loading page

Sentiment Analysis of Film Reviews Based on BI-GRU +Attention+Capsule Fusion
  • zhifei hu
zhifei hu
SAIC

Corresponding Author:[email protected]

Author Profile

Abstract

In this paper, a sentiment analysis model based on the bi-directional GRU, Attention and Capusle fusion of BI-GRU+Attention+Capsule was designed and implemented based on the sentiment analysis task of the open film review data set IMDB, and combined with the bi-directional GRU, Attention and Capsule. It is compared with six deep learning models, such as LSTM, CNN, GRU, BI-GRU, CNN+GRU and GRU+CNN. The experimental results show that the accuracy of the BI-GRU model combined with Attention and Capusule is higher than the other six models, and the accuracy of the GRU+CNN model is higher than that of the CNN+GRU model, and the accuracy of the CNN+GRU model is higher than that of the CNN model. The accuracy of CNN model was successively higher than that of LSTM, BI-GRU and GRU model. The fusion model of BI-GRU +Attention+Capsule adopted in this paper has the highest accuracy among all the models. In conclusion, the fusion model of BI-GRU+Attention+Capsule effectively improves the accuracy of text sentiment classification.