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Quickly Transforming Discriminator in Pre-Trained
GAN to Encoder

Cheng Yu, Wenming Wang, Member, IEEE

Abstract—Fine-designed deep Generative Adversarial Net-
works (GANs) can generate high-quality (HQ) images. However,
the discriminator in GAN only plays a role to distinguish candi-
dates produced by the generator from the true data distribution,
and numerous generated samples are still not clear and true.
From pre-trained GAN, we offer a self-supervised method to
quickly transform the discriminator into an encoder and fine-
tune the pre-trained GAN to an auto-encoder. The parameters
of the pre-trained discriminator are reused and converted into an
encoder for outputting reformed latent space. The transformation
changes the previous GAN to a symmetrical architecture and
the generator can reconstruct the HQ image by reforming latent
space. By fixing the generator, the reformed latent space can
perform better representation than the pre-trained GAN, and
the performance of the pre-trained GAN can be improved by
the transformed encoder.

Index Terms—Generative Adversarial Net (GAN), Auto-
Encoder, Latent Space Representation, Image Reconstruction.

I. INTRODUCTION

S INCE DCGAN [1] was proposed, using a convolutional
neural network to implement the generative model be-

comes popular. However, with the increase of resolution,
we need tremendous learning parameters, and large-scale
HQ datasets as training samples. Recent novel GANs, such
as PGGAN [2], StyleGAN [3] and so forth ([4], [5], [6]),
achieve stable training and effective results. These GANs take
advantage of several techniques such as pixel normalization
and equalized learning rate to control the upgrading rate
for training-related parameters. Compared with DCGAN that
needs doubling parameters to the next layer, the improvements
above make better GAN that can generate higher resolution
images in fewer parameters. However, those GANs have no
ability to reconstruct images via latent variables. Actually, the
methods above inevitably bring out many defective samples,
with local details, blurred and perturbed generations.

GAN always utilizes low-dimensional latent space to gener-
ate high-dimensional images. In inverting process, embedding
images to latent space is similar to the mapping from high
dimensional data to low dimensional manifold. There are two
types of methods to embed images to latent space. Previous
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work [7] tries to embed images to latent space and searches
the corresponding latent space via perceptual loss [8], but the
method does not use auto-encoder so that it needs to optimize
every target. Besides, other works [9], [10], [11], [12] use auto-
encoders to embed images, even though the reformed latent
space produced by the encoder can not be reconstructed well,
especially for HQ images, and the method always brings the
problem of space entanglement.

So far, the auto-encoder can not do the embedding task well.
There’s still plenty of room for improvement. We propose
a method to embed and reconstruct HQ images. Using pre-
trained GAN, we quickly transform its discriminator into
an encoder, which uses the self-generated images from the
generator to replace ground-truth samples, so that we can im-
prove the generative model’s ability to reconstruct images and
represent latent space. Meanwhile, the discriminator in the pre-
trained GAN is slightly modified. We reuse the discriminative
parameters to inherit the features of the pre-trained GAN and
explore the model performance if we increase the symmetries
of the model architecture and parameters. In conclusion, we
highlight our contributions in the following three parts:

1. In pre-trained GANs, such as DCGAN and PGGAN, we
propose a novel approach to quickly transform the discrim-
inator into an encoder. Using a self-supervised manner with
few training epochs (limited to 10 epochs), the transformed
encoder can embed images into a new latent space. And using
the new latent space, the performance of the transformed
model is better than the baseline of pre-trained GAN.

2. We change the parameters located in the discriminator
output layer, and let the output size of the discriminator is
equal to the input size of the generator. On this basis, we train
the modified discriminator to obtain a transformed encoder.
By reusing the parameters of the pre-trained discriminator, the
transformed encoder can inherit the features from pre-trained
GAN and training quickly.

3. We analyze the relationship between the model perfor-
mance and the model architecture, and we notice that when
we increase the symmetries of the model which consists of
transformed encoder and generator. The modified model can
improve the quality of the generated images. Finally, the above
improvements reduce the chaotic area in the generated image
and improve the generative performance measured by PSNR
[13], SSIM [14], FID [15] and LPIPS [16].

II. PROPOSED APPROACH

From the perspective of model training strategy, GAN is
achieved by asynchronously training two networks: generator
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Fig. 1. An illustration for our proposed method: after increasing parameters
in the discriminator last layer, we transform the discriminator into an encoder,
and then we train the encoder corresponding to the fixed generator.

G and discriminator D. In each step, we upgrade the parame-
ters of D according to the loss gap between the G outputs and
ground-truth (GT) samples x. Then we upgrade the parameters
of G according to the descent direction which comes from D
outputs.

Different from GAN, training an auto-encoder model is a
synchronous process that is composed of an encoder (E) and
a decoder. Here, we regard the decoder as a generator (G)
and try to transform D to E. In Bayesian probability model,
such as variational auto-encoder (VAE) [17], E and G can
also be denoted as q(z|x) and p(x|z). Both E and G need to
be upgraded in the same once back-propagation. The input of
the auto-encoder is target images x which sample from ground
truth (GT), and the output results are generated images G(z).
Similar to VAE, we denote z as multi-dimensional random
variables. Here, we choose z ∼ N (0, 1).

We briefly denote the loss function of vanilla VAE as
Eq.1. The first term is the distribution gap between GT
samples and generations that needs to be measured by the
KL divergence. The second term is the reconstruction loss
LR, which maximizes the expected log-likelihood for image
generation.

L(E,G) = −DKL(q(z|x)||p(z)) + Eq[log p(x|z)]︸ ︷︷ ︸
Reconstruction−Loss

. (1)

Generalized latent spaces are located inside of the overall
generative model and generated by the corresponding layers.
There are two commonly used latent spaces. One comes from
the encoder’s output layer, E(·), and another one comes from
the decoder’s input layer, z. Motivated by [10], we deduce
the gap between the z and E(·) when they have the same
dimensional size. The first term of Eq.1 can measure the gap
between the two latent spaces as follows:

DKL '
∑
i=1

(1 + log(σ2
i )− (µ2

i )− (σ2
i )). (2)

Here, we denote one dimension of z as zi. On the dimen-
sion, we denote its mean as µi, and its standard deviation as
σi. By only using z, we aim to minimize the latent space gap
in a self-supervised manner.

A. Self-Supervised Transforming

The loss function of original GAN is not adaptive for
training the transformed auto-encoder. We modify the model
architecture which similar to VAE. However, KL divergence is
based on the Bayesian probabilistic model, and can not guide
the details of the latent space representation. Meanwhile, E
cannot effectively reconstruct the wild image when the target
is far from the training dataset. Inspired by [7], [18], we
propose a self-supervised way to transform E, replacing the
log-likelihood loss with mean square error (MSE) loss and
perceptual loss [8] as follows:

LR = Lmse(G(z), x) + Lpcp(G(z), x). (3)

Eq.3 is the standard loss function that measures G(z) and
GT samples x. We translate x as a self-supervised output,
G(z), so that the gap between generations and its reconstruc-
tions can be reformulated as G(z) and G(E(G(z))). Finally,
the optimized target is replaced, and there is no need to input
x. The replacement as follows:

LR = Lmse(G(z), G(E(G(z))))+Lpcp(G(z), G(E(G(z)))).
(4)

In addition, if we do not control the latent space values
for E output, the two latent spaces (z and E(·)) will be too
far apart to embed images. Therefore, we assume a fixed
mean µ = 0 and variance σ = 1 to optimize E(·). That
is the key to improve encoding efficiency. E should find a
more suitable space for image embedding. The images will be
embedded in an overlapping space. This change also improves
the reconstruction performance, alleviating the coupling of
latent variables. This regularization trick can reformulate Eq.2
as follows:

DKL ' Lreg =
1

n

n∑
i=1

(E(G(zi)) + E(G(zi))
2)− 1. (5)

For pre-trained GANs, we usually do not know the specific
value of µ and σ. So we use MSE to optimize the potential
space which comes from E output. Eq.5 can be replaced by
the following loss function:

Lreg =
1

n

n∑
i=1

(E(G(zi))− zi)2. (6)

Finally, we briefly summarize the final loss function in Eq.
7, which replaces the original auto-encoder loss function as
follows:

LE = Lmse + Lpcp + Lreg. (7)

Fig.1 demonstrates the principles of transforming a pre-
trained discriminator into an encoder.
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Fig. 2. The 1st row shows the face images that are generated by pre-trained
PGGAN. The 2nd row shows corresponding reconstructions via our method.
Most reconstructions are better than their previous images in local details.
The 3rd row shows 3 pairs of wild images (left) with their reconstructions
(right).

B. Fine-tune Networks to Symmetrical Architecture

In common GANs, the vocation of D is only to classify
x and G(z), and its output size usually is one dimension,
which is smaller than G input size. Transforming D to E
is our goal, so we fix pre-trained G and only train the
transformed E. In order to make G and E form a symmetrical
encoding-decoding architecture, E output size (Eoutput) needs
to equal G input size (Ginput). The transforming means that
we add more parameters to the output layer of D. Following
the increased parameters, we increase the symmetries of the
transformed model, which is composed of G and E. We
achieve the transforming by replacing the output layer of
D (Doutput). In each layer, we focus on the data input
dimensions and out dimensions (input, output), and we only
address the D output layer with its output dimensions. In the
full connected layer (FC), we increase output nodes. In the
convolutional layer (CONV), we increase its output channels.
The modified Doutput for different GANs are listed in Tab. I.
We use 3-layer fully connected architecture (3-FC) and 5-layer
convolutional architecture (5-FC) to process 28×28 images.
Besides, DCGAN deals with 256× 256 images and PGGAN
deals with 1024×1024 images.

TABLE I
DETAILS OF TRANSFORMING D TO E , BY CHANGING OUTPUT LAYER.

Layer Position: Ginput Doutput Eoutput

3-FC (784, 2048)FC (2048, 1)FC (2048, 784)FC

5-CONV (32, 512) (64, 1) (64, 32)

DCGAN [1] (128, 2048) (32, 1) (32, 128)

PGGAN [2] (512, 512) (32768, 1)∗FC (32768, 512)FC

* In PGGAN, Doutput is the last block which has two fully connected (FC) layers.
The number of their nodes (input, output) are (32768, 4) and (4, 1).

C. Sharing Discriminator Parameters to Encoders

A recent work [19] reuses the pre-trained parameters in
the discriminator to handle the task of image-to-image style
translation. Similar with Cycle-GAN [20], it needs another
network to form a double model to deal with the image-to-
image translation task. The difference with this work is that
we only reuse the parameters to boost the speed of training
convergence. We do not use more pairs of networks. Algorithm

1 shows the pseudo-code of the whole proposed method. In
Fig.2 and Fig. 5, we display pre-trained PGGAN samples and
corresponding reconstructions.

Algorithm 1: Transforming discriminator to encoder
Input: Noise: z ∈ Rm. GT: x ∈ Rn, m� n.
Pre-trained GAN: G, D. where
D(x) ' 1, D(G(z)) ' 0.

Learning Rate: α = 0.0015
Output: Transformed E satisfied with:

E(G(z)) ' z,G(E(x)) ' x.
Initialize:
1. WEoutput =WGinput (Replace E’s output layer),
E(·) = z′, z′ ∈ R1 → z′ ∈ Rm.

2. WE =WD (Re-using parameters).
while (no more 10 epochs & not converged) do
∇L ← Lmse,pcp(G(z), G(E(G(z)))),
∇L ← Lreg(E(G(z)), z), wE ← wE + α∇L.

end

III. EXPERIMENT

We use three datasets for experiments. The first dataset is
Fashion-MNIST. we use 60.000 training samples with image
size 28×28, and we set batch size 128. The second one is
CelebA [21]. There are 202,599 face image and we choose
30,000 samples to training, we resize image to 256×256 with
batch size 30. The last one is HQ dataset CelebA-HQ [22].
There are 30,000 face images with image size 1024×1024.
Here, we only use CelebA-HQ for evaluation. The framework
is PyTorch (version 1.5.1, CUDA 10.2) on a GPU Card (Nvidia
Tesla V100-SXM3 32GB). We choose Adam optimizer with
a learning rate of 0.0015, β1=0.5, β2=0.99 and ε = 1e-8 to
implement all above experiments.

A. Comparison between Different Architectures

In Fashion-MNIST, we use 5 convolutional layers (5-
CONV) to build G and D, and use different numbers of
fully connected layers and convolutional layers to construct
E. These architectures include one-layer fully connected layer
(1-FC), 3 convolutional layers (3-CONV), 3 fully connected
layers (3-FC), and 5 convolutional layers (5-CONV). When
we choose different architectures to build E for auto-encoding
with G, the reconstructed images by reformed latent space are
not much different. We report the evaluation metrics in Tab. II.
The reconstructed 5,000 images are evaluated by PSNR and
SSIM after training one epoch. We notice that the performance
has improved when we increase the model symmetries, even
though the improvement is not obvious in human perception.

TABLE II
COMPARISON OF DIFFERENT STRUCTURES (E) VIA FASHION-MNIST

Model Layers (E): 1-FC 3-CONV 3-FC 5-CONV

PSNR(±0.5) 15.18 16.95 15.36 17.98

SSIM(±0.1) 0.52 0.66 0.64 0.71
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Fig. 3. Training comparison in DCGAN (original D and transformed D).

Fig. 4. Ablation study of training Es, En and Ep with progressive epochs.

We choose DCGAN to evaluate the symmetrical architecture
on CelebA. Different from vanilla DCGAN, we replace batch
normalization with spectral normalization [23] on D. Based
on the replacement, D satisfies Lipschitz continuity and makes
training more stable. Compared with the previous size 64×64,
the modification can make DCGAN handle 256×256 images,
but it is still difficult to train. So we test two architectures
on 256×256 images. As shown in Tab. I, original D output
channel is one dimension for classifying the sample’s fake and
truth. In modified D (we call it E), we increased the last layer
parameters by changing its layer channels, and then E output
size equal to the input size of G (see Tab. I). We train the
two architectures separately without the pre-training process.
The result has shown that the vanilla output layer training fails
when the training epoch increases, but E can make the training
more effective. We report the training process in Fig. 3.

B. Self-Supervised Training for Encoder Transform

On CelebA-HQ, we choose 10,000 samples for evaluation.
To train E, we use 20,000 generated images from pre-trained
PGGAN (with batch size 4). As shown in Fig.2, the pre-
trained samples still have many distortions and blur blobs in
local details. The first row shows the generated images by
PGGAN. Our transformed method has shown in the second
row. By encoding the reformed latent space, our method
samples (G(E(G(z)))) are better than the pre-trained model
samples (G(z)). On LSUN dataset (car, tower and horse) [24],
we report more cases on Fig. 5 with pre-trained PGGAN and
our reconstructions.

C. Reusing Parameters with Symmetric Architecture

To evaluate reusing parameters, we designed three different
encoders based on PGGAN’s E (Es, En and Ep). PGGAN’s
network needs 9 blocks from 4×4 to 1024×1024. Here, the
output block of the three encoders’ is the same. As for the
other blocks, Es has half layer parameters of D (two-layer
block to one-layer block), and En is the same parameter
size as D with no reused D’s parameters. Ep has the same

Fig. 5. Pre-trained PGGAN samples (ups) and corresponding reconstructions
(downs). Dataset chooses from LSUN (car, horse and tower) and all image
sizes are 256×256.

TABLE III
PERFORMANCE OF PRE-TRAINED MODEL AND TRANSFORMED MODELS

PSNR↑
Metrics

SSIM↑ LPIPSV GG ↓ (±0.01) FID↓ (±0.1)

G(z) – – – 5.43

G(Es) 59.89± 0.52 0.9915 0.4640 6.82

G(En) 61.38± 0.58 0.9942 0.3498 6.77

G(Ep) 61.73± 0.82 0.9947 0.2997 4.86

parameter size as En but reuses D’s parameters. We report
the experimental results in Tab. III. In FID, we compare three
encoders with GT (10,000 samples), and compare with G(z)
in LPIPS (2,000 samples). All results are obtained in the 10th
epoch.

We also compare three encoders during the training process.
As shown in Fig 4, in the early epochs, FID of Es and En

are slightly higher than the baseline G(z). With the epoch
increase, Ep is better than Es and En, and converges faster.
LPIPS of Ep is also better than others. This verifies our
intuitive view that a transformed E will be better when we
reuse D parameters and increase the model symmetries.

IV. CONCLUSION

We offered a novel approach for quickly transforming a
discriminator to an encoder via a pre-trained GAN, in which
we adjust the parameters of the discriminator output layer to
be the same size as the generator input layer. We use a self-
supervised manner to train the reformed encoder. By reusing
the parameters and increasing the networks’ symmetries, our
proposed schemes yield an efficient encoder that enhances
the performance of latent space representation and image
reconstruction.
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[9] J. Donahue, P. Krähenbühl, and T. Darrell, “Adversarial feature learn-
ing,” in Int. Conf. Learn. Represent. (ICLR), 2017.

[10] A. Creswell and A. A. Bharath, “Inverting the generator of a generative
adversarial network,” IEEE Trans. Neural Networks Learn. Syst., vol. 30,
no. 7, pp. 1967–1974, 2019.

[11] S. Pidhorskyi, D. A. Adjeroh, and G. Doretto, “Adversarial latent
autoencoders,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), 2020.

[12] N. Yang, M. Zhou, B. Xia, X. Guo, and L. Qi, “Inversion based on a
detached dual-channel domain method for stylegan2 embedding,” IEEE
Signal Processing Letters, vol. 28, pp. 553–557, 2021.
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