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A B S T R A C T   

In toy environments like video games, a reinforcement learning agent is deployed and operates within the same 
state space in which it was trained. However, in robotics applications such as industrial systems or autonomous 
vehicles, this cannot be guaranteed. A robot can be pushed out of its training space by some unforeseen 
perturbation, which may cause it to go into an unknown state from which it has not been trained to move to
wards its goal. While most prior work in the area of RL safety focuses on ensuring safety in the training phase, 
this paper focuses on ensuring the safe deployment of a robot that has already been trained to operate within a 
safe space. This work defines a condition on the state and action spaces, that if satisfied, guarantees the robot’s 
recovery to safety independently. We also propose a strategy and design that facilitate this recovery within a 
finite number of steps after perturbation. This is implemented and tested against a standard RL model, and the 
results indicate a significant improvement in performance.   

1. Introduction 

While some early works in reinforcement learning (RL) were 
restricted to simple environments (Mann & Choe, 2011; Sutton & Barto, 
1998), recent works have used RL to solve problems in real-world set
tings where the stakes are much higher. Over the past decade, RL has 
found its way into robotics (Gu, Holly, Lillicrap, & Levine, 2017), 
autonomous vehicles (Sallab, Abdou, Perot, & Yogamani, 2017), con
trolling traffic signals (Arel, Liu, Urbanik, & Kohls, 2010), and opti
mizing chemical reactions (Zhou, Li, & Zare, 2017) among many other 
practical use cases. Therefore, it can be seen that such robots trained 
using RL (which we refer to as “RL robots”) cannot afford to focus only 
on performance; they also need to ensure their safety in addition to that 
of their surroundings. Safety in robotics has been considered to be a 
major bottleneck in the safe and productive use of robots in industry and 
manufacturing (El-Shamouty, Wu, Yang, Albus, & Huber, 2020). 

Safety in RL has been a topic of interest recently. Achiam, Held, 
Tamar, & Abbeel (2017) proposed Constrained Policy Optimization 
(CPO) as a trust region method, which offered near-constraint satisfac
tion. A different approach to address the problem of safe exploration is 
to add a safety layer that corrects the action choice to never violate 
constraints during training (Dalal et al., 2018). This is done by pre
training based on past trajectories made up of arbitrary actions. Another 
class of solutions uses Lyapunov functions to guarantee safety during 

training (Berkenkamp, Turchetta, Schoellig, & Krause, 2017; Chow, 
Nachum, Duenez-Guzman, & Ghavamzadeh, 2018). Yet another recent 
work used a QP solver for ensuring safety (Pham, Magistris, & Tachi
bana, 2017). Gehring & Precup (2013) propose a different approach 
based on the notion of controllability computed from temporal differ
ence errors. Human demonstrations have also been used to constrain 
exploration to ensure safety (Thananjeyan et al., 2020). Recently, in
verse RL has been used to learn human perception of safety and hard 
safety constraints based on successful demonstrations (Scobee, 2020). 
For an expanded overview of related work, see the survey by García & 
Fernández (2015) on safe RL. 

A common theme across all these works is that they are more focused 
on ensuring safety during training, which is certainly an important 
concern. Andersson & Doherty (2019) show that popular RL algorithms 
which generally perform well on simple toy environments fare poorly 
when random perturbations are introduced. Also, even robots trained 
with safe exploration methods such as CPO in simulation are unsuc
cessful at some tasks when deployed in the real world (Ahn, 2019). 
Dalal et al. (2018) write, “Safety is a crucial concern: unless safe oper
ation is addressed thoroughly and ensured from the first moment of 
deployment, RL is deemed incompatible for them.” Chow et al. (2018) 
also concur: “Besides optimizing performance it is crucial to guarantee 
the safety of an agent in deployment, as well as during training.” 

While most agree that safety is as important in deployment as it is in 
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training, there has not been much work on safety in deployment. This 
could be because of an implicit assumption that a well-trained robot 
taught to explore safely will also remain within safety in deployment. 
While that could be true, a robot may enter an unsafe state uninten
tionally due to some unforeseen external perturbation in the environ
ment. In such an event, the robot should recover to safety as soon as 
possible, but it may be in a hitherto unseen state and there may exist no 
learned policy that the robot can readily use. 

This has been defined as one of the challenges in AI safety by Amodei 
et al. (2016), who discuss the scenario where an agent finds itself in a 
space different from the one it was originally trained in: 

“In general, when the testing distribution differs from the training 
distribution, machine learning systems may not only exhibit poor 
performance, but also wrongly assume that their performance is 
good. More broadly, any agent whose perception or heuristic 
reasoning processes are not trained on the correct distribution may 
badly misunderstand its situation, and thus runs the risk of 
committing harmful actions.” 

We precisely focus on this aspect of safety: how can a trained RL 
robot quickly recover when perturbed? Work on RL and its applications 
suggests that systems using RL may be subject to transient disturbances, 
and specifically that robots trained using RL may encounter issues 
during deployment that have not been seen during training. We illus
trate that self stabilization, a classical paradigm of distributed 
computing, can be applied to RL to address these problems. 

We first define a recoverability condition on the state space, which if 
satisfied guarantees the robot’s return to safety when unsafe. We offer a 
prototype of an RL robot that learns the consequence of each action 
during the training phase, i.e, the change in state that occurs. During 
deployment, when the robot enters an unsafe territory, it determines the 
state change required to navigate back to safety. The robot now finds a 
sequence of actions that help lower its distance to safety based on the 
relationship between action and state change that it had learned during 
training. Thus, the suggested robot model can stabilize itself when 
pushed out of the safe space due to some unexpected perturbation. 

We implement this model and test it on a simulated maze environ
ment where the robot navigates a maze to reach its goal. There are high 
negative rewards when the robot is in an unsafe state. The trained RL 
robot is deployed with and without self stabilization. Perturbations are 
simulated probabilistically with the same frequency in both cases. While 
the RL robot without stabilization is found to recover from roughly 50% 
of perturbations, but the RL robot with self stabilization (abbreviated as 
RL + SS) achieved a 100% recovery. It is also observed that the average 
score after 5000 episodes of deployment is significantly higher for the 
robot using the RL + SS strategy. 

Further, the same strategy was implemented in a simulated envi
ronment based on the Atari game of Lunar Lander. To find out if RL + SS 
can achieve better scores even in the absence of systemic safety con
straints, different artificial safety constraints that direct the robot to
ward its goal are tested. For an already trained RL robot, choosing the 
right constraint resulted in slightly better scores. 

“Shielding” (Alshiekh et al., 2018) is one of the recent works to 
enforce safety in RL. A shield is constructed beforehand based on the 
MDP and the safety specification. It is later attached to the RL agent 
during training and overrides the action if it results in an unsafe state. 
Such shielding approaches assume the agent has sole control over its 
trajectory. However, unlike us they do not consider unexpected external 
perturbances where the shield cannot do much. Another common crit
icism of this and other shielding approaches has been that it becomes 
intractable when the state-space is large (Bastani, 2021). 

In Model Predictive Shielding (Bastani, 2021), the agent learns a 
recovery policy to return to equilibrium. It simulates several steps into 
the future to determine if the learned policy results in a recoverable 
state, and if not, it uses the recovery policy to drive back to equilibrium. 
The training of this recovery policy and the simulation at every state 

adds to the complexity of this approach. 
Bounded Prescience Shielding (BPS) (Giacobbe, Hasanbeig, Kroen

ing, & Wijk, 2021) is similar in that it modifies typical DRL to simulate a 
finite number of steps (H) for each action to ensure the agent remains 
safe. In most typical applications, safety issues are not frequent. But, in 
this approach at every state, the agent has to simulate several future 
paths (growing exponentially with H), adding significant complexity. 
Also, like other works in the domain, this approach focuses on preven
tion rather than recovery. 

The primary advantage in our work compared to these is thus that we 
consider unforeseen, external perturbances that could drive the agent to 
an unsafe state. Also, the proposed recovery policy is simple (record 
state changes induced by each action so O (1)) and can be learned 
without any significant computational overhead. 

2. Self stabilization 

In distributed computing, self stabilization was conceived by Dijk
stra (1974) as the property of a system that can return to a valid state in 
spite of the lack of a centralized control. Equivalently, a self-stabilizing 
system is one whose current state only depends on its previous k inputs 
(for some constant k). Such a system is guaranteed to stabilize, post the 
occurrence of a fault, once it processes k inputs. 

Self stabilization may also be looked upon as a special case of non- 
masking fault-tolerance (Arora & Gouda, 1993; Jalote, 1994) where a 
system is able to recover from arbitrary transient faults. It has found 
applicability in different contexts where algorithms are needed that can 
help a system recover to a valid state after a fault. 

We denote the set of all states by S. For any predicate P, we define SP 
as the set of states in S where predicate P holds. 

Definition 1. We define three predicates which serve as the basis for 
all subsequent development:  

1. L : S→{T, F} is a legitimacy predicate, such that L(x) = T if x is a 
legitimate state in S. The set of all legitimate states is denoted by SL.  

2. Z : S→{T, F} is a safety predicate, such that Z(x) = T if x is a safe state 
in S. Safe states SZ denotes the set of all states where Z holds; SZ⫅SL.  

3. Z′

: S→{T, F} is a non-safety predicate, such that Z′

= Z ∧ L. Unsafe 
states SZ′ are those legitimate states where Z does not hold. 

Safe states are those where the robot is supposed to operate, and 
unsafe states are the ones from where the robot can recover to safe 
states. Legitimate states refer to those states that are either safe or un
safe, and illegitimate states are the absolute worst case where recovery is 
also not possible. 

The distance between two states sl and sk is denoted by d(sl, sk). The 
exact distance metric can vary based on the environment. The distance 
to safety, denoted by dZ(x) is a measure of how close a given state x is to 
safety; it is the minimum distance between x and any safe state in SZ 
(Bejan, Ghosh, & Rao, 2006). 

dZ(x) =

{
0 x ∈ SZ
min
∀i∈SZ

d(x, i) x ∕∈ SZ
(1) 

Self stabilization is the process of a robot independently stabilizing 
itself starting from an unsafe state to a safe state through a finite 
sequence of actions, provided there are no further perturbations. 

When the robot is at an unsafe state x, a properly chosen action will 
move the robot to a state x′ , such that dZ(x

′

) < dZ(x). Such an action is 
termed a stabilizing nudge. In simpler words, a stabilizing nudge moves 
the robot towards safety. Alternatively, stabilization can be seen as a 
finite sequence of stabilizing nudges until the robot enters a safe state. 

The robot has a set of permissible actions A, whose cardinality is 
denoted by nA. When a certain action a is taken from a state st, the 
transition function δ returns the next state and a real-valued reward. δ :

S× An→S× R, and is given by: 
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δ(st, a) = (st+1, rt) (2) 

The environment defined by the state space S and the robot’s actions 
A, is said to be recoverable if it satisfies the recoverability condition: 

∀s1 ∈ SZ′ ,∃s2 ∈ SZ |δ(s1, πk) = s2 (3)  

where πk is a finitely long sequence of actions. 

Remark 1. If the recoverability condition is satisfied, then stabiliza
tion is always possible. 

The contradiction of the above is that the recoverability condition is 
satisfied and there exists a case where stabilization is not possible. If 
stabilization is not possible, then there should be at least one unsafe state 
that cannot be stabilized through a finite sequence of actions, which is 
the negation of the recovery condition in (3). Thus, the contradiction is 
false, and the remark is true. 

3. Self stabilization in RL 

An RL robot is typically trained in a training space, and then 
deployed in the real world. When the RL robot has been deployed, it 
could enter a state outside the training space due to some external, 
unforeseen perturbation. 

As discussed in Section 2, each robot working in some environment 
typically has a legitimacy predicate L. We assume that robots are trained 
in the safe space, and hence use the terms training space and safe space 
interchangeably from here. Even though the robot is trained in SZ, there 
is no guarantee that the robot has been to all safe states. So, we define 
one more predicate as follows. 

Definition 2. F : SZ→{T, F} is the familiarity predicate, such that F(x) =
T if the robot has been in state x during the training phase. The set of 
states encountered by the robot in the training phase is denoted by SF 
and, SF⫅SZ. 

State change function Δ, returns the vector difference between any 
two given states. If the robot transitions from state sm to sm+1 by per
forming an action a, then the state change is given by 

Δ(sm, sm+1) = sm+1 − sm (4) 

The state change function Δ would need some transformation if the 
attributes representing the state are not numeric. There are many 
transformation functions available in the ML literature to do this. Of 
course, there could be scenarios where the standard transformations are 
not applicable, but such cases can only be dealt with on a case by case 
basis. 

States could be continuous in some environments, and even when 
discrete, there could be too many possible values of state changes in 
some environments. So, to handle such cases, the state changes could be 
discretized into some finite types. The set of state changes is denoted by 
Σ and its cardinality is denoted by nΣ. 

There are many different algorithms within the domain of RL, but we 
use Q-learning (Sutton & Barto, 1998) in all the environments here. The 
goal is for the robot to learn the optimum action to take under different 
circumstances. Central to the algorithm is the quality function, which 
returns the quality of a state-action pair, Q : SZ × A→R. 

The Q-values for all state-action pairs are initialized with some 
arbitrary value. Then, at some time t, the robot chooses some action a 
from a state st, and observes a reward of rt. The new quality of the state- 
action pair is updated based on the Bellman equation. 

This whole process of selecting an action and updating the quality 
function helps the robot learn which actions to choose under various 
circumstances. This is done repeatedly until a certain number of epi
sodes are over, or until a certain average score is achieved. Once the 
training terminates, the robot can now be deployed. Now, when the 
robot is at state s, the optimum action is chosen by 

a* = argmax
ai∈A

Q(s, ai) (5) 

As discussed above, the Q-function maps all safe state-action pairs. 
So, when the robot has been perturbed and is in a state s′ ∈ SZ′ , it has no 
row in the Q-Table to refer to, and hence cannot decide which action is 
appropriate. In such a case, the robot has only two possible courses of 
action—to remain idle, or choose an action at random from A. Both of 
these cannot guarantee the recovery of the robot, and randomly 
choosing an action could further aggravate the situation by landing the 
robot in an illegitimate state. 

However, when the recoverability condition is satisfied by the 
environment (3), the robot can be stabilized and return to safety if it 
maintains some extra information during training. The robot charac
teristics that facilitates this, and the maze environment where this model 
is tested are explained in the following subsections. 

3.1. Robot characteristics 

Each robot has the following four attributes: 

• Current state st, which is typically an n-tuple and is defined specif
ically for each environment.  

• Visited states Ψ, a set of all states visited by the robot during training.  
• Action-state change table Ω, a table which holds the number of times 

each action induces a certain state change.  
• Q-Table or a Deep Q-Network Q , which is used to keep track of Q- 

values. The choice depends on the particular environment. 

Visited states Ψ is the set of familiar states, i.e., the states where the 
familiarity predicate F holds. The only purpose of maintaining this is for 
the robot to find the closest safe state, and consequently the distance to 
safety given by (1) when unstable. 

The action-state change table, Ω is an nA × nΣ matrix where Ω[i][j]
holds the number of times action i induces a state change j. This is used 
to calculate conditional probabilities to decide which action is most 
probable to induce the required state change, σx ∈ Σ. Conditional 
probabilities can be calculated from Ω as: 

P(σx|ak) =
P(σx ∧ ak)

P(ak)

P(σx|ak) =
Ω[ak][σx]

Ω[ak]

where,Ω[ak] =
∑

∀l∈Σ
Ω[ak][l]

Here, the probability of state change σx and action ak happening 
together is given by Ω[ak][σx], and the marginal probability P(ak) as the 
sum of all cells in the row corresponding to ak. 

The action a*
σx 

which is most likely to bring about a state change of σx 

is given by 

a*
σx
= argmax

ai∈A
P(σx|ai) (6) 

P(σx|ai) is the probability of inducing a state change of σx given that 
an action ai has been chosen. So, to maximize the chances of getting σx, 
the action should be chosen such that the conditional probability is 
maximized. Based on Ω, the robot finds the action which can mostly 
likely effect a state change of σx, as given by (6). 

The Q-Table is a matrix used to store the quality of all state-action 
pairs, and hence it is of dimensions |SZ| × nA. In environments with a 
large number of discrete states, or when states are continuous, the 
number of rows grows very large and cannot be efficiently handled. In 
such cases, Q-learning is used along with function approximation tech
niques. One of the popular solutions is to use an artificial neural network 
as the function approximator. 

N.K. Sreenivas and S. Rao                                                                                                                                                                                                                    



Intelligent Systems with Applications 16 (2022) 200105

4

3.2. Working of the robot 

3.2.1. Modified Q-learning 
To accommodate the robot characteristics discussed in Section 3.1, 

and to learn the relation between actions and state changes, the standard 
Q-learning algorithm is modified to additionally capture the effect of 
actions on state changes. Similar to standard Q-learning, the robot 
chooses an action a either by exploration or exploitation based on the 
current state s. The transition function δ given by  (2) is used to find the 
next state st+1 and the reward rt. The state change function Δ, given by 
(4), is used to determine the state change between s and st+1, and this is 
stored as c. The corresponding entry in the action-state change table 
denoted by Ω[a][c] is updated. 

3.2.2. Self stabilization 
When the robot is deployed and if it is in unsafe territory, the self 

stabilization method, outlined by Algorithm, is used to recover. The 
input to this stabilization method includes current state st , and the 
action-state change table Ω. The method returns the state of the robot 
after stabilization, and the total reward accumulated due to the actions 
performed. The total reward ρ is initialized as 0 in line 1. The robot then 
iterates through its set of visited states Ψ to find the targeted safe state η 
and the corresponding distance to safety ϖ, seen in lines 2 and 3. From 
the set of all state changes Σ, the best value σx is chosen such that it 
minimizes distance to safety, as seen in line 4. The action a*

σx 
that is 

mostly likely to induce the required state change σx is found using the 
findAction method, which is an implementation of (6). Line 7 uses the 
transition function δ given by (2) to find the next state and reward 
associated with this action, and then ρ is updated. ϖ is now updated as 
the distance between updated state st and the targeted state η by (1). If ϖ 
= 0 (line 4), the function terminates and returns the current state, which 
is safe by (1), and the total reward accumulated by all the actions per
formed. Else, the same set of steps (lines 5–9) is repeated.    

3.3. Maze 

The Maze environment (Chan, 2016) is a simple 2D grid-based 
environment where the robot finds its way from a start position to the 
goal. Each cell in the grid is represented by its row and column numbers 
(r, c). The robot can move in all four directions and only one step at a 
time. As in any typical maze, movement along certain directions could 
be blocked in some cells. So, if the robot attempts to execute such an 
impermissible action from such a state, it remains at the same state. 

The state of the robot is represented by an ordered pair 〈r,c〉, which is 
simply the position of the robot in the grid. A 20 × 20 grid is considered 
the legitimate space (SL) in this scenario; going outside of this grid is 
irrecoverable and has a high penalty. Centered within this large grid, a 
smaller 10 × 10 grid is considered the safe space SZ. 

Each episode starts with the robot at any random position within the 
safe space. The goal or destination is fixed at (15,15). An episode ends 
either when the robot reaches its goal, or when it transitions into an 
illegitimate state. 

The entire grid which is the legitimate space is a square bound by 
(1,1) and (20,20), the top left and bottom right cells respectively. The 
safe space, which is the inner square is bound by (6,6) and (15,15). 

As described earlier, the robot can move one step in all four di
rections. So, the action space is a four member set given by 

A = {N, S,E,W}

Based on the actions and the state space defined, it can be clearly 
seen that a robot starting at any unsafe state can ultimately reach a safe 
state through a finite sequence of actions. Thus, the recoverability 
condition (3) is satisfied in this environment. Since there are four 

Table 1 
An example of Ω table in Maze.  

Action (1,0) ( − 1,0) (0,1) (0, − 1) (0,0) 

N 0 6972 0 0 288 
S 8332 0 0 0 212 
E 0 0 9146 0 201 
W 0 0 0 7718 196  
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possible actions, only four different state changes are possible due to any 
action. Since this is a maze, and sometimes certain actions are not 
allowed from specific cells, such an impermissible action does not 
induce any change and thus the state change is 0 in both dimensions. 

Σ = {( + 1, 0), ( − 1, 0), (0,+1), (0, − 1), (0, 0)}

As described in Section 3.1, the robot maintains the set of visited 
states Ψ during the training phase. Additionally, after each transition, it 
also updates the action-state change table (Ω), a 4 × 5 matrix. Since this 
is a grid-based environment, the Manhattan distance is used as the dis
tance metric here. 

Each action and the corresponding consequence determines a 
reward, and this is used in estimation of Q-values and to learn the best 
action that can be performed from each state. Achieving the goal has a 
reward of +1000, entering an illegitimate state offers a reward of −
1000, any action within the safe space has a reward of − 1, and any 
action outside provides a reward of − 5. 

A sample of the action-state change table Ω is shown in Table 1. For 
example, for the action N moving towards North, the row number of the 
state decreases by 1. This can also be observed from Table 1, where P((−
1, 0)|N) = 0.97 by (6). 

Consider an event where the robot is at an unsafe state, say (2,12). It 
now iterates through its set of visited states Ψ and finds the state (6,12) 
which is the closest safe state. The difference between the two states is 
(4,0). The state change σx that will move the robot towards safety is 
(1,0), and the action most likely to induce that is calculated from Ω, 
which is to move South (S) because P((1,0)|S) = 0.97 by (6). The same 
sequence of steps is repeated until it is at a safe state as also shown in 
Algorithm. 

4. Performance improvement using self stabilization 

We use the standard Lunar Lander environment based on the well- 
known Atari game; it is also a part of the OpenAI Gym (Brockman 
et al., 2016). Here, state is represented by an 8-tuple, 〈X,Y,Vx,Vy,θ,ω, l1,
l2〉, where X,Y correspond to the x and y coordinates of the lander and 
Vx,Vy denote the velocity components along the x and y axes respec
tively. The angle of rotation,and the angular velocity are denoted by θ 
and ω. The last two attributes l1, l2 indicate if the legs of the lander are in 
contact with the ground. The state space is continuous here, unlike the 
maze environment. The robot is trained to land at its destination (0,0). 
The discrete action space A is given by: 

A = {N, L,M,R}

The first action N corresponds to no action where the lander is subject to 
gravity only, while the other three actions correspond to firing the left, 
main, and right engines respectively to navigate the lander. 

States are continuous here, and hence maintaining an action-state 
change table with all possible values of state change is not feasible. 
So, we define state change as positive and negative with respect to each 
attribute. Therefore, Σ is a set with 2 × 8 = 16 possible state changes. 
For illustration purposes we show only the relevant part of the action- 
state change table Ω for this environment in Table 2. For example, by 
(6), it can be seen that firing the left engine mostly results in a decrease 
in Vx, firing the right engine most likely corresponds to an increase in Vx, 

and firing the main engine is most likely to bring about an increase in Vy. 
All these inferences based on the action-state change table are true based 
on the definitions of these actions, thus showing that our model can 
learn the action-state change relationship accurately even in complex 
environments. 

The goal of this experiment is to determine if the self stabilization 
strategy helps achieve better scores using goal-directed artificial safety 
constraints. This environment also serves as an example of applying the 
self-stabilization strategy in a complex environment with continuous 
states. We create a simple artificial constraint based on the lander’s 
position on the x-axis. We introduce a safety threshold λ, such that the 
lander is now considered safe only when − λ ≤ X ≤ + λ. As this is a 
complex environment where each action impacts more than one attri
bute, performing self-stabilizing actions each instant could cause unin
tended consequences on other attributes. Hence, different frequencies of 
self-stabilizing nudges are considered. The stabilizing nudges are 
applied once every ν time steps, ν ≥ 1. 

5. Results 

In the Maze environment, the trained model is deployed and played 
for 5000 episodes. Three different scenarios are considered—no per
turbations, RL-only, and RL + SS. The case of no perturbations is 
considered to measure the rewards in an ideal situation where the robot 
is always safe, and is never perturbed. For the other two cases, pertur
bation is handled by a probabilistic model, and the probability of a 
random perturbation in any timestep is defined as the perturbation 
probability. It is simply to control the frequency of perturbations, and a 
value of 0.05 is chosen as an example; it is not critical to the simulations. 
Increasing the perturbation probability would exacerbate the issues for 
unstabilised (RL-only) robots, but for the robots using RL + SS approach, 
the results do not change significantly as any perturbation is always 
eventually stabilized. As the perturbation probability is reduced, the 
scores improve in both cases and as it tends to zero, it corresponds to the 
case of no perturbations. 

In the case of only RL, the robot has no information on the Q-table to 
make an informed decision about the next move. Two alternatives are 
available to the robot—to remain stationary or to make random moves. 
The consequences of remaining idle are fairly obvious, and hence we 
consider only the random move strategy in this scenario. The RL + SS 
scenario is the case of using the strategy that has been explained in 
Section 3. 

5.1. Performances of the three strategies in Maze 

Although the robot is deployed for 5000 episodes, in Fig. 1a, only a 
set of 20 episodes is depicted for the sake of brevity. The aggregate 
statistics across all 5000 episodes are shown in Table 3. The RL + SS 
approach guarantees recovery (100%), whereas the RL-only approach 
was able to recover only in 36% of the cases of perturbations. Thus, this 
suggests that stabilization is guaranteed by the RL + SS strategy in Maze. 

From Table 3, it can be seen that the mean scores also reflect on the 
benefits of RL + SS (946) over the RL-only strategy ( − 80). This is 
primarily because when the RL-only strategy is used, the robot does not 
recover 64% of the time and end up in illegal states which have high 
negative payoffs. On the other hand, the RL + SS approach ensures the 

Table 2 
An example of Ω in Lunar Lander.   

X  Y  Vx  VY  

+ − + − + − + −

N 337 1103  596 844  637 803  3.0 1437.0 
L 360 745  297 808  3 1102  21.0 1084.0 
M 1286 3170  1827 2629  2226 2230  4066.0 390.0 
R 299 824  179 944  1119 4  7.0 1116.0  
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robot never enters an illegal state, and also achieves the goal, thus 
enabling higher positive payoffs. 

5.2. Extent of perturbation versus recovery time in Maze 

The frequency of perturbation is handled by a probabilistic model, 
but the extent of perturbation is random. The extent of perturbation is 
the minimum distance between the perturbed state and a safe state. 
Fig. 1b depicts the relationship between the extent of perturbation and 
the recovery time with both strategies. In RL + SS, the number of steps 
taken to recover is exactly equal to the extent of perturbation, hence we 
see a perfect linear relationship in this case. In the RL-only strategy, the 
moves are random, and hence there is no such relationship shown. 
However, it is clear that the curve corresponding to the RL-only strategy 
is always above the RL + SS line, showing that recovery, even when 
possible, is slower. 

5.3. Performance improvement using RL + SS in Lunar Lander 

The values of the artificial safety constraint λ and stabilization period 
ν are varied and the results are observed. A 5% improvement is observed 
with a moderate value of λ and ν. It is also clear that extremely low 
values of stabilization period and safety thresholds result in poor re
wards. Also, very high values of these two parameters give scores that 
are nearly same as the scores achieved by the RL-only strategy. This is 
expected and fairly intuitive, since the RL-only approach is basically RL 
+ SS with infinite stabilization period and safety thresholds. However, in 
the moderate range, this approach offers better scores than the RL-only 
strategy as seen in Fig. 2. 

6. Conclusion 

Safety of RL robots in deployment remains an unexplored idea, 
despite wide agreement on its importance and relevance. We show that 
self-stabilization, a popular paradigm in distributed computing, can be 
used with RL to tackle this challenge. We define a recoverability con
dition, which if satisfied can guarantee the stabilization of the robot. 

Self-stabilization is implemented by learning the relationship be
tween actions and state changes during training, and applying this in
formation to stabilize when unsafe. We describe the design of an RL 
robot that can stabilize itself and implement it in a simulated environ
ment. It is observed that robots with self-stabilization always recover 
from a perturbation, but robots trained with only RL can recover in a 
fraction of the cases only. Results also indicate that a linear relationship 
exists between the extent of perturbation and recovery time in the case 
of robots with self-stabilization. The recovery times are also significantly 
lower than those of robots trained with standard RL. The same approach 
was implemented in another environment with no issues of safety, to 
understand if there were any performance benefits. It is observed that an 
appropriate choice of goal-directed artificial safety constraint improves 
performance slightly. 

This idea of self-stabilization in RL could also be extended to more 
complicated environments and could find applications in many RL so
lutions currently deployed in an industrial setting. Further, the same 
idea could also be expanded to support self-stabilization and safety 
during training as well. 

Declaration of Competing Interest 

Authors declare that they have no conflict of interest. 

Fig. 1. Maze scores.  

Table 3 
Aggregate statistics in Maze.  

Metric RL + SS RL Only No perturbations 

Max 1000 1000 1000 
Min 424 − 1977 938 
Mean 946 − 80 973 
Std deviation 54 1035 19 
Recovery [%] 100% 36% N/A  

Fig. 2. Performance improvement by RL + SS in Lunar Lander.  
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