
Intelligent Systems with Applications 16 (2022) 200105

Available online 26 July 2022
2667-3053/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

Safe deployment of a reinforcement learning robot using self stabilization

Nanda Kishore Sreenivas a, Shrisha Rao *,b

a David R. Cheriton School of Computer Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada
b International Institute of Information Technology - Bangalore, 26/C Electronics City, Bangalore 560 100, India

A R T I C L E I N F O

Keywords:
Safety in robotics
Reinforcement learning
Self stabilization

A B S T R A C T

In toy environments like video games, a reinforcement learning agent is deployed and operates within the same
state space in which it was trained. However, in robotics applications such as industrial systems or autonomous
vehicles, this cannot be guaranteed. A robot can be pushed out of its training space by some unforeseen
perturbation, which may cause it to go into an unknown state from which it has not been trained to move to
wards its goal. While most prior work in the area of RL safety focuses on ensuring safety in the training phase,
this paper focuses on ensuring the safe deployment of a robot that has already been trained to operate within a
safe space. This work defines a condition on the state and action spaces, that if satisfied, guarantees the robot’s
recovery to safety independently. We also propose a strategy and design that facilitate this recovery within a
finite number of steps after perturbation. This is implemented and tested against a standard RL model, and the
results indicate a significant improvement in performance.

1. Introduction

While some early works in reinforcement learning (RL) were
restricted to simple environments (Mann & Choe, 2011; Sutton & Barto,
1998), recent works have used RL to solve problems in real-world set
tings where the stakes are much higher. Over the past decade, RL has
found its way into robotics (Gu, Holly, Lillicrap, & Levine, 2017),
autonomous vehicles (Sallab, Abdou, Perot, & Yogamani, 2017), con
trolling traffic signals (Arel, Liu, Urbanik, & Kohls, 2010), and opti
mizing chemical reactions (Zhou, Li, & Zare, 2017) among many other
practical use cases. Therefore, it can be seen that such robots trained
using RL (which we refer to as “RL robots”) cannot afford to focus only
on performance; they also need to ensure their safety in addition to that
of their surroundings. Safety in robotics has been considered to be a
major bottleneck in the safe and productive use of robots in industry and
manufacturing (El-Shamouty, Wu, Yang, Albus, & Huber, 2020).

Safety in RL has been a topic of interest recently. Achiam, Held,
Tamar, & Abbeel (2017) proposed Constrained Policy Optimization
(CPO) as a trust region method, which offered near-constraint satisfac
tion. A different approach to address the problem of safe exploration is
to add a safety layer that corrects the action choice to never violate
constraints during training (Dalal et al., 2018). This is done by pre
training based on past trajectories made up of arbitrary actions. Another
class of solutions uses Lyapunov functions to guarantee safety during

training (Berkenkamp, Turchetta, Schoellig, & Krause, 2017; Chow,
Nachum, Duenez-Guzman, & Ghavamzadeh, 2018). Yet another recent
work used a QP solver for ensuring safety (Pham, Magistris, & Tachi
bana, 2017). Gehring & Precup (2013) propose a different approach
based on the notion of controllability computed from temporal differ
ence errors. Human demonstrations have also been used to constrain
exploration to ensure safety (Thananjeyan et al., 2020). Recently, in
verse RL has been used to learn human perception of safety and hard
safety constraints based on successful demonstrations (Scobee, 2020).
For an expanded overview of related work, see the survey by García &
Fernández (2015) on safe RL.

A common theme across all these works is that they are more focused
on ensuring safety during training, which is certainly an important
concern. Andersson & Doherty (2019) show that popular RL algorithms
which generally perform well on simple toy environments fare poorly
when random perturbations are introduced. Also, even robots trained
with safe exploration methods such as CPO in simulation are unsuc
cessful at some tasks when deployed in the real world (Ahn, 2019).
Dalal et al. (2018) write, “Safety is a crucial concern: unless safe oper
ation is addressed thoroughly and ensured from the first moment of
deployment, RL is deemed incompatible for them.” Chow et al. (2018)
also concur: “Besides optimizing performance it is crucial to guarantee
the safety of an agent in deployment, as well as during training.”

While most agree that safety is as important in deployment as it is in

* Corresponding author.
E-mail addresses: nandakishores1@acm.org (N.K. Sreenivas), shrao@ieee.org (S. Rao).

Contents lists available at ScienceDirect

Intelligent Systems with Applications

journal homepage: www.journals.elsevier.com/intelligent-systems-with-applications

https://doi.org/10.1016/j.iswa.2022.200105
Received 15 July 2021; Received in revised form 29 November 2021; Accepted 21 July 2022

mailto:nandakishores1@acm.org
mailto:shrao@ieee.org
www.sciencedirect.com/science/journal/26673053
https://www.journals.elsevier.com/intelligent-systems-with-applications
https://doi.org/10.1016/j.iswa.2022.200105
https://doi.org/10.1016/j.iswa.2022.200105
https://doi.org/10.1016/j.iswa.2022.200105
http://crossmark.crossref.org/dialog/?doi=10.1016/j.iswa.2022.200105&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Intelligent Systems with Applications 16 (2022) 200105

2

training, there has not been much work on safety in deployment. This
could be because of an implicit assumption that a well-trained robot
taught to explore safely will also remain within safety in deployment.
While that could be true, a robot may enter an unsafe state uninten
tionally due to some unforeseen external perturbation in the environ
ment. In such an event, the robot should recover to safety as soon as
possible, but it may be in a hitherto unseen state and there may exist no
learned policy that the robot can readily use.

This has been defined as one of the challenges in AI safety by Amodei
et al. (2016), who discuss the scenario where an agent finds itself in a
space different from the one it was originally trained in:

“In general, when the testing distribution differs from the training
distribution, machine learning systems may not only exhibit poor
performance, but also wrongly assume that their performance is
good. More broadly, any agent whose perception or heuristic
reasoning processes are not trained on the correct distribution may
badly misunderstand its situation, and thus runs the risk of
committing harmful actions.”

We precisely focus on this aspect of safety: how can a trained RL
robot quickly recover when perturbed? Work on RL and its applications
suggests that systems using RL may be subject to transient disturbances,
and specifically that robots trained using RL may encounter issues
during deployment that have not been seen during training. We illus
trate that self stabilization, a classical paradigm of distributed
computing, can be applied to RL to address these problems.

We first define a recoverability condition on the state space, which if
satisfied guarantees the robot’s return to safety when unsafe. We offer a
prototype of an RL robot that learns the consequence of each action
during the training phase, i.e, the change in state that occurs. During
deployment, when the robot enters an unsafe territory, it determines the
state change required to navigate back to safety. The robot now finds a
sequence of actions that help lower its distance to safety based on the
relationship between action and state change that it had learned during
training. Thus, the suggested robot model can stabilize itself when
pushed out of the safe space due to some unexpected perturbation.

We implement this model and test it on a simulated maze environ
ment where the robot navigates a maze to reach its goal. There are high
negative rewards when the robot is in an unsafe state. The trained RL
robot is deployed with and without self stabilization. Perturbations are
simulated probabilistically with the same frequency in both cases. While
the RL robot without stabilization is found to recover from roughly 50%
of perturbations, but the RL robot with self stabilization (abbreviated as
RL + SS) achieved a 100% recovery. It is also observed that the average
score after 5000 episodes of deployment is significantly higher for the
robot using the RL + SS strategy.

Further, the same strategy was implemented in a simulated envi
ronment based on the Atari game of Lunar Lander. To find out if RL + SS
can achieve better scores even in the absence of systemic safety con
straints, different artificial safety constraints that direct the robot to
ward its goal are tested. For an already trained RL robot, choosing the
right constraint resulted in slightly better scores.

“Shielding” (Alshiekh et al., 2018) is one of the recent works to
enforce safety in RL. A shield is constructed beforehand based on the
MDP and the safety specification. It is later attached to the RL agent
during training and overrides the action if it results in an unsafe state.
Such shielding approaches assume the agent has sole control over its
trajectory. However, unlike us they do not consider unexpected external
perturbances where the shield cannot do much. Another common crit
icism of this and other shielding approaches has been that it becomes
intractable when the state-space is large (Bastani, 2021).

In Model Predictive Shielding (Bastani, 2021), the agent learns a
recovery policy to return to equilibrium. It simulates several steps into
the future to determine if the learned policy results in a recoverable
state, and if not, it uses the recovery policy to drive back to equilibrium.
The training of this recovery policy and the simulation at every state

adds to the complexity of this approach.
Bounded Prescience Shielding (BPS) (Giacobbe, Hasanbeig, Kroen

ing, & Wijk, 2021) is similar in that it modifies typical DRL to simulate a
finite number of steps (H) for each action to ensure the agent remains
safe. In most typical applications, safety issues are not frequent. But, in
this approach at every state, the agent has to simulate several future
paths (growing exponentially with H), adding significant complexity.
Also, like other works in the domain, this approach focuses on preven
tion rather than recovery.

The primary advantage in our work compared to these is thus that we
consider unforeseen, external perturbances that could drive the agent to
an unsafe state. Also, the proposed recovery policy is simple (record
state changes induced by each action so O (1)) and can be learned
without any significant computational overhead.

2. Self stabilization

In distributed computing, self stabilization was conceived by Dijk
stra (1974) as the property of a system that can return to a valid state in
spite of the lack of a centralized control. Equivalently, a self-stabilizing
system is one whose current state only depends on its previous k inputs
(for some constant k). Such a system is guaranteed to stabilize, post the
occurrence of a fault, once it processes k inputs.

Self stabilization may also be looked upon as a special case of non-
masking fault-tolerance (Arora & Gouda, 1993; Jalote, 1994) where a
system is able to recover from arbitrary transient faults. It has found
applicability in different contexts where algorithms are needed that can
help a system recover to a valid state after a fault.

We denote the set of all states by S. For any predicate P, we define SP
as the set of states in S where predicate P holds.

Definition 1. We define three predicates which serve as the basis for
all subsequent development:

1. L : S→{T, F} is a legitimacy predicate, such that L(x) = T if x is a
legitimate state in S. The set of all legitimate states is denoted by SL.

2. Z : S→{T, F} is a safety predicate, such that Z(x) = T if x is a safe state
in S. Safe states SZ denotes the set of all states where Z holds; SZ⫅SL.

3. Z′

: S→{T, F} is a non-safety predicate, such that Z′

= Z ∧ L. Unsafe
states SZ′ are those legitimate states where Z does not hold.

Safe states are those where the robot is supposed to operate, and
unsafe states are the ones from where the robot can recover to safe
states. Legitimate states refer to those states that are either safe or un
safe, and illegitimate states are the absolute worst case where recovery is
also not possible.

The distance between two states sl and sk is denoted by d(sl, sk). The
exact distance metric can vary based on the environment. The distance
to safety, denoted by dZ(x) is a measure of how close a given state x is to
safety; it is the minimum distance between x and any safe state in SZ
(Bejan, Ghosh, & Rao, 2006).

dZ(x) =

{
0 x ∈ SZ
min
∀i∈SZ

d(x, i) x ∕∈ SZ
(1)

Self stabilization is the process of a robot independently stabilizing
itself starting from an unsafe state to a safe state through a finite
sequence of actions, provided there are no further perturbations.

When the robot is at an unsafe state x, a properly chosen action will
move the robot to a state x′ , such that dZ(x

′

) < dZ(x). Such an action is
termed a stabilizing nudge. In simpler words, a stabilizing nudge moves
the robot towards safety. Alternatively, stabilization can be seen as a
finite sequence of stabilizing nudges until the robot enters a safe state.

The robot has a set of permissible actions A, whose cardinality is
denoted by nA. When a certain action a is taken from a state st, the
transition function δ returns the next state and a real-valued reward. δ :

S× An→S× R, and is given by:

N.K. Sreenivas and S. Rao

Intelligent Systems with Applications 16 (2022) 200105

3

δ(st, a) = (st+1, rt) (2)

The environment defined by the state space S and the robot’s actions
A, is said to be recoverable if it satisfies the recoverability condition:

∀s1 ∈ SZ′ ,∃s2 ∈ SZ |δ(s1, πk) = s2 (3)

where πk is a finitely long sequence of actions.

Remark 1. If the recoverability condition is satisfied, then stabiliza
tion is always possible.

The contradiction of the above is that the recoverability condition is
satisfied and there exists a case where stabilization is not possible. If
stabilization is not possible, then there should be at least one unsafe state
that cannot be stabilized through a finite sequence of actions, which is
the negation of the recovery condition in (3). Thus, the contradiction is
false, and the remark is true.

3. Self stabilization in RL

An RL robot is typically trained in a training space, and then
deployed in the real world. When the RL robot has been deployed, it
could enter a state outside the training space due to some external,
unforeseen perturbation.

As discussed in Section 2, each robot working in some environment
typically has a legitimacy predicate L. We assume that robots are trained
in the safe space, and hence use the terms training space and safe space
interchangeably from here. Even though the robot is trained in SZ, there
is no guarantee that the robot has been to all safe states. So, we define
one more predicate as follows.

Definition 2. F : SZ→{T, F} is the familiarity predicate, such that F(x) =
T if the robot has been in state x during the training phase. The set of
states encountered by the robot in the training phase is denoted by SF
and, SF⫅SZ.

State change function Δ, returns the vector difference between any
two given states. If the robot transitions from state sm to sm+1 by per
forming an action a, then the state change is given by

Δ(sm, sm+1) = sm+1 − sm (4)

The state change function Δ would need some transformation if the
attributes representing the state are not numeric. There are many
transformation functions available in the ML literature to do this. Of
course, there could be scenarios where the standard transformations are
not applicable, but such cases can only be dealt with on a case by case
basis.

States could be continuous in some environments, and even when
discrete, there could be too many possible values of state changes in
some environments. So, to handle such cases, the state changes could be
discretized into some finite types. The set of state changes is denoted by
Σ and its cardinality is denoted by nΣ.

There are many different algorithms within the domain of RL, but we
use Q-learning (Sutton & Barto, 1998) in all the environments here. The
goal is for the robot to learn the optimum action to take under different
circumstances. Central to the algorithm is the quality function, which
returns the quality of a state-action pair, Q : SZ × A→R.

The Q-values for all state-action pairs are initialized with some
arbitrary value. Then, at some time t, the robot chooses some action a
from a state st, and observes a reward of rt. The new quality of the state-
action pair is updated based on the Bellman equation.

This whole process of selecting an action and updating the quality
function helps the robot learn which actions to choose under various
circumstances. This is done repeatedly until a certain number of epi
sodes are over, or until a certain average score is achieved. Once the
training terminates, the robot can now be deployed. Now, when the
robot is at state s, the optimum action is chosen by

a* = argmax
ai∈A

Q(s, ai) (5)

As discussed above, the Q-function maps all safe state-action pairs.
So, when the robot has been perturbed and is in a state s′ ∈ SZ′ , it has no
row in the Q-Table to refer to, and hence cannot decide which action is
appropriate. In such a case, the robot has only two possible courses of
action—to remain idle, or choose an action at random from A. Both of
these cannot guarantee the recovery of the robot, and randomly
choosing an action could further aggravate the situation by landing the
robot in an illegitimate state.

However, when the recoverability condition is satisfied by the
environment (3), the robot can be stabilized and return to safety if it
maintains some extra information during training. The robot charac
teristics that facilitates this, and the maze environment where this model
is tested are explained in the following subsections.

3.1. Robot characteristics

Each robot has the following four attributes:

• Current state st, which is typically an n-tuple and is defined specif
ically for each environment.

• Visited states Ψ, a set of all states visited by the robot during training.
• Action-state change table Ω, a table which holds the number of times

each action induces a certain state change.
• Q-Table or a Deep Q-Network Q , which is used to keep track of Q-

values. The choice depends on the particular environment.

Visited states Ψ is the set of familiar states, i.e., the states where the
familiarity predicate F holds. The only purpose of maintaining this is for
the robot to find the closest safe state, and consequently the distance to
safety given by (1) when unstable.

The action-state change table, Ω is an nA × nΣ matrix where Ω[i][j]
holds the number of times action i induces a state change j. This is used
to calculate conditional probabilities to decide which action is most
probable to induce the required state change, σx ∈ Σ. Conditional
probabilities can be calculated from Ω as:

P(σx|ak) =
P(σx ∧ ak)

P(ak)

P(σx|ak) =
Ω[ak][σx]

Ω[ak]

where,Ω[ak] =
∑

∀l∈Σ
Ω[ak][l]

Here, the probability of state change σx and action ak happening
together is given by Ω[ak][σx], and the marginal probability P(ak) as the
sum of all cells in the row corresponding to ak.

The action a*
σx

which is most likely to bring about a state change of σx

is given by

a*
σx
= argmax

ai∈A
P(σx|ai) (6)

P(σx|ai) is the probability of inducing a state change of σx given that
an action ai has been chosen. So, to maximize the chances of getting σx,
the action should be chosen such that the conditional probability is
maximized. Based on Ω, the robot finds the action which can mostly
likely effect a state change of σx, as given by (6).

The Q-Table is a matrix used to store the quality of all state-action
pairs, and hence it is of dimensions |SZ| × nA. In environments with a
large number of discrete states, or when states are continuous, the
number of rows grows very large and cannot be efficiently handled. In
such cases, Q-learning is used along with function approximation tech
niques. One of the popular solutions is to use an artificial neural network
as the function approximator.

N.K. Sreenivas and S. Rao

Intelligent Systems with Applications 16 (2022) 200105

4

3.2. Working of the robot

3.2.1. Modified Q-learning
To accommodate the robot characteristics discussed in Section 3.1,

and to learn the relation between actions and state changes, the standard
Q-learning algorithm is modified to additionally capture the effect of
actions on state changes. Similar to standard Q-learning, the robot
chooses an action a either by exploration or exploitation based on the
current state s. The transition function δ given by (2) is used to find the
next state st+1 and the reward rt. The state change function Δ, given by
(4), is used to determine the state change between s and st+1, and this is
stored as c. The corresponding entry in the action-state change table
denoted by Ω[a][c] is updated.

3.2.2. Self stabilization
When the robot is deployed and if it is in unsafe territory, the self

stabilization method, outlined by Algorithm, is used to recover. The
input to this stabilization method includes current state st , and the
action-state change table Ω. The method returns the state of the robot
after stabilization, and the total reward accumulated due to the actions
performed. The total reward ρ is initialized as 0 in line 1. The robot then
iterates through its set of visited states Ψ to find the targeted safe state η
and the corresponding distance to safety ϖ, seen in lines 2 and 3. From
the set of all state changes Σ, the best value σx is chosen such that it
minimizes distance to safety, as seen in line 4. The action a*

σx
that is

mostly likely to induce the required state change σx is found using the
findAction method, which is an implementation of (6). Line 7 uses the
transition function δ given by (2) to find the next state and reward
associated with this action, and then ρ is updated. ϖ is now updated as
the distance between updated state st and the targeted state η by (1). If ϖ
= 0 (line 4), the function terminates and returns the current state, which
is safe by (1), and the total reward accumulated by all the actions per
formed. Else, the same set of steps (lines 5–9) is repeated.

3.3. Maze

The Maze environment (Chan, 2016) is a simple 2D grid-based
environment where the robot finds its way from a start position to the
goal. Each cell in the grid is represented by its row and column numbers
(r, c). The robot can move in all four directions and only one step at a
time. As in any typical maze, movement along certain directions could
be blocked in some cells. So, if the robot attempts to execute such an
impermissible action from such a state, it remains at the same state.

The state of the robot is represented by an ordered pair 〈r,c〉, which is
simply the position of the robot in the grid. A 20 × 20 grid is considered
the legitimate space (SL) in this scenario; going outside of this grid is
irrecoverable and has a high penalty. Centered within this large grid, a
smaller 10 × 10 grid is considered the safe space SZ.

Each episode starts with the robot at any random position within the
safe space. The goal or destination is fixed at (15,15). An episode ends
either when the robot reaches its goal, or when it transitions into an
illegitimate state.

The entire grid which is the legitimate space is a square bound by
(1,1) and (20,20), the top left and bottom right cells respectively. The
safe space, which is the inner square is bound by (6,6) and (15,15).

As described earlier, the robot can move one step in all four di
rections. So, the action space is a four member set given by

A = {N, S,E,W}

Based on the actions and the state space defined, it can be clearly
seen that a robot starting at any unsafe state can ultimately reach a safe
state through a finite sequence of actions. Thus, the recoverability
condition (3) is satisfied in this environment. Since there are four

Table 1
An example of Ω table in Maze.

Action (1,0) (− 1,0) (0,1) (0, − 1) (0,0)

N 0 6972 0 0 288
S 8332 0 0 0 212
E 0 0 9146 0 201
W 0 0 0 7718 196

N.K. Sreenivas and S. Rao

Intelligent Systems with Applications 16 (2022) 200105

5

possible actions, only four different state changes are possible due to any
action. Since this is a maze, and sometimes certain actions are not
allowed from specific cells, such an impermissible action does not
induce any change and thus the state change is 0 in both dimensions.

Σ = {(+ 1, 0), (− 1, 0), (0,+1), (0, − 1), (0, 0)}

As described in Section 3.1, the robot maintains the set of visited
states Ψ during the training phase. Additionally, after each transition, it
also updates the action-state change table (Ω), a 4 × 5 matrix. Since this
is a grid-based environment, the Manhattan distance is used as the dis
tance metric here.

Each action and the corresponding consequence determines a
reward, and this is used in estimation of Q-values and to learn the best
action that can be performed from each state. Achieving the goal has a
reward of +1000, entering an illegitimate state offers a reward of −
1000, any action within the safe space has a reward of − 1, and any
action outside provides a reward of − 5.

A sample of the action-state change table Ω is shown in Table 1. For
example, for the action N moving towards North, the row number of the
state decreases by 1. This can also be observed from Table 1, where P((−
1, 0)|N) = 0.97 by (6).

Consider an event where the robot is at an unsafe state, say (2,12). It
now iterates through its set of visited states Ψ and finds the state (6,12)
which is the closest safe state. The difference between the two states is
(4,0). The state change σx that will move the robot towards safety is
(1,0), and the action most likely to induce that is calculated from Ω,
which is to move South (S) because P((1,0)|S) = 0.97 by (6). The same
sequence of steps is repeated until it is at a safe state as also shown in
Algorithm.

4. Performance improvement using self stabilization

We use the standard Lunar Lander environment based on the well-
known Atari game; it is also a part of the OpenAI Gym (Brockman
et al., 2016). Here, state is represented by an 8-tuple, 〈X,Y,Vx,Vy,θ,ω, l1,
l2〉, where X,Y correspond to the x and y coordinates of the lander and
Vx,Vy denote the velocity components along the x and y axes respec
tively. The angle of rotation,and the angular velocity are denoted by θ
and ω. The last two attributes l1, l2 indicate if the legs of the lander are in
contact with the ground. The state space is continuous here, unlike the
maze environment. The robot is trained to land at its destination (0,0).
The discrete action space A is given by:

A = {N, L,M,R}

The first action N corresponds to no action where the lander is subject to
gravity only, while the other three actions correspond to firing the left,
main, and right engines respectively to navigate the lander.

States are continuous here, and hence maintaining an action-state
change table with all possible values of state change is not feasible.
So, we define state change as positive and negative with respect to each
attribute. Therefore, Σ is a set with 2 × 8 = 16 possible state changes.
For illustration purposes we show only the relevant part of the action-
state change table Ω for this environment in Table 2. For example, by
(6), it can be seen that firing the left engine mostly results in a decrease
in Vx, firing the right engine most likely corresponds to an increase in Vx,

and firing the main engine is most likely to bring about an increase in Vy.
All these inferences based on the action-state change table are true based
on the definitions of these actions, thus showing that our model can
learn the action-state change relationship accurately even in complex
environments.

The goal of this experiment is to determine if the self stabilization
strategy helps achieve better scores using goal-directed artificial safety
constraints. This environment also serves as an example of applying the
self-stabilization strategy in a complex environment with continuous
states. We create a simple artificial constraint based on the lander’s
position on the x-axis. We introduce a safety threshold λ, such that the
lander is now considered safe only when − λ ≤ X ≤ + λ. As this is a
complex environment where each action impacts more than one attri
bute, performing self-stabilizing actions each instant could cause unin
tended consequences on other attributes. Hence, different frequencies of
self-stabilizing nudges are considered. The stabilizing nudges are
applied once every ν time steps, ν ≥ 1.

5. Results

In the Maze environment, the trained model is deployed and played
for 5000 episodes. Three different scenarios are considered—no per
turbations, RL-only, and RL + SS. The case of no perturbations is
considered to measure the rewards in an ideal situation where the robot
is always safe, and is never perturbed. For the other two cases, pertur
bation is handled by a probabilistic model, and the probability of a
random perturbation in any timestep is defined as the perturbation
probability. It is simply to control the frequency of perturbations, and a
value of 0.05 is chosen as an example; it is not critical to the simulations.
Increasing the perturbation probability would exacerbate the issues for
unstabilised (RL-only) robots, but for the robots using RL + SS approach,
the results do not change significantly as any perturbation is always
eventually stabilized. As the perturbation probability is reduced, the
scores improve in both cases and as it tends to zero, it corresponds to the
case of no perturbations.

In the case of only RL, the robot has no information on the Q-table to
make an informed decision about the next move. Two alternatives are
available to the robot—to remain stationary or to make random moves.
The consequences of remaining idle are fairly obvious, and hence we
consider only the random move strategy in this scenario. The RL + SS
scenario is the case of using the strategy that has been explained in
Section 3.

5.1. Performances of the three strategies in Maze

Although the robot is deployed for 5000 episodes, in Fig. 1a, only a
set of 20 episodes is depicted for the sake of brevity. The aggregate
statistics across all 5000 episodes are shown in Table 3. The RL + SS
approach guarantees recovery (100%), whereas the RL-only approach
was able to recover only in 36% of the cases of perturbations. Thus, this
suggests that stabilization is guaranteed by the RL + SS strategy in Maze.

From Table 3, it can be seen that the mean scores also reflect on the
benefits of RL + SS (946) over the RL-only strategy (− 80). This is
primarily because when the RL-only strategy is used, the robot does not
recover 64% of the time and end up in illegal states which have high
negative payoffs. On the other hand, the RL + SS approach ensures the

Table 2
An example of Ω in Lunar Lander.

X Y Vx VY

+ − + − + − + −

N 337 1103 596 844 637 803 3.0 1437.0
L 360 745 297 808 3 1102 21.0 1084.0
M 1286 3170 1827 2629 2226 2230 4066.0 390.0
R 299 824 179 944 1119 4 7.0 1116.0

N.K. Sreenivas and S. Rao

Intelligent Systems with Applications 16 (2022) 200105

6

robot never enters an illegal state, and also achieves the goal, thus
enabling higher positive payoffs.

5.2. Extent of perturbation versus recovery time in Maze

The frequency of perturbation is handled by a probabilistic model,
but the extent of perturbation is random. The extent of perturbation is
the minimum distance between the perturbed state and a safe state.
Fig. 1b depicts the relationship between the extent of perturbation and
the recovery time with both strategies. In RL + SS, the number of steps
taken to recover is exactly equal to the extent of perturbation, hence we
see a perfect linear relationship in this case. In the RL-only strategy, the
moves are random, and hence there is no such relationship shown.
However, it is clear that the curve corresponding to the RL-only strategy
is always above the RL + SS line, showing that recovery, even when
possible, is slower.

5.3. Performance improvement using RL + SS in Lunar Lander

The values of the artificial safety constraint λ and stabilization period
ν are varied and the results are observed. A 5% improvement is observed
with a moderate value of λ and ν. It is also clear that extremely low
values of stabilization period and safety thresholds result in poor re
wards. Also, very high values of these two parameters give scores that
are nearly same as the scores achieved by the RL-only strategy. This is
expected and fairly intuitive, since the RL-only approach is basically RL
+ SS with infinite stabilization period and safety thresholds. However, in
the moderate range, this approach offers better scores than the RL-only
strategy as seen in Fig. 2.

6. Conclusion

Safety of RL robots in deployment remains an unexplored idea,
despite wide agreement on its importance and relevance. We show that
self-stabilization, a popular paradigm in distributed computing, can be
used with RL to tackle this challenge. We define a recoverability con
dition, which if satisfied can guarantee the stabilization of the robot.

Self-stabilization is implemented by learning the relationship be
tween actions and state changes during training, and applying this in
formation to stabilize when unsafe. We describe the design of an RL
robot that can stabilize itself and implement it in a simulated environ
ment. It is observed that robots with self-stabilization always recover
from a perturbation, but robots trained with only RL can recover in a
fraction of the cases only. Results also indicate that a linear relationship
exists between the extent of perturbation and recovery time in the case
of robots with self-stabilization. The recovery times are also significantly
lower than those of robots trained with standard RL. The same approach
was implemented in another environment with no issues of safety, to
understand if there were any performance benefits. It is observed that an
appropriate choice of goal-directed artificial safety constraint improves
performance slightly.

This idea of self-stabilization in RL could also be extended to more
complicated environments and could find applications in many RL so
lutions currently deployed in an industrial setting. Further, the same
idea could also be expanded to support self-stabilization and safety
during training as well.

Declaration of Competing Interest

Authors declare that they have no conflict of interest.

Fig. 1. Maze scores.

Table 3
Aggregate statistics in Maze.

Metric RL + SS RL Only No perturbations

Max 1000 1000 1000
Min 424 − 1977 938
Mean 946 − 80 973
Std deviation 54 1035 19
Recovery [%] 100% 36% N/A

Fig. 2. Performance improvement by RL + SS in Lunar Lander.

N.K. Sreenivas and S. Rao

Intelligent Systems with Applications 16 (2022) 200105

7

References

Achiam, J., Held, D., Tamar, A., & Abbeel, P. (2017). Constrained policy optimization, .
In ICML’17: vol. 70. Proceedings of the 34th international conference on machine
learning (pp. 22–31). JMLR.org.http://dl.acm.org/citation.cfm?id=3305381.330538
4

Ahn, E. (2019). Towards safe reinforcement learning in the real world. Robotics Institute,
Carnegie Mellon University, Pittsburgh, PA. Master’s thesis.https://www.ri.cmu.
edu/wp-content/uploads/2019/08/MSR_Thesis_-Edward_Ahn_2019.pdf

Alshiekh, M., Bloem, R., Ehlers, R., Könighofer, B., Niekum, S., & Topcu, U. (2018). Safe
reinforcement learning via shielding (vol. 32).https://ojs.aaai.org/index.php/AAAI
/article/view/11797

Amodei, D., Olah, C., Steinhardt, J., Christiano, P. F., Schulman, J., & Mané, D. (2016).
Concrete problems in AI safety. CoRR abs/1606.06565.

Andersson, O., & Doherty, P. (2019). Deep RL for autonomous robots: limitations and
safety challenges. European symposium on artificial neural networks, computational
intelligence and machine learning (ESANN 2019), Bruges, Belgium (pp. 489–494).https
://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2019-97.pdf

Arel, I., Liu, C., Urbanik, T., & Kohls, A. G. (2010). Reinforcement learning-based multi-
agent system for network traffic signal control. IET Intelligent Transport Systems, 4(2),
128–135. https://doi.org/10.1049/iet-its.2009.0070

Arora, A., & Gouda, M. G. (1993). Closure and convergence: A foundation of fault-
tolerant computing. IEEE Transactions on Software Engineering, 19, 1015–1027.
https://doi.org/10.1109/32.256850

Bastani, O. (2021). Safe reinforcement learning with nonlinear dynamics via model
predictive shielding. 2021 American control conference (ACC) (pp. 3488–3494).
https://doi.org/10.23919/ACC50511.2021.9483182

Bejan, A., Ghosh, S., & Rao, S. (2006). An extended framework of safe stabilization. ISCA
21st international conference on computers and their applications (CATA-2006), Seattle,
WA.

Berkenkamp, F., Turchetta, M., Schoellig, A. P., & Krause, A. (2017). Safe model-based
reinforcement learning with stability guarantees, . In NIPS’17Proceedings of the 31st
international conference on neural information processing systems (pp. 908–919). USA:
Curran Associates Inc..http://dl.acm.org/citation.cfm?id=3294771.3294858

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., & Tang, J. et al.
(2016). OpenAI Gym.

Chan, M. (2016). Gym maze. https://github.com/MattChanTK/gym-maze.
Chow, Y., Nachum, O., Duenez-Guzman, E., & Ghavamzadeh, M. (2018). A Lyapunov-

based approach to safe reinforcement learning, . In NIPS’18Proceedings of the 32nd
international conference on neural information processing systems (pp. 8103–8112).
USA: Curran Associates Inc..http://dl.acm.org/citation.cfm?id=3327757.3327904

Dalal, G., Dvijotham, K., Vecerík, M., Hester, T., Paduraru, C., & Tassa, Y. (2018). Safe
exploration in continuous action spaces. arXiv:1801.08757.

Dijkstra, E. W. (1974). Self stabilizing systems in spite of distributed control.
Communications of the ACM, 17(11), 643–644. https://doi.org/10.1145/
361179.361202

El-Shamouty, M., Wu, X., Yang, S., Albus, M., & Huber, M. F. (2020). Towards safe
human-robot collaboration using deep reinforcement learning. 2020 IEEE
international conference on robotics and automation (ICRA) (pp. 4899–4905). https://
doi.org/10.1109/ICRA40945.2020.9196924

García, J., & Fernández, F. (2015). A comprehensive survey on safe reinforcement
learning. Journal of Machine Learning Research, 16(1), 1437–1480.http://dl.acm.org/
citation.cfm?id=2789272.2886795

Gehring, C., & Precup, D. (2013). Smart exploration in reinforcement learning using
absolute temporal difference errors, . In AAMAS ’13Proceedings of the 2013
international conference on autonomous agents and multi-agent systems (pp.
1037–1044). Richland, SC: International Foundation for Autonomous Agents and
Multiagent Systems.http://dl.acm.org/citation.cfm?id=2484920.2485084

Giacobbe, M., Hasanbeig, M., Kroening, D., & Wijk, H. (2021). Shielding Atari games
with bounded prescience, . In AAMAS ’21Proceedings of the 20th international
conference on autonomous agents and multiagent systems (pp. 1507–1509). Richland,
SC: International Foundation for Autonomous Agents and Multiagent Systems.

Gu, S., Holly, E., Lillicrap, T., & Levine, S. (2017). Deep reinforcement learning for
robotic manipulation with asynchronous off-policy updates. 2017 IEEE international
conference on robotics and automation (ICRA) (pp. 3389–3396). https://doi.org/
10.1109/ICRA.2017.7989385

Jalote, P. (1994). Fault tolerance in distributed systems. Prentice-Hall.
Mann, T. A., & Choe, Y. (2011). Scaling up reinforcement learning through targeted

exploration, . In AAAI’11Proceedings of the twenty-fifth AAAI conference on artificial
intelligence (pp. 435–440). AAAI Press.http://dl.acm.org/citation.cfm?id=290042
3.2900492

Pham, T., Magistris, G. D., & Tachibana, R. (2017). Optlayer - practical constrained
optimization for deep reinforcement learning in the real world. CoRR abs/1
709.07643.

Sallab, A. E., Abdou, M., Perot, E., & Yogamani, S. (2017). Deep reinforcement learning
framework for autonomous driving. Electronic Imaging, 2017(19), 70–76. https://doi.
org/10.2352/ISSN.2470-1173.2017.19.AVM-023

Scobee, D. R. R. (2020). Approaches to safety in inverse reinforcement learning. University of
California at Berkeley, Berkeley, CA. Ph.D. thesis.https://escholarship.org/uc/item
/6j34r5tp

Sutton, R. S., & Barto, A. G. (1998). Introduction to reinforcement learning (1st ed).
Cambridge, MA, USA: MIT Press.

Thananjeyan, B., Balakrishna, A., Rosolia, U., Li, F., McAllister, R., Gonzalez, J. E., et al.
(2020). Safety augmented value estimation from demonstrations (saved): Safe deep
model-based RL for sparse cost robotic tasks. IEEE Robotics and Automation Letters, 5
(2), 3612–3619. https://doi.org/10.1109/LRA.2020.2976272

Zhou, Z., Li, X., & Zare, R. N. (2017). Optimizing chemical reactions with deep
reinforcement learning. ACS Central Science, 3(12), 1337–1344. https://doi.org/
10.1021/acscentsci.7b00492

N.K. Sreenivas and S. Rao

http://refhub.elsevier.com/S2667-3053(22)00043-6/sbref0001
http://refhub.elsevier.com/S2667-3053(22)00043-6/sbref0001
http://refhub.elsevier.com/S2667-3053(22)00043-6/sbref0001
http://dl.acm.org/citation.cfm?id=3305381.3305384
http://dl.acm.org/citation.cfm?id=3305381.3305384
http://refhub.elsevier.com/S2667-3053(22)00043-6/sbref0002
http://refhub.elsevier.com/S2667-3053(22)00043-6/sbref0002
https://www.ri.cmu.edu/wp-content/uploads/2019/08/MSR_Thesis_-Edward_Ahn_2019.pdf
https://www.ri.cmu.edu/wp-content/uploads/2019/08/MSR_Thesis_-Edward_Ahn_2019.pdf
http://refhub.elsevier.com/S2667-3053(22)00043-6/sbref0003
http://refhub.elsevier.com/S2667-3053(22)00043-6/sbref0003
https://ojs.aaai.org/index.php/AAAI/article/view/11797
https://ojs.aaai.org/index.php/AAAI/article/view/11797
http://arxiv.org/abs/1606.06565
http://refhub.elsevier.com/S2667-3053(22)00043-6/sbref0005
http://refhub.elsevier.com/S2667-3053(22)00043-6/sbref0005
http://refhub.elsevier.com/S2667-3053(22)00043-6/sbref0005
https://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2019-97.pdf
https://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2019-97.pdf
https://doi.org/10.1049/iet-its.2009.0070
https://doi.org/10.1109/32.256850
https://doi.org/10.23919/ACC50511.2021.9483182
http://refhub.elsevier.com/S2667-3053(22)00043-6/sbref0009
http://refhub.elsevier.com/S2667-3053(22)00043-6/sbref0009
http://refhub.elsevier.com/S2667-3053(22)00043-6/sbref0009
http://refhub.elsevier.com/S2667-3053(22)00043-6/sbref0010
http://refhub.elsevier.com/S2667-3053(22)00043-6/sbref0010
http://refhub.elsevier.com/S2667-3053(22)00043-6/sbref0010
http://refhub.elsevier.com/S2667-3053(22)00043-6/sbref0010
http://dl.acm.org/citation.cfm?id=3294771.3294858
https://github.com/MattChanTK/gym-maze
http://refhub.elsevier.com/S2667-3053(22)00043-6/sbref0013
http://refhub.elsevier.com/S2667-3053(22)00043-6/sbref0013
http://refhub.elsevier.com/S2667-3053(22)00043-6/sbref0013
http://refhub.elsevier.com/S2667-3053(22)00043-6/sbref0013
http://dl.acm.org/citation.cfm?id=3327757.3327904
http://arxiv.org/abs/1801.08757
https://doi.org/10.1145/361179.361202
https://doi.org/10.1145/361179.361202
https://doi.org/10.1109/ICRA40945.2020.9196924
https://doi.org/10.1109/ICRA40945.2020.9196924
http://refhub.elsevier.com/S2667-3053(22)00043-6/sbref0017
http://refhub.elsevier.com/S2667-3053(22)00043-6/sbref0017
http://dl.acm.org/citation.cfm?id=2789272.2886795
http://dl.acm.org/citation.cfm?id=2789272.2886795
http://refhub.elsevier.com/S2667-3053(22)00043-6/sbref0018
http://refhub.elsevier.com/S2667-3053(22)00043-6/sbref0018
http://refhub.elsevier.com/S2667-3053(22)00043-6/sbref0018
http://refhub.elsevier.com/S2667-3053(22)00043-6/sbref0018
http://refhub.elsevier.com/S2667-3053(22)00043-6/sbref0018
http://dl.acm.org/citation.cfm?id=2484920.2485084
http://refhub.elsevier.com/S2667-3053(22)00043-6/sbref0019
http://refhub.elsevier.com/S2667-3053(22)00043-6/sbref0019
http://refhub.elsevier.com/S2667-3053(22)00043-6/sbref0019
http://refhub.elsevier.com/S2667-3053(22)00043-6/sbref0019
https://doi.org/10.1109/ICRA.2017.7989385
https://doi.org/10.1109/ICRA.2017.7989385
http://refhub.elsevier.com/S2667-3053(22)00043-6/sbref0021
http://refhub.elsevier.com/S2667-3053(22)00043-6/sbref0022
http://refhub.elsevier.com/S2667-3053(22)00043-6/sbref0022
http://refhub.elsevier.com/S2667-3053(22)00043-6/sbref0022
http://dl.acm.org/citation.cfm?id=2900423.2900492
http://dl.acm.org/citation.cfm?id=2900423.2900492
http://arxiv.org/abs/1709.07643
http://arxiv.org/abs/1709.07643
https://doi.org/10.2352/ISSN.2470-1173.2017.19.AVM-023
https://doi.org/10.2352/ISSN.2470-1173.2017.19.AVM-023
http://refhub.elsevier.com/S2667-3053(22)00043-6/sbref0025
http://refhub.elsevier.com/S2667-3053(22)00043-6/sbref0025
https://escholarship.org/uc/item/6j34r5tp
https://escholarship.org/uc/item/6j34r5tp
http://refhub.elsevier.com/S2667-3053(22)00043-6/sbref0026
http://refhub.elsevier.com/S2667-3053(22)00043-6/sbref0026
https://doi.org/10.1109/LRA.2020.2976272
https://doi.org/10.1021/acscentsci.7b00492
https://doi.org/10.1021/acscentsci.7b00492

	Safe deployment of a reinforcement learning robot using self stabilization
	1 Introduction
	2 Self stabilization
	3 Self stabilization in RL
	3.1 Robot characteristics
	3.2 Working of the robot
	3.2.1 Modified Q-learning
	3.2.2 Self stabilization

	3.3 Maze

	4 Performance improvement using self stabilization
	5 Results
	5.1 Performances of the three strategies in Maze
	5.2 Extent of perturbation versus recovery time in Maze
	5.3 Performance improvement using RL ​+ ​SS in Lunar Lander

	6 Conclusion
	Declaration of Competing Interest
	References

