey channel images, not
visible color images. For the same database, Iranmaneshet et al. proposed a
Deep Cross Polarimetric Thermal-to-visible face recognition [27] for thermal face
recognition. The authors used two CNN and contrastive loss functions to recog-
nize faces from polarimetric and visible domains. Generative Adversarial Net-
works (GAN) appeared as an unsupervised learning framework for generating



the new samples within a given dataset distribution. Different authors proposed
different versions of GANs to deal with different problems associated with image
generation, translation, and new sample generation. Image-to-image translation
methods using GAN proposed by various researchers, which helps translate the
images from one domain to another [28], [9], [10], [29], [30], [31], [32]. The
Conditional GAN [33] can be seen as the baseline, which generates new sam-
ples with some embedding conditions. The Conditional GAN generator network
can generate samples based on some prior given conditions as class labels. In
2016, first unsupervised image translation network using GAN was proposed by
Ming-Yu Liu and Oncel Tuzel, named CoGAN (Coupled Generative Adversar-
ial Network) [34], capable of learning the joint distribution from the marginal
distribution of two different domains.

The pix2pix was based on Conditional GAN and CycleGAN which was quite
similar to CoGAN in inter-domain feature learning. The CycleGAN was a
state-of-the-art model for the unpaired image to image translations. Its gener-
ator was capable of generating more realistic samples than any other methods
dealing with unpaired data. The pix2pix used the markovian PatchGAN [g]
discriminator network, and it displayed promising results for the paired im-
age transformation. The pix2pix restricted for paired image transformation
using the same set of images in different domains. pix2pix used the Patch-
GAN discriminator for labeling the generated image patches. The paired image
dataset collection is expensive and suffers from long procedural processes. To
remove such problems associated with pix2pix, CycleGAN proposed, which can
transform the inter-domain images without having paired datasets. CycleGAN
converts the source domain images into the target domain images of the same se-
mantic information. Further network converts them back to the source domain
images. Which helps to decreasing the divergence of the learning space and in-
creasing the quality of generated images. On the other side, Yi et al. proposed
DualGAN [10] similar to CycleGAN for the image-to-image translation, which
varies from CycleGAN in terms of the loss functions. The DualGAN exercises
reconstruction loss, whereas the CycleGAN practices the Cycle-consistency loss.
In most of the incidents, the CycleGAN outperforms the DualGAN. Thus, we
use the CycleGAN framework in the proposed model.

In a recent development, Self-Attention GAN is proposed [32], which is also
known as an intra-attention network capable of boosting the CNN performance
because the attention network focuses more on the essential features of the im-
ages. Self-Attention GAN learns the long-range multi-level dependencies by
attending the response at a specific position of images. The attention-based
networks help to eliminate intense training of deep neural networks compared
to CNN models [32] [35] [36]. Recently, the attention-based networks are also
proposed by Mejjati et al. [30] and Tang et al. [37] for image-to-image transla-
tion using GANs. Both of these methods used attention guided generator for the
foreground image generation and preserved the background information using
inverse mapping of generator output and concatenated them in final synthesiz-
ing. There is few more attention-based GANs for image-to-image translation,
including Multi-channel Attention GAN [38] and Deep-Attention GAN [39].
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Figure 1: A network block of Recurrent Inception Block (RCIN). Attention mechanism for network
architecture is attached in attention block.

Attribute guided GAN [40] is proposed for sketch generation. Attention-based
two-stream CNNs [41], [36] are proposed for spoofing detection in faces.

3 Proposed TVA-GAN Model

n this section, we present the proposed Thermal to Visible transformation At-
tention Guided Generative Adversarial Network (TVA-GAN) for Thermal to
Visible face synthesis. The proposed TVA-GAN architecture is illustrated in
Fig. 3. We use the paired dataset A7_; = (X, Yj)?:l, z € X and y € Y, where
x; and y; are the pairs of thermal and corresponding visible images. We use
CycleGAN [9] framework with U-Net [42] based architecture. The generator
network consists of an encoder and a decoder. The encoder is based on the
Recurrent-Inception modules and the decoder is based on the attention mecha-
nisms. The proposed TVA-GAN translates the images from source domain (x)
to target domain (y) and target domain (y) to source domain (z) in cyclic man-
ner. We use two Attention Guided Generator Networks, i.e., G, to translate
images from domain z to domain y (z — y) and G, to generate the image in
domain z from domain y (y — x). The generator network used in the proposed
TVA-GAN has an inbuilt attention mechanism .

The proposed TVA-GAN method trained end to end using the various types



of loss functions. For better convergence, we combined multiple losses to add
different curvatures in the optimization. The followings are the losses used in
this paper: Adversarial loss, Cycle loss, Synthesized loss, Cycle synthesized loss,
Feature reconstruction loss (i.e., perceptual loss)

Attention Block: We use attention gates [13] as Attention block in our pro-
posed network to capture sizeable receptive field and semantic contextual infor-
mation. While applying multi-stage CNN, the attention gate reduces the feature
responses for irrelevant background regions. There is no restriction for cropping
an ROI (region of interest) between the network layers. Attention gate output is
obtained from element-wise multiplication between input feature maps denoted
as zrand ¢f'* respectively.

2F is the feature map of k** layer in CNN network. zf € Rf* where Fj,

represents the number of feature maps in k** layer. Attention gate helps to focus
on subset of a specific region of target structure. The gating vector denoted by
g;, helps to analysing spatial regions by providing contextual and activation
information. Where g; € R¥% used for determining the focus region of pixel j.
In the attention block ReLU presented by o7;.

o1 (ij) = max(0, zf, ¢)

We use additive attention, where the attention map calculated between pre-
vious up-sampling layer and corresponding down-sampling layer of encoder block
in network. Hence both layers attention map added and perform operation for
getting ¢¥,,. Both the vectors after channel wise convolution of 1 summed ele-
ment wise because it shows better results than multiplicative attention [44](el-
ement wise multiplication increases the network complexity).

oy = ‘72(90T(‘71(VVZTZ§C + Wngj +bg)) +by)
2_;6 = (q§tt * Zk))

where 02(2j,c) = represents the Sigmoid activation function where

j and ¢ denotes the spatial and channel dimensions. W, € RFkxFint W, €
REsxFint and p € RFnexl represent the linear transformation. Fj,; denotes the
no of output channel for each 1 x 1 convolution, and b, € R and b, € RFint
represent the bias term. In brief, two input feature maps passed through the
1 x 1 x 1 channel-wise convolution after that combined through adding the out-
puts and pass by ReLU activation. Therefore second channel-wise convolution
was performed using 1 x 1 x 1 kernels and passed through the Sigmoid layer to
obtain the mask and concatenate the attention mask with up-sampled feature
maps. Attention Block shown in Fig. 1.

Note: The linear transformations are computed by 1 x 1 x 1 channel-wise con-
volutions. Attention block described in Table 2

Recurrent Inception Block For better learning of the contextual informa-
tion, we used recurrent block with ¢ = 2 occurrences. In the proposed RCIN,
the recurrent block results in more network depth with fewer parameters and
learning by weight sharing. For learning the globally as well locally, we used



the inception network with the recurrent network. Inception also helps to make
networks computationally cheaper in terms of parameters. While using two
recurrent blocks together, we found a large no of computational parameters be-
sides this. We used a novel recurrent inception module that reduces parameters
and learns both locally and globally due to large and small filter sizes (3x3, 5x5
and 1 x 1) . We pass each layer through ReLU layer(except the max-pooling
layer), as shown in Fig.1. To overcome the problem of vanishing gradients. The
ReLU used in architecture advantages with faster and more efficient learning
due to no error while back-propagating the gradients in the network with fewer
computational parameters than softmax. To make the network smaller, we fixed
the no of output filters for 5 x 5 most immense kernel size in inception block
kernel size; the no of output filters fixed to 16 instead of deriving from input pa-
rameters, because filters derived from input parameters results in more number
filter layers introduced in the network and increases the network complexity.
The recurrent inception block architecture described in Table 1.

Adversarial Loss: Adversarial loss measures the error for generator and
discriminator networks. The generator network generates the fake image speci-
mens. The discriminator network produces labels for the generated image sam-
ples as fake/real, depending upon how each generated image data distribution
matches the corresponding real image data distribution. The vanilla GAN uses
negative log-likelihood loss [45], which leads to instability in training. To over-
come the instability problem the proposed TVA-GAN model uses LSGAN [416].

The GAN adversarial loss for X — Y transformation is described as below
where G, denotes the generator function for transforming the images domain
x to domain y. While Dy is discriminator function for domain Y.

Lean(Gay, Dy) = Ming,, Mazp, =
Eywpdata(y) [(DY (y) - 1))2] + EINPdam(m) [(DY (Gwy (:13)) - 1)2]

where x € X and y € Y. Similarly, GAN adversarial loss computed for Y — X
transformation (Lgan(Gyz, Dx)) . Where G, denotes the generator function
for transforming the images domain y to domain x. While Dy is discriminator
function for domain X.

CG’AN(Gyau Dx) = Mi?’LGwMa.TDX =
EINPdata(z) [(DX (x) - 1))2] + EyNPdata(y) [(DX(GW (y)) - 1)2}

Cycle Loss: We use cycle-consistency loss (cycle loss) [9] in the objective
function of the proposed method. It is computed using the L, distance between
the real image and the cyclic reconstructed image in both forward and backward
transformations. The forward cycle loss is defined as,

Loyer = |12 = Gya(Gay(2))[1

Similarly, the backward cycle loss is computed as,

‘CCycB = Hy - Gzy(Gyl(y))Hl



wherex € X andyeY .

Cycle-Synthesized Loss: The cycle-synthesized loss [17] is used in the
proposed model to make training better. We calculate the cycle-synthesized
loss as L; loss between the cycled/reconstructed image and the synthesized
image in cross-domains. The cycle-synthesized losses are computed as,

Lesi, = ||ny(ny(y) - Ga:y(x)”l
Lest, = |Gya(Gay(®) — Gya(y)|l1

where Gy, (y) and Gay(x) are the synthesized images and Gy,(Ggy(z) and
Gay(Gyz(y) are the cycled images.

Synthesized Loss: Synthesized loss is calculated between the generated
image and the input image without using the detachment of computation graph,
which helps to back-propagate the network loss. For A € X and B € Y the
synthesized losses in domains A and B are defined as,

Lsi, = ||z — ny(y)”l
Lsiy = ||y — Gay(@)]]1-

Feature Reconstruction Loss: We estimate the loss for related feature
representation between the target image and the generated image. The same is
also performed for the target and the corresponding reconstructed image. We
use mean square error to compute the distance between the extracted features,
where feature extraction performed using the pre-trained VGG-19 network used
in the perceptual loss. For any trained network v, let ¥ (y) represents the
activation feature map of dimension Wy x Hy x C} corresponding to the kg,
convolution layer. Where C' represents a number of channel, W width of input
image and H height of input image, 1 is the pre-trained VGG-19 model. While
processing image y through pre-trained network’s ( 1) k' layer we get the
feature map ¥ (y).

ld’,k ~

feat(yay ||¢k(g) _wk(y)H%

)= 1
-~ WiHCy
where y and ¢ are the original and the generated images, respectively. Using the
above function, we compute the following feature reconstruction losses where
reXandyeY:
£fake (A

real

)
LI (B) =15k, (y, Gay (y

real

reat™(A) = 172 (@, Gay (G ()
reen(B) = 128, (y, Gy (Gay (1))
T (A) = 120 (Gay (1), Gy (G (2)))
T (B) = Uiy (Guya (@), Gy (Gay (1))
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Figure 2: Proposed TVA-GAN network architecture where RCIN denotes recurrent inception block.

Objective Function: The final objective function for the proposed TVA-
GAN is given as follows:

£<Gmy7 Gyz, DX7 DY) = ACfGAN + LC’yc"’
Lcsi+Lsi+ Lrr

where

Laan = (Lean(Gay, Dy) + Loan(Gyz, Dx))
Loye = Aoye(Loyer + Loyes)

Losi = Aosi(Losi, + Lesty)

Lsi = Asi(Lsi, + Lsig)

Lrr = Aseat(LLe7 (A) + LITT (B) + Lrecs™ (A)+

reat (B) + LY (A) + L5 (B))

where A is the weight hyperparameters for different type of losses.

4 Experimental Setup
4.1 Network Architecture

For training the network we use newly proposed recurrent inception block with
attention networks. The integration of recurrent inception block with attention
networks makes it better for learning in image-to-image translation task. We
use CycleGAN network as the base model for translation task. The proposed
method can generate more realistic and accurate translation task while synthe-
sising the images. The proposed method contains two Generator networks (i.e.,



Table 1: Recurrent Inception Block

Recurrent Inception Block (input_ch = in_ch, output_channels )
Layers kernel _size strid¢ Padding ‘channels
in,out
C1 = Conv2d 1 1 0 in_ch,in_ch
gzg‘{fd + BatchNorm + 3 1 1 in_ch,in_ch
Conv2d_Inception(1_1) 1 1 - in_ch,in_ch/4
ReLU
Conv2d_Inception(2-1) [ 1 | 1 | - \ in_ch,in_ch
ReLU
Conv2dInception(22) [ 3 | 1 | 1 \ in_ch,in_ch/4
ReLU
Conv2dInception(3.1) [ 1 | 1 | - \ in_ch,16
ReLU
Conv2d_Inception(32) [ 5 R | 16,inch/4
ReLU
Maxpool2d_Inception(4_1) 3 1 1 -
Conv2d_Inception(4_2) 1 1 - in_ch,in_ch/4
ReLU
C = Conat(1.1),(2-2),(3-2),(4-2)
(C1 + C) ,output_channels = input_channels
Table 2: Attention Block
W _g block, input= in
Layers kernel size | stride f;hannels
in,out
Conv2d + BatchNorm | 1 1 in,in/2
‘W _z block, input= in
Layers kernel size | stride f:hannels
in,out
Conv2d + BatchNorm | 1 1 in,in/2
A = ReLU(output(W_z) + output(W_g))
© block, input= in/2
Layers kernel size | stride f:hannels
in,out
Conv2d + BatchNorm | 1 1 in,in/in
Sigmoid
Out = p(A) * input((W_z))

Ggy, and Gy,) and two Discriminator networks (i.e., Dy and Dx) for both
domains, respectively. The generator has inbuilt attention mechanisms. Atten-
tion network was proposed by Goodfellow et al. for handling the long-range
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Table 3: Generator Network Architecture

channels

Layers kernel size | stride| Padding .
in,out

Encoding Block
R1 = Recurrent Inception Block ( in_channels =3, out_channels =64)

AvgPool2d \ 2 \ 2 \ - \ -
R2 = Recurrent Inception Block (in_channels =64, out_channels =128)
AvgPool2d ‘ 2 ‘ 2 ‘ - ‘ -
R3 = Recurrent Inception Block (in_channels =128, out_channels =256)
AvgPool2d | 2 | 2 | - | -
R4 = Recurrent Inception Block (in_channels =256, out_channels =512)
AvgPool2d | 2 | 2 | - | -

R5 = Recurrent Inception Block (in_channels =512, out_channels =1024)
Decoding +Concatenation

U5 = Upsample(scale_factor =
2.0) + Conv2d + BatchNorm + | 3 1 1 1024,512
ReLU
A4 =Attention_block (U5,R4)
C5 = Concat(A4,U5)
Recurrent Inception Block( C5 )
U4 = Upsample(scale_factor =
2.0) + Conv2d + BatchNorm + | 3 1 1 512,256
ReLU
A3 =Attention_block (U4,R3)
C4 = Concat(A3,U4)
Recurrent Inception Block (C4)
U3 = Upsample(scale_factor =
2.0) + Conv2d + BatchNorm + | 3 1 1 256,128
ReLU
A2 =Attention_block (U3,R2)
C3 = Concat(A2,U3)
Recurrent Inception Block( C3 )
U2 = Upsample(scale_factor =
2.0) + Conv2d + BatchNorm + | 3 1 1 128,64
ReLU
A1 =Attention_block (U2,R1)
C2 = Concat(A1,U2)
Recurrent Inception Block( C2 )
Conv2d | 1 | 1 | 0 | 64,3
tanh
dependencies in the network [32]. It also helps to the proposed TVA-GAN to

handle the background information without introducing any new network. We
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Table 4: Discriminator Network Architecture

Layers Padding | Stride | Output
Conv2d + LeakyReLU | 1 2 (64, 128, 128)
Conv2d + LeakyReLU

+ Instance Norm 1 2 (128, 64, 64)
Conv2d + LeakyReLU

+ Instance Norm 1 2 (256, 32, 32)
Conv2d + LeakyReLU

+ Instance Norm 1 2 (512, 16, 16)
Conv2d + LeakyReLU

+ Instance Norm 1 2 (512, 8, 8)
Conv2d + LeakyReLU

+ Instance Norm 1 1 (512, 7, 7)
Conv2d 1 1 (1,6,6)

follow the architecture having an integrated attention module to take care of
long-range dependencies.

Generator Network: We use the recurrent-inception attention-based net-
work architecture in this paper in the generator network. The encoder of gen-
erator network includes recurrent-inception block as examined in Table 1. The
recurrent-inception helps to improve the network performance and the learning
of optimal local sparse structure. The attention block consists of the Attention-
Gate [43] architecture outlined in Table 2. The attention block is used in
the decoder only after every up-sampling layer, followed by the Convolutional
layer combined with batch normalization and ReLLU activation function. The
attention-block finds the scalar attention value for each pixel vector by additive
attention learned through linear transformation using 1 x 1 x 1 channel wise
convolutions. The generator architecture summary is presented in Table 3.

Discriminator Network: In the discriminator network architecture, we
use the PatchGAN discriminator proposed in pix2pix, known as Markovian
Patch-GAN discriminator with five-layer architecture. We feed the discrimina-
tor network with 256 x 256 images generated by the generator network. Dis-
criminator’s 1% layer is a convolution layer with LeakyReLU activation function.
After that, each convolution layer is followed by the instance-normalization and
LeakyReLU activation function. We use 4 x 4 kernel in each Convolutional layer
with stride 2 and padding 1. Last layer of architecture contains only convolu-
tion layer. The network architecture of discriminator network is summarized in
Table 4.

4.2 Baseline Methods

The proposed TVA-GAN for Thermal-Visible synthesis is compared with cur-
rent baseline methods of image-to-image translation by following its original
settings.

12
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Figure 3: Proposed TVA-GAN Architecture.

4.2.1 pix2pix [28]

pix2pix is used for paired image dataset translates the images from one domain
to another using the U-net generator network with the PatchGAN discriminator
network. It works based on conditional data input. Original settings used for
evaluation of network performance. !

4.2.2 CycleGAN [9]

CycleGAN is proposed for the unpaired image-to-image translation method by
using cycle-consistency loss. It transforms the source domain image into the tar-
get domain image and then reconstructs the target domain image to the source
domain image. The cycle-consistency loss is calculated between the source image
and reconstructed image.

Thttps://github.com/junyanz/pytorch-CycleGAN-and-Pix2pix
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Figure 4: WHU-IIP dataset samples of face images in thermal domain (top) and visible domain
(bottom)

4.2.3 DualGAN [10]

DualGAN also refers to nearly the same methodology as CycleGAN, but uses
reconstruction loss rather than cycle-consistency loss. Also, it does not require
the paired data in the image translation task. DualGAN, with its original
setting, is used for performance evaluation. 2

4.2.4 PCSGAN [29]

PCSGAN also refers to nearly the same methodology as CycleGAN, but uses cy-
cle perceptual loss with synthesized perceptual loss rather than cycle-consistency
loss. It uses the paired data in the image translation task.

4.2.5 AGGAN [30]

An attention-guided model (AGGAN), proposed by Mejjati et al., extracts the
attention map to find the foreground and background of images. The attention
mechanism discovers the region of translation in the opposite domain by finding
the attention map. *

4.2.6 AttentionGAN [31]

AttentionGAN practices the same mechanism introduced in CycleGAN with an
inbuilt attention mechanism to find an attention mask with content mask to
transform the images from one domain to another. *

4.3 Datasets Used

We test our model for two thermal-visible datasets, namely WHU-IIP and Tufts
Face Thermal2RGB; both datasets contain the thermal and real visible face

2https://github.com/duxingren14/Dual GAN

3https://github.com/AlamiMejjati/Unsupervised- Attention-guided-Image-to-Image-
Translation

4https://github.com/Ha0Tang/AttentionGAN
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Figure 5: Tufts Face Thermal2RGB dataset samples of face images in thermal domain (top) and
visible domain (bottom)

pairs. We use the WHU-IIP [48] and Tufts Face Thermal2RGB [19] datasets
for thermal to visible face synthesis using the proposed TVA-GAN method and
existing GAN based methods. For WHU-IIP for thermal to real visual transfor-
mation, 552 training image pairs, and 240 testing image pairs are considered in
the experiments. We use 403 images for training and 156 images for testing in
paired manner for Tufts Face Thermal2RGB dataset. Tufts Face thermal2RGB
dataset contains more diverse data than WHU-IIP to judge the generalization
capability of the proposed model. It includes images of people having various
races with different facial attributes, including some people who have sunglasses
and spectacles.

4.4 Parameter Settings

For all the datasets used for training and testing, the images are resized to the
dimensions as 256 x 256 x 3 (where 3 denotes the no. of channels). Similar to
CycleGAN, pool size is set to 50. We use diffGrad optimizer [50] for the pro-
posed TVA-GAN because previously proposed optimizers [51], [52] suffer from
adjustment of learning-rate update. For the pix2pix method, we use the batch
normalization based on the original implementation. For the CycleGAN and
DualGAN, we use the batch normalization method as proposed in the original
network for comparison with our results. We use lsgan loss [46] as used in Cy-
cleGAN for training stability of the proposed model through out the training
process. The loss weight hyperparameters used in the final objective function
are listed in Table 7.

We use the diffGrad optimizer with a learning rate of 0.0002 and momentum
terms 1 = 0.5 and B2 = 0.999. The linear decay is used to reduce the opti-
mizer’s learning rate till 0. We update the learning rate after every 50 epochs.
The non-attention-based methods are trained for 200 epochs. The attention-
based methods, like AGGAN and AttentionGAN, are trained for 100 and 60
epochs, respectively, as per the source paper code. The proposed TVA-GAN
model is trained for 200 epochs. The proposed method converges in fewer epochs
(i-e., 100) for WHU-IIP dataset while requires 200 epochs for complex Tufts Face
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Table 5: The quantitative results comparison over WHU-IIP dataset of the proposed TVA-GAN
model with recent state-of-the-art GAN models. Note that the higher value is better for SSIM and
PSNR, whereas lower value is better for LPIPS and VGG-FaceLoss.

Method SSIM | LPIPS | PSNR | VGG-FaceLoss
pix2Pix 0.7709 | 0.087 29.52 0.6176
CycleGAN 0.7573 | 0.084 29.50 0.6271
DualGAN 0.7623 | 0.080 29.42 0.5887
PCSGAN 0.8163 | 0.063 30.08 0.5160

AGGAN 0.7423 | 0.085 29.02 0.6411
AttentionGAN 0.6368 | 0.115 28.79 0.8021
TVA-GAN(ours) | 0.8444 | 0.052 29.96 0.4756

Thermal2RGB dataset. We train the proposed method for 200 epochs for both
datasets.

4.5 FEvaluation Metrics

For the quantitative analysis of our results as compared to the state-of-the-
art methods, we use SSIM [53], LPIPS [54] , PSNR [53] and VGG-FaceLoss
evaluation metrics. The Structural Similarity Index (SSIM) is used to measure
the structural similarity between the generated and real visible face images.
SSIM shows better human-level visual perception. Higher SSIM means close
structural similarity between the generated image and the actual visible face
image. Peak Signal-to-Noise Ratio (PSNR) is computed to measure the qual-
ity of generated images. Learned Perceptual Image Patch Similarity (LPIPS)
helps to find the patch level similarity as we use the PatchGAN discrimina-
tor. This evaluation helps to understand the quality of generated images using
the proposed method. We also compute VGG-FaceLoss to ensure feature-level
similarity. It uses a pre-trained VGGFace to extract the features from a syn-
thesized face image and actual visible face image and computes the L1 distance
between them. We also use Visual Information Fidelity (VIF) [55] to study
the proposed method using different losses. VIF is used to compare the visual
information among the reference image and generated image. The VIF helps
to distinguish the generated images from the reference images as human visual
system does. So, VIF helps to understand how accurate transformation occurs
while our proposed method transforms the thermal images into visible images.

5 Experimental Results and Observations

5.1 Quantitative Result Analysis

The proposed TVA-GAN generates more realistic and natural-looking images
while transforming the thermal domain into the visual domain. TVA-GAN
shows more promising results than the state-of-the-art attention and non-attention-
based GAN models.
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Table 6: The quantitative results comparison over Tufts FaceThermal2RGB dataset of the proposed
TVA-GAN model with recent state-of-the-art GAN models. Note that the higher value is better for
SSIM and PSNR, whereas lower value is better for LPIPS and VGG-FaceLoss.

Method SSIM | LPIPS | PSNR | VGG-FaceLoss
pix2Pix 0.5027 | 0.231 28.36 0.5980
CycleGAN 0.5805 | 0.182 28.62 0.7832
DualGAN 0.5652 | 0.219 28.77 0.7684

PCSGAN 0.6244 | 0.127 31.02 0.5569

AGGAN 0.5876 | 0.188 28.76 0.8227
AttentionGAN 0.5534 | 0.212 28.54 0.8092
TVA-GAN (ours) | 0.6924 | 0.048 31.52 0.3321

Thermal Ground Truth Pix2Pix CycleGAN DualGAN PCSGAN AGGAN AttentionGAN TVA-GAN

A
Onn
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Figure 6: Qualitative comparison for Thermal to Visible domain transformation using Tufts Face
Thermal2RGB dataset. From left to right: Thermal images, corresponding Ground Truth images,
images generated using pix2pix, CycleGAN, DualGAN, PCSGAN, AGGAN, AttentionGAN and
TVA-GAN models. The TVA-GAN generates more realistic and fair images.

Table 7: Training parameter values used for different losses.

Notation | Value

Acye 10

)\feat 1

Asi 15

ACsi 1 for Tufts, 0 for WHU-IIP

The proposed method compared with recent state-of-the-art attention-based
method AGGAN [30] and AttentionGAN [31], as well as non-attention-based
method as pix2pix [28],CycleGAN [9], DualGAN [10], PCSGAN [29].

For thermal to visual synthesis, the quantitative results of TVA-GAN con-
cerning various state-of-the-art methods are reported in Table 5 for the WHU-
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Table 8: Losses notations used in the proposed TVA-GAN model.

Loss Notification
Adversarial Loss AL
Cycle Loss Cyc
Synthesized Loss Sl
Cycle-Synthesized Loss Csl
Feature Reconstruction Loss FR
I Thermal I Ground-Truth Pix2Pix | CycleGAN DualGAN | PCSGAN | AGGAN I AttentionGAN | TVA-GAN |

al-a

| i | A

Figure 7: Qualitative comparison for transformation of Thermal to Visible using WHU-IIP face
dataset. From left to right: Thermal images, corresponding Ground Truth images, images generated
using pix2pix, CycleGAN, DualGAN, PCSGAN, AGGAN, AttentionGAN and TVA-GAN models.
The TVA-GAN generates more realistic and fair images.

Table 9: The quantitative results comparison of the proposed TVA-GAN model using various Losses
for WHU-IIP dataset. The higher value is better except for LPIPS.

Method SSIM VIF PSNR | LPIPS
AL 0.5245 | 0.7817 28.37 0.196
AL+Cyc 0.7664 | 0.8298 29.30 0.083
AL+Cyc+Sl 0.8290 | 0.8341 29.92 0.058
AL+Cyc+SIHFR 0.8444 | 0.8343 29.96 0.052
AL+Cyc+S1+FR+Csl | 0.8444 | 0.8343 | 29.96 0.052

Table 10: The quantitative results comparison of the proposed TVA-GAN model using various
Losses for Tufts Face Thermal2RGB dataset. The higher value is better except for LPIPS.

Method SSIM VIF PSNR | LPIPS
AL 0.4963 0.7829 29.10 0.198
AL+Cyc 0.4867 0.7769 28.87 0.219
AL+Cyc+S1 0.6813 0.8056 31.46 0.070
AL4Cyc+SI+FR 0.6905 0.8044 31.35 0.050
AL+ Cyc+SI4+FR+Csl 0.6924 | 0.8083 | 31.52 0.048
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ITP dataset and Table 6 for the Tufts Face Thermal2RGB dataset. We found
that TVA-GAN performs better than all state-of-art methods in terms of the
SSIM, LPIPS, and VGG-FacelLoss for both WHU-IIP and Tufts Face Ther-
mal2RGB datasets. It’s performance is slightly low in terms of PSNR compared
to PCSGAN for the WHU-IIP dataset.

e The gain in term of % for SSIM score using WHU-IIP dataset, as reported
in Table 5, is {9.55%, 11.50%, 10.77%, 3.44% 13.75%, 32.60%} higher than
non-attention-based methods such as pix2pix, CycleGAN, DualGAN, PC-
SGAN and attention-based methods such as AGGAN and AttentionGAN,
respectively.

e The gain in term of % for PSNR score using WHU-IIP dataset, as reported
in Table 5, is {1.49%, 1.56%, 1.84%, —0.39%, 3.24%, 4.06%} higher than
non-attention-based methods such as pix2pix, CycleGAN, DualGAN, PC-
SGAN and attention-based methods such as AGGAN and AttentionGAN,
respectively.

e The gain in term of % for SSIM score using Tufts dataset, as reported in
Table 6, is {37.74%, 19.28%, 22.51%, 10.89% 17.84%, 25.12%} higher than
non-attention-based methods such as pix2pix, CycleGAN, DualGAN, PC-
SGAN and attention-based methods such as AGGAN and AttentionGAN,

respectively.

e The gain in term of % for PSNR score using Tufts Face Thermal2RGB
dataset, as reported in Table 6, is {11.14%, 10.13%, 9.56% , 1.61% 9.60% ,
10.44%} higher than non-attention-based methods such as pix2pix, Cycle-
GAN, DualGAN, PCSGAN and attention-based methods such as AGGAN
and AttentionGAN, respectively.

On the other hand, the proposed TVA-GAN shows lower score for LPIPS and
VGG-FaceLoss for both WHU-IIP and Tufts Face Thermal2RGB datasets.

e The proposed TVA-GAN shows reduction for LPIPS in terms of %, as
reported in Table 5, for WHU-IIP dataset by {40.23%, 38.01%, 35.00%,
17.46% 38.82%, 54.78%} than pix2pix, CycleGAN, DualGAN, PCSGAN,
AGGAN, and AttentionGAN, respectively.

e The proposed TVA-GAN shows reduction for LPIPS in terms of %, as
reported in Table 6, for Tufts Face Thermal2RGB dataset by {79.22%,
73.63%, 78.08%, 62.20% 74.47%, 77.36%} than pix2p<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>