This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which
this version may no longer be accessible.

Decision Boundary Computation-based
Over-sampling for Imbalance Learning

Yi Sun, Lijun Cai, Junlin Xu, Bo Liao, and Wen Zhu

Abstract—Over-sampling is a very effective method to solve
the imbalanced problem by generating new synthetic samples
for the minority class. But rare over-sampling methods focus
on the borderline between classes and only use the linear-
interpolation between boundary samples to fill the decision
boundary, so not take full use of information in the decision
boundary at all. To fill this gap, one novel method named Decision
Boundary Computation-based Oversampling is proposed. Firsts,
the novel method treats surrounding areas of both boundary
majority and minority samples as the decision boundary. Then,
compute it’s area belonging to majority class and treat the
remained one as the area belonging to the minority class. Thus,
the novel method greatly enhances the full use of boundary
information and implicitly complements the nature insufficiency
of information of minority class at the same time. Finally, new
synthetic samples are generated in the partition of decision
boundary of minority class. Extensive experiments indicate the
good performance of proposed method when compared with
other state-of-art methods.

Index Terms—Imbalance learning, decision boundary, area
partition, over-sampling.

I. INTRODUCTION

LASS imbalanced problem, served as one of the most
Cchallenging problems in data mining [1] and machine
learning [2], appears in many real-world applications like
image classification [3], [4], credit fraud detection [5], stream
data mining [6], face recognition [7] and so on. Instead
of the multi-class classification [8] [9], we focus on the
binary classification of imbalanced problem that one class with
smaller number of samples is called as the minority class and
another one as the majority class. Generally in one imbalanced
problem, the classifier tends to bias towards the recognition of
majority samples. For example, given 10 minority samples and
90 majority samples, the classifier can achieve 90% accuracy
when classifying all samples as the majority class. While many
real-world applications care more about the recognition of
rare minority samples, especially for some secure domains.
So, learning from imbalanced data is a long-standing and
significant challenge for machine learning [10].

To deal with the imbalanced problem, several techniques
have been reported and proved to be efficient that are mainly
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involving the algorithm-level strategy [11]-[13] and the data-
level strategy [14]-[16]. First for the algorithm-level strategy,
the cost-sensitive learning [17], [18] and the ensemble learning
[19], [20] are two commonly used techniques to cope with
the imbalanced problem. Besides, the algorithm-level strategy
also includes some other techniques like hyperplane shift [21],
kernel perturbation [22] and multiobjective optimization [23].
Then, for the data-level strategy, the minority over-sampling
[24], [25] and majority under-sampling [26], [27] are two com-
monly used techniques to cope with the imbalanced problem.
The minority over-sampling technique balances the number of
samples between classes by generating new synthetic samples
for the minority class [28], [29]. Inversely, the under-sampling
technique generally removes majority samples [30] or noisy
minority samples [27] which may lead to loss of informative
samples [31]. Thus, in this paper, we focus on the over-
sampling technique for it’s characteristic that does not miss
any original information.

The over-sampling technique mainly includes the linear-
interpolation [32]-[34] and non-linear or structure-preserving
interpolation methods [35]-[37]. For example, synthetic mi-
nority over-sampling technique(SMOTE) [32] generates one
new synthetic sample by the linear interpolation between
the target minority sample and it’s random one of k-nearest
minority neighbours. On the basis of SMOTE, the linear-
interpolation method also involves in the borderline minority
over-sampling [38], hard-to-learn minority over-sampling [33],
[39] and kernel over-sampling [14], [25] techniques. Contrary
to those linear-interpolation methods, structure-preserving in-
terpolation method first estimates the corresponding structure
of minority class, then generates new samples to maintain or
preserve this estimated structure. For example, in methods of
[35] and [36], they use the covariance of minority class to
generate new synthetic samples.

However, only several over-sampling methods [33], [38],
[39] focus on the borderline between classes. And those
borderline-related over-sampling methods only use the linear-
interpolation between boundary samples to fill the decision
boundary, so not fully take use of information in the decision
boundary at all. To fill this gap, we, therefore, propose one
Decision Boundary Computation-based Over-sampling (DBO)
method to fill this gap. From the intuitive observation, the
design boundary not only includes individual samples, but also
their surrounding areas. Thus, to take full use of boundary
information, we first compute the decision boundary on the
basis of the boundary majority and minority samples and
their surrounding areas; and compute the partition belonging
to the majority class on the basis of the boundary majority
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samples and their surrounding areas. Then, we obtain the
partition belonging to the minority class by subtracting the
partition of majority class from the decision boundary. For
convenience, we call the decision boundary as the decision
boundary area, the partition belonging to the minority class
as the boundary minority area and the partition belonging to
the majority class as the boundary majority area. Finally, we
generate new synthetic samples in the boundary minority area
to cope with the imbalanced problem.
Contributions are summarized as:

1) We innovatively attempt to compute the decision bound-
ary area between classes and divide it into different
boundary areas corresponding to different classes, pro-
viding a new view for many classification tasks.

2) We propose one novel minority over-sampling method
that generates synthetic samples in the boundary minor-
ity area for class imbalance problem.

3) We take full use of information on the decision bound-
ary by simultaneously considering boundary individual
samples and their surrounding areas.

4) The subtraction of boundary majority area can well
avoid synthetic samples deeply rooting into the majority
area and make our over-sampling method robust to
several outliers at the same time.

The rest of paper is organized as follows. Sections II
reviews related literature. Section III presents the decision
boundary computation-based over-sampling (DBO) method.
Experimental results and discussion are respectively prepared
in Section IV and V. In Sections VI, the conclusion is included.

II. RELATED WORK AND MOTIVATION
A. Related Work

First for linear-interpolation methods, Han et al. [38] pro-
pose B-SMOTEI1 and B-SMOTE2 to only generate synthetic
samples for borderline minority samples. Where one minority
sample is considered as the borderline one when the number
of neighbouring majority is larger than the minority. For ex-
ample, denoting the number of majority samples in m nearest
neighbours as m’, one minority sample is determined as the
borderline one when m/2 < m/<m. For those borderline
minority samples, B-SMOTEI1 searches k nearest neighbours
from the minority class for linear-interpolation to generate new
synthetic samples; specially, B-SMOTE2 searches k nearest
neighbours from both classes for linear-interpolation. To make
subtler and better distinctions between different borderline
minority samples, He et al. [33] propose ADASYN to assign
different borderline minority with different weights according
to the ratio m’/m. Where the higher weight means higher
level of difficulty in learning, and calling those borderline
minority samples as hard-to-learn minority samples. Slightly
different, Barua et al. [39] propose MWMOTE to assign
different borderline minority with different weights according
to their Euclidean distance from the nearest majority samples.
Specially, MWMOTE does not use k nearest neighbours, but
clusters for linear-interpolation. For example, for one hard-
to-learn minority sample, MWMOTE searches one random
minority sample from the same cluster for linear-interpolation.

And for non-linear or structure-preserving interpolation
methods, Sharma et al. [40] propose SWIM to generate
synthetic samples with the same Mahalanobis distance from
the majority class mean. Besides, Cao et al. [35] propose
INOS to generate synthetic samples in the whole data space
with the corresponding covariance structure of minority class
and subsequently cleans the synthetic data that nearer to
majority samples. And Xie et al. [41] propose GDO to generate
synthetic samples to follow a Gaussian distribution model.

As seen in Fig. 1. (a), B-SMOTE1, ADASYN and MW-
MOTE may generate one new sample S1 in the line between
point A and B; B-SMOTE2 generate one new sample S2 in
the line between point A and D. As seen in Fig. 1. (b), SWIM
may generate new samples S1 and S2 in the curve with the
same Mahalanobis distance from the majority class mean. As
seen in Fig. 1. (c), INOS may generate new samples S1 and
S2 in the global minority area with corresponding covariance
structure of minority class and nearer to the minority class at
the same time. As seen in Fig. 1. (d), GDO may generate new
samples S1 and S2 to follow a Gaussian distribution model of
point A.

Obviously, linear-interpolation methods only use individual
minority and majority samples for linear-interpolation and not
consider their surrounding areas at all. And non-linear or
structure-preserving interpolation methods do not consider the
borderline, and ignore surrounding areas of boundary majority
samples.

B. Motivation

From the intuitive observation, boundary individual samples
and their surrounding areas together constitute the decision
boundary area as seen in Fig. 2. (c) in R2. Where the green
area means the boundary majority area and the blue area
means the boundary minority area, and the green and blue
area together constitute the decision boundary area. So we ask
whether generating synthetic samples in the boundary minority
area can help much for the classification of imbalanced data.
However, two problems make it difficult to directly compute
the boundary minority area. On the one hand, rare number
of boundary minority samples lead to the missing information
in the boundary minority area. On the other hand, complex
distributions of data make it impossible to directly compute
the integral or continuous boundary minority area.

To solve the first problem, we borrow information from
boundary majority samples. Owing to enough boundary ma-
jority samples, we first combine them with rare boundary
minority samples to compute the decision boundary area, then
only use them to compute the boundary majority area; finally,
we can obtain the boundary minority area by subtracting
the boundary majority area from the decision boundary area.
To solve the second problem, we do not directly compute
the integral boundary area. In other words, we first compute
a series of local boundary areas, then integrate those local
boundary areas together to approximately represent the integral
boundary area. Details of the proposed method are described
below.
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Fig. 1. Strategies of current over-sampling works. (a) over-sampling in the line, (b) over-sampling in the curve, (c) over-sampling in the global minority area,
(d) over-sampling in the local minority area. In (c) and (d), the complete area is difficult to draw, thus we use scatters to approximately represent the scope

of corresponding minority area.
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Fig. 2. Motivation of proposed method. (a) original imbalanced samples; (b)
linear interpolation; (c) decision boundary between classes.

C. Preliminary knowledge of area computation

In this section, we introduce how to compute the corre-
sponding local area when give a group of samples. For ex-
ample, when given one group of samples {x1,xo, T3, ..., Ty }»
we compute it’s corresponding area as the set:

S={az| (z-2)"Q ' (x —1) <1} (1)

where Q is one symmetric and positive definite matrix; and &
is the center of this group:

1 m
T - X]E:lxj 2)

Obviously, this area is just one ellipsoid where @) defines
how far it extends in each direction from z. To facilitate
understanding, we compute:

Q' =(axU)"" 3)

where U is the covariance matrix of this group; « is one
predefined length for this covariance matrix U. And the inverse
matrix of covariance matrix can be obtained by the eigen
decomposition of the covariance matrix U:

Ut=WVEVH)t=VTE'V ©)

where E is one diagonal matrix with diagonal elements as
(A1, A2, ..., A\ (supposing no zero eigen value existed).

As seen in Fig.3. (a), the black circle denotes one group of
samples. Fig.3. (b) plots the area of this group when assigning

a=ays=(va—2) U Nws—7) 5)

where point A is one sample in this group, O is the center
of this group; x4 is one 2-D coordinate of vector for point
A. And Fig.3. (c) plots the area of this group when assigning
a = 1.5 X ay. Obviously, A is one point on the surface of this
area when assigning o = «a4; A is one interior point when
assigning a>a4 (for example o = 1.5 X a4). To describe
conveniently, we mean a4 as the length of A (on covariance
matrix U).
Thus, Eq. 1 can be transformed as:

S ={z| (z —2)TU Yz —z) < a} (6)

To this end, we can compute the area of one group of
samples when assigning it’s corresponding covariance matrix
with one length «. In other words, the certain area depends
on the selection of the corresponding group of samples and
the assignment of length a.

III. DECISION BOUNDARY COMPUTATION-BASED
OVER-SAMPLING

Intuitively, in the binary classification task, one side of the
decision boundary area belongs to the majority class, and
anther side belongs to the minority class. Of course, directly
estimating the global decision boundary area is difficult. Thus,
from the perspective of the local area, we estimate one
ellipsoid that covering a local area belong to the decision
boundary, then divide it into two partitions. Similarly, directly
dividing this ellipsoid is difficult, thus we first estimate another
one ellipsoid that covers the corresponding local area belong
to majority class, then treat the intersection of two ellipsoids
belong to the majority class and the remained area belong to
the minority class. For convenience, we also call the ellipsoid
that covers the local area belong to the decision boundary as
the local decision boundary area or the ellipsoid of decision
boundary area; and the ellipsoid that covers the local area
belong to the majority class as the local boundary majority
area or the ellipsoid of boundary majority area. As seen in
Fig.4, the general procedure chart is plotted. Obviously, after
subtracting the ellipsoid of local boundary majority area from
the ellipsoid of local decision boundary area, the remained area
is served as the local boundary minority area. In the end, we
can integrate all those local boundary minority areas together
to approximately represent the integral boundary minority
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Fig. 3. Area computation. (a) a group of samples. (b) corresponding area when assigning o = a4 (c) corresponding area when assigning o = 2 X a4; the
red arrow denotes the predefined length « for the covariance matrix of the group.

area.

To this end, the proposed method mainly involves into
three steps respectively as the computation of the ellipsoid
of decision boundary area, the computation of the ellipsoid
of boundary majority area and the generation of synthetic
samples in the boundary minority area.

A. decision boundary area

1) a group of samples: In this subsection, we first compute
boundary minority samples, then select the group of samples
for each boundary minority sample. As seen in Fig.2, boundary
minority samples are nearer to the majority class than other
non-boundary minority samples. Thus, for each majority sam-
ples, we first compute it’s nearest minority one and add it to

Bl :{wl,wg,...,wi,...,wn} (7)
where n is the number of boundary minority samples and w;
is the i-th boundary minority sample in B;. Then, for each
boundary minority sample w in Bj, compute it’s k£ nearest
majority samples:

B2 - {217227"7276} (8)
where By includes k nearest majority samples for w.
Finally, select the group of samples as.
G:{’w,hl,hg,...,hk} (9)
hy =22 (10)

Obviously, except w, G; just includes mean points between
w and it’s k nearest majority samples.

Suppose h; = (1 — ratio) x w + ratio x z;, as seen in
Fig.5, the reason why we choose mean points instead of k
nearest majority samples is plotted and discussed. Obviously
as seen in Fig.5. (d), if selecting k nearest majority samples,
the local decision boundary area tends to cover the whole
local boundary majority area and the remained boundary
minority area will deeply root into the majority area. Details
and deep explanation are seen in the next subsection.

2) corresponding length: In this subsection, we assign one
length to the corresponding covariance matrix of preferentially
selected group. Firsts, compute the center and covariance
matrix of group G as PP and UPB. Then, compute the length

of w:

~DB

~-DB _z

zPP)TUPP) " (w )
To cover both w and it’s surrounding area with enough size,
we compute the corresponding length of the local decision

boundary area:

(11

a; = (w—

gy = 2*&1 (12)

Since the group of samples and corresponding length are
respectively selected and assigned, we compute the local
decision boundary area:

SPP = {a| (x = 3PP)T(UPP) 2 - 2PF) <} (13)
where (UPB)~! is the inverse matrix which can be obtained
by the eigen decomposition in Eq. 4.

As seen in Fig.4. (b) and (d), the local decision boundary
area does not deeply root in the majority area and is of
enough size at the same time. In detail, for the first goal, as
seen in Fig.5. (b), we zoom out the local decision boundary
area by setting ratio = 0.5. Obviously in Fig.5. (a), smaller
ratio makes the local decision boundary area smaller like
ratio = 0.25. As seen in Fig.5. (c) or (d), larger ratio makes
the local decision boundary area larger like ratio = 0.75
or 1. For the second goal, as seen in Fig.4. (b) and Fig.5.
(b), we zoom in the local decision boundary area by setting
a = 2 X ap (where point B is the target boundary minority
sample) to cover both point B and it’s near local minority
area. In general, we first double down this area, then double
up this area to simultaneously meet above two goals. After
reviewing the whole method, those two zooming operations
can be further understood.

B. Boundary majority area

Similarly, we first select a group of samples, then assign one
length to the corresponding covariance matrix. Different from
the local decision boundary area, for each boundary minority
sample w, we directly select By in Eq. 8 as the group.

Firsts, compute the center and covariance matrix of the
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group By as 2M47 and UMAY, Then, compute the lengths
of w and z; (z7 is the nearest majority to w):

_ GMANT (UMATY=1(y, _ zMAT

ag = (w (14)

. fAIAJ)T(UMAJ)71(2'1 _ Q_L‘MAJ) (15)

g = (21

As seen in Fig. 6. (a-c), we respectively set as as oy, az and
0.5% (g +a3). Obviously, when setting a5 = 0.5 (g + 3),
almost the half of the ellipsoid of local decision boundary
area belongs to the majority class that intuitively cutting the
corresponding ellipsoid into nearly two halves. As seen in Fig.
6. (d-e), we respectively set a5 as ay + 0.5 % (a3 — aq) (or
0.5 % (g + a3)) and ay + 0.5 % |ag — a4|. Obviously, when
setting a5 = g +0.5% |ag — |, the remained minority area is
empty that robust to several outliers or over-lapped ones. Thus,
we compute the corresponding length of the local boundary
majority area as:

a5 = ayg + 0.5 X |Oé3—0¢4‘ (16)

Since the group of samples and corresponding length are
respectively selected and assigned, we compute the local
boundary majority area as:

SMAJ _ {xl (,13—jMAJ)T(UMAJ)_l(x—jMAJ) < (,Y5}
)

5 5 5 5
(a) imbalanced data (b) the local decison boundary area (¢) the local boundary majority area

5 the local decision boundary area

arest majorty and the target minority

the intersecting area|of local decision boundary and boundary majority areas
"ot local decision boundary and boun

5 0 5
(d) the local boundary minority area

Fig. 4. The computation of the local boundary minority area. (a) imbalanced
data, (b) the ellipsoid of local decision boundary area, (c) the ellipsoid of
local boundary majority area, (d) the local boundary minority area. Since the
ellipsoid of local decision boundary area and the ellipsoid of local boundary
majority area are computed, we obtain the local minority area by subtracting
the ellipsoid of local boundary majority area.

C. Generation of synthetic samples

In this section, we first give the local boundary minority
area, then give the final integral boundary areas and finally
generate new synthetic samples. Firstly, since the local deci-
sion boundary and boundary majority areas are computed, we
obtain the local boundary minority area as:

SMIN — SDB _ SDB ﬁSMAJ (18)
As seen in Fig.4. (d), we subtract the intersecting area from the
local decision boundary area and the remained area denotes
the local boundary minority area.

Then, we respectively integrate those local boundary areas

the local decisiSr{ boundary area

the intersecting area of local decision boundary and boundary majority aras
5 5 5

5 0 5 5 0 5 5 0 5
(a) rati0=0.25 (©) ratio=0.75

(b) ratio=0.5

majority samples
minority samples

the target minority sample

K nearest majority samples

points with different ratios of linear interpolation between k nearest majority and the target minority

(d) ratio=1

Fig. 5. Different selections of the group of samples from the local decision
boundary area. (a) ratio = 0.25, (b) ratio = 0.5, (c) ratio = 0.75, (d)
ratio = 1.

together to approximately represent the corresponding integral

boundary areas.
n

Sips =) SP* (19)
i=1

Simas = U g (20)
i=1

Srvin = | SN @1
=1

where n denotes the number of boundary minority samples
in By in Eq. 7; S;pp is the integral decision boundary area,
St ag is the integral boundary majority area and Sypsrn is
the integral boundary minority area.

Finally, we generate new synthetic samples in the boundary
minority area. Of course, direct generation in the boundary
minority area is impossible. As seen in Eq. 18, we only
own the information of the local decision boundary area and
boundary majority area. Thus, we first generate the synthetic
sample in the local decision boundary area, then judge whether
it falls in the boundary majority area.

In detail, we first use the Gaussian distribution (G(u =
1,0 = 1)) to generate one random value, then use it to obtain
a random length in [0,1] as:

L= —-1G(w o))

Next, randomly generate one normalized direction satisfying

(22)

ld]| =1 (23)
Compute the temporary sample:
t =VPB(EPE) 2 (ay « 1+ d) + 2PP (24)

where VP8 and EPE are components in the eigen decompo-
sition of covariance matrix UP? in Eq.4.

In the last step, judge whether ¢ falls in S% by Eq.17.
If not, record ¢ as the new synthetic sample; if is, re-generate
one temporary sample ¢ again.

In experience, we restrict the time of re-generation as 100
for the possibility that the local boundary majority area would
cover the whole local decision boundary area. The algorithm
of DBO is seen in Algorithm S1.
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IV. EXPERIMENTAL RESULTS

In this section, we pick three borderline-related methods as
B-SMOTE2 [38], ADASYN [33] and MWMOTE [39], and
other three state-of-the-art methods as INOS [35], SWIM [40]
and GDO [41], for comparisons. Firsts, we generate synthetic
samples for those methods in 2D emulational datasets for
visualization. Then, we test all methods on real-world bench-
mark datasets that collected from the UCI machine learning
repository [42] and [43]; and carry statistical hypothesis tests
for those methods. Finally, we analyse those over-sampling
methods.

A. Synthetic data in 2D space

As seen in Fig. 7, we generate synthetic samples for above
picked methods in three 2-D datasets, respectively as Circle
dataset, Triangle dataset and lappedCircle dataset. Specially,
for Triangle dataset and lappedCircle dataset, we add them
with several outliers. In a row of pictures, first plot the original
data, then plot synthetic samples of each methods. Where
black denotes majority samples and red denotes minority
samples. For each method, generate n,,4; — Nmin Synthetic
samples, where 7,,4; is the number of majority samples and
Nmin 18 the number of minority samples in the original data.

Obviously, our method DBO is robust to some outliers
and almost generates all synthetic samples in the decision
boundary that to form a hollow structure as seen in Fig. 7.
On the one hand, this implies that DBO takes full use of
information in the decision boundary. On the other hand, DBO
well divides the decision boundary area into the boundary
majority and minority areas.

(©) a® = 0.5% (a* +a?);

(e) a® = a* +0.5*|a%-0%|

d) a®=05%(a*+a3) =a?+0.5%(a®—a?); ()

B. Comparison on real-world benchmark datasets

In this section, we evaluate the performance of each method
on real-world benchmark datasets from the UCI repository
[42] and [43] as seen in Table S1. Before the experiment,
all datasets are preprocessed by the standardized z-scores.
We generate 7,4 — Nmsn Synthetic samples for each over-
sampling methods. And select NN (Neural Network), SVM
(Support Vector Machine) and AdaBoostM1 (Method: Ad-
aBoostM, NLearn: 10, Learners: decision tree) as the base
classifiers. And we apply a twofold SKFCV (stratified k-fold
cross validation, and setting k=2) for 30 times, that resulting in
60 runs on each dataset; then record the corresponding mean
and standard deviation of 60 runs as the results.

To evaluate the classification performance, accuracy is cur-
rently used to evaluate the classification performance. But it
does not apply to imbalanced data at all. The reason is that
imbalanced classification cares more about the minority class.
Thus, we select g-mean as the measurement to evaluate the
classification performance. Besides, also select precision and
recall for the comparison between different methods.

TP
precision = m
recall = __rr
TP+ FN (25)

o TP x TN
9 ~\| (TP + FN) x (TN + FP)

where TP, TN, FN and FP are respectively as the number
of true positives, true negatives, false negatives and false
positives.

As shown in Table S2, S3 and I, the recall, precision and
g-mean of each method on the classifier NN are respectively
displayed; besides, the recall, precision and g-mean on SVM
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are shown in Table S6, S7 and S8, and the recall, precision
and g-mean on AdaBoostM1 are shown in Table S11, S12 and
S13. As shown in Fig. S1, S2 and S3, their best-rank counts
are respectively plotted. Where Or¢ means the method whose
classifier is directly trained on imbalanced dataset. Different
from the Ori method, other methods simultaneously send
imbalanced dataset and synthetic samples to the classifier. And
in each table cell, except the mean and standard deviation of
60 runs, the rank among all methods is recorded in a bracket
(1 denotes the best rank).

As shown in Table S4, S9 and S14, mean ranks of precision,
recall and g-mean on NN, SVM and AdaBoostM1 are com-
puted for the further comparison. Besides, the Friedman test,
as one of non-parametric statistical test, is applied to judge
whether the significant difference exists among all methods.
For example, as seen in Table S4, the actual value among
all methods on g-mean is 92.18 that is larger than the table
look-op value 14.07 (n=8-1, o = 0.05); we reject the original
hypothesis; thus there exists the significant difference among
all methods on g-mean. Moreover, the Bonferroni-Dunn test,
as one of post-hoc test, is applied to judge whether the
significant difference exists between our method DBO and
any one of other methods when DBO achieves the best mean
rank. For example, as seen in Table S4, the gap of mean rank
on g-mean between B-SMOTE2 and DBO is 2.24 (4.47-2.23)
that is larger than the critical value 1.70; thus there exists the
significant difference between B-SMOTE?2 and DBO; in other
words, DBO performs better than B-SMOTE2; and we denote
a dagger symbol after the mean rank of B-SMOTE?2 as 4.471.

As shown in Table S5, S10 and S15, the Wilcoxon paired
signed-rank test, as one of non-parametric statistical hypothe-
sis test, is applied for pairwise comparisons between DBO and
one of other methods that the significant difference does not
exist after using the Bonferroni-Dunn test. In the Wilcoxon
paired signed-rank test, the significant difference exists when
the corresponding p-value is smaller than 0.05.

C. Performance analysis

In this subsection, we analyse the performance between
different methods according to their mean ranks in Table
S4 and S9. Roughly, DBO, SWIM, GDO, ADASYN and B-
SMOTE2 obtain the good recall but worse precision; INOS,
MWMOTE and Ori obtain the worse recall but better pre-
cision. It is straightforward that the former generates more
synthetic samples in the decision boundary than the latter.
In detail, DBO just generates synthetic samples in the de-
cision boundary. SWIM generates synthetic samples along
the borderline for boundary minority samples. GDO and
ADASYN assign higher weights to boundary minority samples
so generate more synthetic samples for them. B-SMOTE2 only
generates synthetic samples for boundary minority samples.
On the contrary, INOS generates synthetic samples in the in-
tegral minority area. And MWMOTE similarly assigns higher
weights to boundary minority samples, but use clusters to
generate synthetic samples that not tends to fall in the decision
boundary.

From the perspective of g-mean, better g-mean means the
good recognition rate of both minority and majority classes.
As seen in Table S4, S9 and S14, DBO achieves the best mean
ranks on g-mean. This implies DBO can well-meet the trade-
off of classification between the minority and majority classes.

Specially for precision, the results of DBO of all three
classifiers are not promising. The reason is that DBO just gen-
erates synthetic samples for the minority class in the decision
boundary that make the classifier bias toward the minority
class in turn. Thus, more boundary samples are identified as
minority class, in other words, more majority samples are
wrongly identified as minority class, that increasing the false
positives (F'P) so make the not promising average precision.
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TABLE I
NN: AVERAGE G-MEAN

Dataset Ori B-SMOTE2 ADASYN MWMOTE INOS SWIM GDO DBO
Cancer wpbc ret 0.4232£0.2073(8) 0.63551+0.0622(1) 0.6278£0.0922(3) 0.630810.0829(2) 0.6164£0.0701(4) 0.602810.0949(7) 0.60800.0804(6) 0.6094£0.1151(5)
Diabetes absent 0.690140.0517(8) 0.733740.0304(2) 0.732940.0296(3) 0.730940.0255(6) 0.7311£0.0249(5) 0.735610.0270(1) 0.726940.0362(7) 0.732840.0202(4)
Housing MEDV >35 0.696340.1937(8) 0.835740.0529(6) 0.860540.0510(5) 0.83424-0.0588(7) 0.8610=£0.0508(4) 0.870140.0287(2) 0.868740.0431(3) 0.872840.0346(1)
Iris versicolor 0.918940.1256(8) 0.929040.1261(7) 0.945340.0243(3) 0.94324-0.0219(5) 0.946940.0271(2) 0.93154-0.0528(6) 0.944940.0241(4) 0.94844-0.0268(1)
Iris virginica 0.93810.0345(7) 0.946140.0393(5) 0.948340.0302(3) 0.94654-0.0339(4) 0.94934£0.0338(2) 0.90094-0.0495(8) 0.943940.0456(6) 0.957440.0241(1)
Spectf 0 0.6018£0.1992(8) 0.761240.0391(5) 0.764840.0406(3) 0.766610.0430(2) 0.755340.0462(6) 0.736140.0501(7) 0.762040.0462(4) 0.773740.0359(1)
Thyriod hyperfunction 0.02600.0484(8) 0.691640.0519(6) 0.739540.0585(3) 0.69324-0.0578(5) 0.8094+0.0569(1) 0.601040.1239(7) 0.778840.0680(2) 0.737540.0764 (4)
Vowel 4 0.6394£0.2515(8) 0.874440.0728(5) 0.90360.0545(3) 0.87244-0.1090(6) 0.89540.0673(4) 0.859440.0519(7) 0.903740.0505(2) 0.909240.0406(1)
Vowel 5 0.3358£0.3140(8) 0.82074-0.0660(7) 0.853940.0590(3) 0.82444-0.0768(6) 0.8444£0.0616(4) 0.834940.0693(5) 0.862240.0540(1) 0.860740.0602(2)
BreastTissuel 0.7033£0.3198(8) 0.846540.1253(7) 0.8777£0.0619(2) 0.86244-0.0650(5) 0.8775£0.0506(3) 0.889610.0636(1) 0.855240.1219(6) 0.873440.0565(4)
BreastTissue3 0.0695+0.1451(8) 0.573440.1617(6) 0.59630.1426(4) 0.618440.1036(3) 0.5854£0.1587(5) 0.554440.1972(7) 0.63130.0995(1) 0.620740.1226(2)
Ecoli2 0.8271£0.0471(8) 0.875640.0230(3) 0.87340.0255(4) 0.868810.0348(6) 0.8709£0.0329(5) 0.867940.0274(7) 0.87600.0269(2) 0.87810.0181(1)
Glass2 0.522740.1874(8) 0.608840.1053(5) 0.623240.0826(3) 0.617040.1350(4) 0.63690.0869(1) 0.594340.1067(7) 0.598040.1127(6) 0.626340.1265(2)
Glass3 0.0829£0.1716(8) 0.521940.1779(7) 0.62060.1715(5) 0.58154-0.1584(6) 0.6352£0.1202(4) 0.63814-0.1425(3) 0.642740.1393(2) 0.644440.1334(1)
ImageSegmentation7 0.995440.0022(7) 0.996140.0026(4) 0.996240.0025(3) 0.995640.0025(6) 0.9972+0.0024(1) 0.99574-0.0023(5) 0.987040.0112(8) 0.996540.0023(2)
LibrasMovement2 0.46360.3595(8) 0.855440.1184(7) 0.880940.0988(4) 0.86791-0.0918(6) 0.8797£0.0953(5) 0.88824-0.0575(2) 0.883040.0868(3) 0.9029+0.0692(1)
LibrasMovement14 0.7796£0.2289(8) 0.902540.0774(3) 0.9009+0.0673(4) 0.90024-0.0718(5) 0.8967£0.0709(6) 0.89461-0.0440(7) 0.904540.0672(2) 0.933740.0564(1)
Pageblocks2 0.7979£0.0743(8) 0.95061-0.0082(1) 0.94784£0.0091(2) 0.939540.0141 (4) 0.9380£0.0192(5) 0.83824-0.0701(7) 0.933640.0213(6) 0.942640.0222(3)
Pageblocks5 0.522740.1704(8) 0.897040.0195(5) 0.9040£0.0233(2) 0.887340.0298(6) 0.902940.0208(3) 0.690310.1284(7) 0.901740.0168(4) 0.9126+0.0150(1)
StatlogVehicleSilhouettes2 0.5758£0.1667(8) 0.761240.0472(4) 0.767140.0408(3) 0.769310.0314(1) 0.76020.0460(5) 0.73860.0458(7) 0.756140.0419(6) 0.769040.0437(2)
‘WallFollowingRobotNavigation4 0.8723£0.0840(8) 0.937940.0135(5) 0.93480.0151(6) 0.933540.0166(7) 0.9463£0.0115(3) 0.942610.0118(4) 0.947440.0205(2) 0.95100.0089(1)
Yeast6 0.62870.1934(8) 0.941640.0427(5) 0.93600.0374(6) 0.92824-0.0455(7) 0.9433£0.0296(4) 0.946440.0102(3) 0.9618+0.0157(1) 0.959940.0157(2)
DMEAGNtiVirus 0.970140.0267(6) 0.981740.0139(2) 0.9769£0.0179(3) 0.972240.0201(5) 0.945140.0312(8) 0.959740.0566(7) 0.981940.0156(1) 0.97360.0440(4)
GLRCWL1 0.65660.2443(7) 0.775140.1149(4) 0.778740.1145(3) 0.75854-0.0974(5) 0.7517£0.1054(6) 0.593340.1631(8) 0.779540.1413(2) 0.790640.0956(1)
GLRCNBI2 0.33284£0.2387(8) 0.536940.1920(5) 0.538940.1763(4) 0.56314-0.1583(2) 0.5465+0.1571(3) 0.51294-0.1996(7) 0.531340.1625(6) 0.591540.1526(1)
ParkinsonsDC 0.6581£0.1571(8) 0.754240.1021(6) 0.769240.0291(2) 0.76724-0.0294(3) 0.7726 +0.0256(1) 0.71114-0.0449(7) 0.764440.0286(4) 0.757940.0284(5)
Colon 1 0.6313£0.2037(8) 0.694140.1831(5) 0.691440.2262(6) 0.74544-0.1522(2) 0.7470£0.1460(1) 0.676910.1883(7) 0.725440.1810(4) 0.737940.1556(3)
Leukemia 1 0.91060.1125(5) 0.932640.0802(2) 0.9428+0.0543(1) 0.928240.1389 (3) 0.77690.0914(7) 0.72924-0.2157(8) 0.922040.1519(4) 0.868540.1082(6)
DrivFacel 0.8417£0.1070(8) 0.912040.0627(3) 0.897740.0779(6) 0.902610.0711(4) 0.8978£0.0772(5) 0.934140.0502(2) 0.883840.0733(7) 0.9368+0.0508(1)
ARBT8 0.000040.0000(7.5) 0.52994-0.1947(1) 0.344240.2024(4) 0.000040.0000(7.5) 0.498240.1126(2) 0.287940.2789(5) 0.080940.1592(6) 0.497640.1761(3)

A stratified k-fold cross validation (k=2 in experience) is used for 30 times that 60 (2 X 30) runs are conducted. Thus for each table cell, the mean and standard deviation of corresponding performance on 60 runs are first recorded, then it’s rank

among all methods is followed in one bracket. The best rank for each row is highlighted as bold.

V. CHARACTERISTICS OF DBO

A. Ablation study between linear interpolation and surround-
ing area

To explain why considering the surrounding area is im-
portant, we conduct the ablation study between linear inter-
polation and surrounding area. Where ’Linear interpolation’
means the interpolation between the target boundary minority
and it’s k nearest majority; and ’surrounding area’ means the
interpolation in the surrounding area (or the local boundary
minority area) of the target boundary minority. As seen in Fig.
S4, ’surrounding area’ obtains the good performance on most
datasets. Thus, considering the surrounding area is important.

B. Robust to outliers

As seen in Fig. S5, three scaling size of graphs for each
outlier are plotted in a col. First for the bottom and middle
one, the local decision boundary area is covered by the local
boundary majority area so lead to the empty local boundary
minority area. Then, for the top one, the local boundary
majority area covers a part of the local decision boundary area;
especially in this scene, the remained minority area distributes
in the non-majority existed region (a certain region that no
majority existed).

In general, DBO is robust to some outliers and only gen-
erates synthetic samples in very near regions or temporary
non-majority existed regions for other outliers.

C. Parameter setting

DBO involves one parameter as k. But to consider the influ-
ence of lengths (&) in two ellipsoid structures, we first change
Eq. 12 to ag = r1 %y, and Eq. 16 to a5 = aq+ro*|ag —ayl;
then test two parameters 1y and 5.

(1) k: it means k nearest majority samples of the target
boundary minority sample. As seen in Fig. S6, the larger value
of k means larger sizes of both the local decision boundary

area and local boundary minority area. As seen in Fig. S7, no
optimal k for all datasets; thus to maintain the local property
for DBO, we set k = 7.

(2) ry: larger r; means larger length of o that make the
larger size of the local decision boundary area. As seen in Fig.
S8, for some datasets, the performance of g-mean decreases as
r1 increases; because the local decision boundary area tends
to cover much more majority area that resulting in noises or
overlapping. But for some other datasets, the performance of
g-mean increases as rj increases. Maybe the majority area
covered by the local decision boundary area is not out of the
local boundary majority area, and the local decision boundary
area covers more boundary minority area. In experience, we
set ry = 2.

(3) ro: larger 7o means larger length of a5 that make the
larger size of the local boundary majority area. As seen in Fig.
S9, for many datasets, the performance of g-mean decreases
when r2 > 0.5, because the local boundary majority area tends
to cover the overall local decision boundary area that resulting
in no synthetic sample; in experience, we set 72 = 0.5.

D. time-consuming

As shown in Table S16, the time-consuming of different
methods is displayed. In the experiment, we run the code of
eigen decomposition on NVIDIA GeForce GTX 1050Ti and
remained code on Intel Core i9 CPU. Obviously, DBO costs
many seconds on high-dimensional; because, their computa-
tion of eigen decomposition is time-consuming. Besides, for
some datasets with middle dimension and large number of
minority samples, DBO also costs several seconds because
of their large number of local decision boundary area to be
computed.

VI. CONCLUSION

In this paper, a novel Decision Boundary Computation-
based Oversampling (DBO) method is proposed to address
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the imbalanced problem by taking full use of information
in decision boundary. Firsts, DBO computes the decision
boundary area and the boundary majority area; then obtains
the corresponding boundary minority area by subtracting the
boundary majority area from the decision boundary area.
Finally, DBO generates new synthetic samples in the boundary
minority area. Thus, DBO not only takes individual samples,
but also their surrounding areas into consideration. Moreover,
DBO innovatively divides the decision boundary area into
the boundary majority and minority areas. And experimental
results on real-world datasets show the good performance on
recall and g-mean. Especially on recall, DBO can greatly
enhance the recognition rate of minority class.

In the future, some works will be attached to improve the
robustness towards outliers and good structure representation
of the boundary majority area.
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