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Abstract—Deep clustering incorporates embedding into clustering to find a lower-dimensional space appropriate for clustering. In this
paper, we propose a novel deep clustering framework with self-supervision using pairwise data similarities (DCSS). The proposed
method consists of two successive phases. In the first phase, we propose to form hypersphere-like groups of similar data points, i.e.
one hypersphere per cluster, employing an autoencoder that is trained using cluster-specific losses. The hyper-spheres are formed in
the autoencoder’s latent space. In the second phase, we propose to employ pairwise data similarities to create a K-dimensional space
that is capable of accommodating more complex cluster distributions; hence, providing more accurate clustering performance. K is the
number of clusters. The autoencoder’s latent space obtained in the first phase is used as the input of the second phase. The
effectiveness of both phases is demonstrated on seven benchmark datasets through conducting a rigorous set of experiments.

Index Terms—Deep clustering, autoencoder, pairwise data similarity, clustering with soft assignments, cluster-specific loss.

1 INTRODUCTION

N many science and practical applications, informa-
Ition about category (aka label) of data samples is non-
accessible or expensive to collect. Clustering, as a major data
analysis tool in pattern recognition and machine learning,
endeavors to gather essential information from unlabeled
data samples. The main goal of clustering methods is to
partition data points based on a similarity metric.

Deep learning based clustering methods have been
widely studied and their effectiveness is demonstrated in
many applications such as image segmentation [1]], social
network analysis [2], face recognition [3], and machine
vision [4]. The common practice in these methods is to
map the original feature space onto a lower dimensional
space (aka latent space) in which similar samples build data
groups that can be detected by a simple method like k-
means [5].

One of the most common approaches in obtaining the
lower dimensional space is based on autoencoder (AE) and
its variations [6, 7, 8]. An AE consists of two networks:
encoder and decoder. Encoder maps the original input space
onto a latent space, while decoder tries to reconstruct the
original space using the encoder’s output space. Encoder
and decoder networks are trained to minimize a loss func-
tion that contains the data reconstruction losses. The AE’s
latent space, whose dimension is much lower than the
dimension of the original input space, is indeed a nonlinear
transformation of the original space.

Some more advanced AE-based clustering methods, e.g.
[9,110} 11} {12} [13], include in their loss function the data clus-
tering losses besides the reconstruction losses. This makes
the AE’s latent space more effective for data clustering.

e M. Sadeghi and N. Armanfard are with the Department of Electrical and
Computer Engineering, McGill University, Montreal, QC, Canada.
E-mail: {mohammadreza.sadeghi, narges.armanfard }@ mcgill.ca

o M. Sadeghi and N. Armanfard are also with Mila-Quebec Al Institute,
Montreal, QC, Canada.

o ¥ Corresponding author.

Original Data Space

Doy

@y x |
iy =
. D

r

Dog

/ . cat
u H3 Bird
i

Fig. 1. The motivation of the proposed DCSS method. Arrows show
the nonlinear mapping, using the AE, from the original input space to
the AE’s latent space (i.e the u space). DCSS employs pairs of similar
and dissimilar samples to create the K-dimensional space q in which
pairwise similarities and dissimilarities are strengthen. Similar samples
are connected with solid lines and dashed lines represent dissimilar
data.

Despite the reconstruction loss that can be directly com-
puted based on the difference between the encoder’s input
and the decoder’s output, calculating the true clustering
loss is impossible due to the unsupervised nature of the
clustering problem where the true cluster label of the data
points remains unknown during the training phase. Hence,
researchers employ an approximation of the clustering losses
when training the networks. At each training iteration, the
approximation is calculated based on the data distribution
in the latent space obtained in the previous iteration.

All the related existing algorithms, e.g. [9, |10, |14} |15}
16, 17]], approximate the data clustering losses by first per-
forming a crisp cluster assignment and then calculating the
clustering losses using the crisply clustered data, based on a
criterion such as the level of compactness or density of the
data within clusters. Crisp assignment (as opposed to soft
assignment) assigns a data point to only one cluster — e.g.
to the one with closest center. However, such crisp cluster
assignment of the data in an intermediate training iteration
may mislead the training procedure if significant number
of samples are mis-clustered, as the error propagates to the
following iterations. This crisp assignment issue would be
more serious if there exist a high uncertainty when deciding



to which cluster a data point should be assigned — e.g. the
extreme uncertainty would be related to the case where a
data point is equally close to all cluster centers.

Almost all the deep clustering algorithms neglect the
important relevant information available in sample pairs
while the effectiveness of such information has been proven
in the supervised learning methods [18, (19} |20 21] where the
data class labels are employed during the training phase.
For example, metric learning algorithms are supervised
learning techniques that learn a distance metric employing
pairwise distances [18| 19]. Their goal is to decrease the
distance between similar samples , i.e. samples from the
same class, and increase the distance between dissimilar
samples, i.e. samples from the different classes. Contrastive
learning is a metric learning technique that aims to max-
imize the similarities of positive pairs while minimizing
those of negative pairs where the positive and negative
pairs respectively refer to the samples from the same and
different classes. Recently, the contrastive leaning concept
is employed for unsupervised data clustering [22] where,
since the data class labels are unknown, data augmentation
is employed to artificially create positive and negative pairs.
The positive pairs consist of samples augmented from the
same instance, and the negative pairs otherwise. The main
drawback of this algorithm is where augmentation of all
other samples are considered as negative pairs, while indeed
some of the samples belong to the same cluster as of the
anchor sample. This may mislead the algorithm’s training
procedure and/or result in a slow convergence.

Furthermore, to the best of our knowledge, the existing
clustering methods utilize a single loss function for all
data clusters ignoring the possible existence of differences
between characteristics of the different clusters. The only
existing algorithm that explicitly employs cluster-specific
losses is presented in [23]. However, this algorithm suffers
from high computational cost as the algorithm requires
training of K distinct AEs, where K is the number of data
clusters.

In summary, to the best of our knowledge, all existing
AE-based unsupervised clustering methods suffer from at
least one of the followings: the crisp assignment issue,
ignoring the relevant useful information available in the
data pairs, failure to reliably identify similar and dissimilar
samples, treating all clusters similarly through minimizing
a single common loss function for all data clusters.

In this paper, we propose a novel AE-based clustering
algorithm called Deep Clustering with Self-Supervision,
DCSS, that addresses all the aforementioned drawbacks.
DCSS is a novel unified framework that employs pairwise
data similarities as a means of self-supervision during its
training procedure. DCSS avoids the error propagation
issue caused by the uncertain crisp assignments through
employing the soft assignments in the loss function. DCSS
considers an individual loss for every data cluster where
a loss consists of weighted reconstruction and clustering
errors. A sample’s clustering error is calculated using the
sample’s Euclidean distance to the cluster centres. This
results in obtaining a latent space (for the AE), called
u space, in which similar data points form hypersphere-
like clusters, one hypersphere per cluster. To make the
cluster distributions more distinguishable from each other,
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and to accommodate more complex distributions, we pro-
pose to employ pairwise data similarities and train a K-
dimensional space q in which a pair of similar (dissimilar)
samples sit very close to (far from) each other, where K is
the number of data clusters and inner product is used for
similarity measurement. We define q to be the last layer of
a fully connected network, called MNet. Only similar and
dissimilar pair of samples contribute to training MNet. Due
to the curse of dimensionality [24], similar and dissimilar
samples are not recognizable in the original input feature
space. Instead, we propose to measure the pairwise simi-
larities in the partially trained u and q spaces which are
more reliableﬂ for similarity measurement. The input layer
of MNet is the output layer of the AE’s encoder network, i.e.
the u space. Our experiments, supported by mathematical
proofs, demonstrate that the data representations in the q
space are very close to one-hot vectors where the index of
the most active element points the true cluster label out.
Furthermore, we demonstrate that the DCSS method can be
employed as a general framework to improve performance
of the existing AE-based clustering methods, e.g. [25] |11,
10, 9]. An intuitive motivation of the proposed method is
illustrated in Fig.

The rest of this paper is organized as follows. Section [2]
presents a brief review of deep clustering methods. Section 3|
presents details of the proposed DCSS framework. Extensive
experimental results that demonstrate the effectiveness of
the DCSS method is presented in Section [ Section [7] con-
veys the gist of this paper. Mathematical proofs in support
of the proposed method are presented in the supplementary
material.

2 RELATED WORK

An exhaustive review of previous works is beyond the scope
of this paper. We refer to the survey of Xu et al [26] on
non-deep learning based clustering methods. The following
focuses on the review of some related deep clustering meth-
ods.

2.1 Deep Learning based methods

Deep neural networks (DNN) have been widely used to
tackle the unsupervised clustering problem. These algo-
rithms try to train a DNN-based model in an unsupervised
manner. For instance, [27] encourages predicted representa-
tions of the augmented data points to be close to those of the
original data points through maximizing the information-
theoretic dependency between data and their predicted rep-
resentations. RUC [28] proposes a two steps method where
in the first step it endeavors to clean the dataset and in
the second step, it retrains the network with the purified
dataset. [29] trains a DNN in an unsupervised manner to ex-
tract an indicator feature vector for each data sample. It then
uses the obtained vectors to assign the data points to dif-
ferent clusters. Recently, contrastive learning has attracted
researchers’ attention in the unsupervised clustering field
[22, 30]. As is discussed in Section [1} such algorithms first
need to construct negative and positive pairs by applying

1. In this paper, space A is considered more reliable than space B if
and only if the clustering performance in A is better than in B.



augmentation to the data points. They then map the data
into a feature space and endeavor to maximize similarity
(minimize dissimilarity) in positive (negative) pairs. An
extensive review of the DNN-based methods can be found
in [31].

Among the DNN-based models, the AE-based and
generative-based algorithms have been widely studied and
used for unsupervised data clustering. These two categories
are reviewed in the following sections.

2.1.1 AE-based algorithms

AE-based algorithms utilize deep autoencoders to embed
original data points in a lower-dimensional space. In some
algorithms such as [32, 33|, learning the lower represen-
tation of the data points is separated from the clustering
task. In [32], an AE is used to find a lower-dimensional
representation of data points by enforcing group sparsity
and locality-preserving constraints. The cluster assignments
are then obtained by applying the k-means algorithm to the
obtained lower-dimensional space. Graph clustering [34, 35|
is a key branch of clustering, which tries to find disjoint
partitions of graph nodes such that the connections between
nodes within the same partition are much denser than those
across different partitions. [33] takes advantage of a deep
autoencoder to find lower-dimensional representation of
a graph; it then utilizes the k-means algorithm to define
clusters in the lower-dimensional space.

In order to further improve clustering performance,
more recent AE-based algorithms simultaneously embed
data points in a lower-dimensional feature space and per-
form clustering using the obtained space. Deep embedded
clustering (DEC) [25] first trains a stacked autoencoder
layer by layer using the reconstruction losses, and then
removes the decoder and updates the encoder part through
minimizing a Kullback-Leibler (KL) divergence between the
distribution of soft assignments and a pre-determined target
distribution. Soft assignments are the similarity between
data points and cluster centers and are calculated using
Students’ t-distribution. Due to the unsupervised nature
of the clustering problem, the target distribution of the
data points is unknown. Hence, DEC uses an arbitrary
target distribution which is based on the squared of the
soft assignments. Despite the DEC method, a few recent
studies, e.g [10, 9, [11]], propose to take advantage of the
AE’s decoder as well as encoder. These algorithms use
notions of both reconstruction and clustering losses with the
goal of maintaining the local structure of the original data
points while training the algorithm’s networks. For exam-
ple, improved deep embedding clustering (IDEC) [11] tries
to improve clustering performance of DEC by considering
the reconstruction loss of an AE besides the KL divergence
loss of DEC. Improved deep embedding clustering with
fuzzy supervision (IDECF) [13] improves the DEC method
by employing both reconstruction and clustering losses, and
estimating the target distribution through training a deep
fuzzy c-means network. Deep clustering network (DCN)
[10] jointly learns a lower-dimensional representation and
performs clustering. DCN trains its AE by minimizing a
combination of the reconstruction loss and the objective
function of the k-means algorithm. This results into a k-
means friendly latent space. DCN updates AE’s parameters
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and cluster centers separately. The latter is based on solving
a discrete optimization problem. In deep k-means (DKM)
algorithm [9]], which has the same objective function as of
DCN, network parameters and cluster centers are updated
simultaneously through minimizing its objective function
using stochastic gradient descent.

Spectral clustering [36, |37] is a clustering approach that
is based on building a graph of data points in the orig-
inal space and then embedding the graph into a lower-
dimensional space in which similar samples sit close to each
other. Spectral clustering has been employed in DNN-based
methods [12, 38]. For example, deep spectral clustering
(DSC) is recently presented in [12]. DSC has a joint learning
framework that creates a low-dimensional space using a
dual autoencoder that has a common encoder network and
two decoder networks. The first decoder tries to reconstruct
the original input from the AE’s latent space and the second
decoder endeavors to denoise the encoder latent space. DSC
considers reconstruction, mutual information, and spectral
clustering losses for networks training.

2.1.2 Deep generative based algorithms

Variational autoencoders (VAEs) [39] and Generative ad-
versarial networks (GANSs) [40] are among the most well-
known deep generative models which are effective for
data clustering. For example, variational deep embedding
(VaDE) [41] finds a latent space which captures the data sta-
tistical structure that can be used to produce new samples.
The data generative process in VaDE is based on a Gaus-
sian Mixture Model (GMM) and a deep neural network.
Deep adversarial clustering (DAC) [42] is another genera-
tive model that applies the adversarial autoencoder [43] to
clustering. Adversarial autoencoder employs an adversarial
training procedure to match the aggregated posterior of the
latent representation with a Gaussian Mixture distribution.
DAC’s objective function includes a reconstruction term,
Gaussian mixture model likelihood, and the adversarial
objective. More generative based models can be found in
[31]. GAN is a method of training a generative model by
framing the problem as a supervised learning task with two
sub-models: the generator model that is trained to generate
new samples, and the discriminator model that tries to
classify examples as either real or fake (generated). Many
GAN-based algorithms have been developed for clustering
task [31]. [44] presents a GAN-based algorithm that learns
disentangled representations in an unsupervised manner. It
maximizes the mutual information between a small subset
of the latent variables and the observation. [45] expands
the idea of GMM to GAN mixture model (GANMM) by
devising a GAN model for each cluster. GAN-based cluster-
ing algorithms suffer from vanishing gradients and mode
collapse.

3 PROPOSED METHOD

Consider a K-clustering problem which aims to partitioning
a given dataset X = {x1, X2, ...xx } into K disjoint clusters,
where x; indicates the ith data sample, N is the number of
data points, and K is a predefined user-settable parameter.
DCSS utilizes an AE, consisting of an encoder and a de-
coder network respectively denoted by f(.) and g(.). Latent
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Fig. 2. (a) Training scheme of the first phase of DCSS. (b) Training procedure of the second phase of DCSS; at the outset, when itera < T, MNet is
trained based on the pairwise similarities defined in the u space — i.e. The similarity between two data points x; and x; is determined using the dot
product of p; and p;. At the later stages of MNet training, when itery > T5, the pairwise similarities are measured in the q space itself using q q;-
(c) Visualization of the final cluster assignment using DCSS; after completing the training phases shown in (a) and (b), we cluster a data pomt by

locating the largest element of its representation in the q space.

representation of X is denoted by U = {uj,uy,...,un},
where u; = f(x;;0.) € R%, d indicates dimension of the
latent space, and 6. denotes parameters of the encoder
network. The reconstructed output of the AE is denoted by
x; = g(uy; 84), where 6,4 represents the decoder parameters.
Center of the kth data group in the u space is denoted
by p®). To accommodate complex cluster distributions, we
propose to employ pairwise data similarities in DCSS. To
this end, we employ the fully connected network MNet
which takes the latent representation of each data point, i.e.
u;, as input and maps it to a K-dimensional vector q; which
its kth element indicates the probability of x; belonging to
the kth data cluster. In this paper, the output of MNet for the
ith data point is denoted by q; = M (u;;6,s), where M (.)
and @), respectively shows MNet and its corresponding
parameters.

The proposed DCSS method consists of two phases. The first
phase is to provide hypersphere-like data clusters through
training an AE using weighted reconstruction and centering
losses, and the second phase is to employ pairwise data sim-
ilarities to self-supervise the remaining training procedure.

3.1

At each training batch B, we propose to train the AE
in K successive runs, where at each run a specific loss
corresponding to a specific data cluster is minimized. More
specifically, at the kth run, the AE focuses on reconstruction
and centering of the data points that are more probable to
belong to the kth data cluster.

Loss function of the kth run, i.e. Eq(Lk), is shown in (lal)
where £% and Egk), shown in and (Id), respectively
denotes weighted summation of the sample reconstruction
and centering losses. « is a hyperparameter indicating
the importance of centering loss vs. reconstruction loss.
m indicates the level of fuzziness and is set to 1.5 in all
experiments.

Phase 1: AE training

£ = £ + oLl (1a)
L = ol — %13 )
L8 =50 o Il — ™2 o
1
Dik = KH“"’“(’“)II?;M*U o
Zj:l W



Algorithm 1 Clustering procedure using DCSS

Input: Data points X, 8., 84, 0, u(k) fork=1,...,K
Output: 6., O/

Phase 1:
1: Initialize 6. and 6; with a pre-trained network (see
Section 2 of the supplementary material).

2: foriter; € {1,2,..., Maxlter; } do

3 forke{1,2,..,K} do

4 Compute p;;, using @), for i € B

5: Update AE’s parameters by employing as loss
function

6: end for

7. Every Tj iterations, update cluster centers using
8: end for

Phase 2:
9: foritery € {1,2,..., MaxItero} do
10:  if iterg < 15 then

11: Compute vectors p; for i € ‘B
12: Compute vectors q; for i € B
13: Update 0. and 6 to minimize (&)

14: Update centers u*), k= 1,... K, using
15:  else

16: Compute q; for i € B

17: Update 6. and 6 to minimize
18:  end if

19: end for

Final Cluster Assignments:
20: Compute g, for ¢;, ¢ =1,...N
21: Assign each data sample to the most probable cluster

Since data clustering is an unsupervised task, the data
cluster memberships are unknown at the problem outset. As
such, at the kth run, we use the Euclidean distance between
u; and p(®) as a means of measuring the membership degree
of x; to the kth data cluster, denoted by p;; defined in
where p; = [pi1,...,pik]- The cluster memberships are
used as the sample weights in g}@ and (Id). The closer a
sample is to the cluster center u(*), the higher contribution
that sample has in minimizing the loss function correspond-
ing to the kth run.

Every T training epochs, we update the centers to the
average of weighted samples in the u space, as is shown in
, where samples closer to (*) have more contribution to
updating.

Pl’(k) — inGX pzzul (3)
leGX p;%

Block diagram of the first phase is shown in Fig. P(a).
As is demonstrated in our experiments (see Section [4.4),
minimizing (1a), results in forming hypersphere-like groups
of similar samples in the u space, one hypersphere per
cluster.
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3.2 Phase 2: self-supervision using pairwise similari-
ties

To allow accommodating non-hypersphere shape distribu-
tions and to employ the important information available in
the pairwise data relations, we propose to append a fully
connected network, called MNet, to the encoder part of
the AE, trained in Phase 1, while discarding its decoder
network. The MNet’s output layer, i.e. the q space, consists
of K neurons where each neuron corresponds to a data
cluster. We utilize the soft-max function at the output layer
to obtain probability values employed for obtaining the final
cluster assignments. More specifically, for an input sample
x;, the output value at the jth neuron, i.e. g;;, denotes the
probability of x; belonging to the jth cluster.

MNet aims to strengthen (weaken) similarities of two
similar (dissimilar) samples. MNet parameters, i.e., 8/,
are initialized with random values. Hence, at the first few
training epochs, when q is not yet a reliable space, pairwise
similar and dissimilar samples are identified in the u space.
Then after a few training epochs, pairs of similar and
dissimilar samples are identified in the q space. In both of
the u and q spaces, we define two samples as similar (dis-
similar) if the inner product of their corresponding cluster
assignment vectors is greater (lower) than threshold ¢ (7).
More specifically, knowing that the kth element of p; (q;)
denotes the membership of x; to the kth cluster in the u (q)
space, the inner product of p; (q;) and p; (q;) is considered
as the notion of similarity between data points x; and x;.

The loss function proposed for the MNet training, at the
first T, training epochs, is shown in () where ¢ and v are
two user-settable hyperparameters, and 1{.} is the indicator
function.

Lu= Y Hpip; >0 —ala)+1{p!p; < }ai a;)
x,%; €B
4)

As can be inferred from (@), only similar and dissimilar sam-
ples, identified in the u space, contribute to the MNet train-
ing and a pair of samples with a similarity value between
¢ and ~, i.e. in the ambiguity region, does not contribute
to the current training epoch. Therefore, minimizing Las
strengthens (weakens) the similarity of similar (dissimilar)
samples, in the q space. Along with training the MNet
parameters, the encoder parameters 6. are also updated
through back-propagation, in an end-to-end manner. After
completing each training epoch, centers p*) k = 1,... K,
are also updated using (3).

After T, epochs, when q becomes a relatively reliable
space for identifying similar and dissimilar samples, we
further train MNet using the loss function £}, defined in
(B). A pair contributes to £}, if its corresponding similarity
value, in the q space, is not in the ambiguity region. As
is demonstrated in Section [# as the MNet training phase
progresses, more and more pairs contribute to the train-
ing procedure. Again, the u space receives small updates
through the back propagation process when minimizing
,C/ M-
Lyy= Y Haia; > —aiaq)+1{ai a; <y}Hai q))
x;,%X; €D

®)



As is proved in Appendix A of the supplementary ma-
terial file, a proper choice of hyperparameters ¢ and ~ is
respectively 2 < ¢ and v < ¢°. In our experiments ¢ and
« are set to 0.8 and 0.2, respectively. Moreover, Appendix
A presents several mathematical proofs that show, under
certain assumptions, the final q vector for a query sample
is very close to an one-hot vector where the index of the
maximum element of the vector indicates the cluster label.
This also shows that similar (dissimilar) samples tend to sit
in the same (different) data cluster(s).

Fig. (b) shows the overall training procedure of the
DCSS’s second phase.

3.3 Final cluster assignments

To determine the final cluster assignment of a data point x;,
we utilize the trained encoder and MNet networks to obtain
the data representation in the q space, i.e. q;. x; is assigned
to the most probable cluster, i.e. the index corresponding
to the highest element of q; is the cluster label of x;. Such
clustering assignment process is shown in Fig. [2c).

The pseudo-code of the DCSS algorithm is presented in
Algorithm

4 EXPERIMENTS

In this section, the effectiveness of our proposed
DCSS framework is demonstrated on seven bench-
mark datasets through conducting a rigorous set of ex-
periments. The DCSS clustering performance on these
seven benchmark datasets is compared with thir-
teen clustering methods. The DCSS code is available:
https:/ / github.com /Armanfard-Lab/DCSS,

4.1 Datasets

The effectiveness of the proposed method is shown on seven
widely used datasets. Considering the unsupervised nature
of the clustering task, we concatenate training and test sets
when applicable. Combining train and test datasets is a
common practice in the clustering research field [25| 9} 11}
10|, [12]. The datasets are:

(1) MNIST [46] consists of 60,000 training and 10,000 test
gray-scale handwritten images with size 28 x 28. This dataset
has 10 classes, i.e. K = 10.

(2) Fashion MNIST [47] has the same image size and number
of samples as of MNIST. However, instead of handwritten
images, it consists of different types of fashion products.
This makes it fairly more complicated for data clustering
compared to the MNIST dataset. It has 10 classes of data,
ie. K =10.

(3) 2MNIST is a more challenging dataset created through
concatenation of the two MNIST and Fashion MNIST
datasets. Thus, it has 140,000 gray-scale images from 20
classes, i.e. K = 20.

(4) USPS [48] contains of 9,298 16 x 16 handwritten images
from the USPS postal service. It contains 10 classes of data,
ie. K =10.

(5) CIFAR-10 [49] is comprised of 60,000 RGB images of 10
different items (i.e. K = 10), where the size of each image is
32 x 32.
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(6) STL-10 [50] is a 10-class image recognition dataset com-
prising of 13,000 96 x 96 RGB images. The number of clusters
K for this dataset is set to 10.

(7) CIFAR-100 [49] is similar to the CIFAR-10, except it has
20 super groups based on similarity between images instead
of 10 classes. The number of clusters K for this dataset is set
to 20.

For RGB image datasets, we apply our proposed DCSS
algorithm on the extracted features obtained by a Resnet-152
[51], which is pre-trained on the ImageNet dataset [52]. The
network architecture and implementation details of DCSS
for each dataset are respectively presented in Section 1 and
Section 2 of the supplementary material file.

4.2 Evaluation Metrics

We utilize two standard metrics to evaluate clustering per-
formance, including clustering accuracy (ACC) [53] and
normalized mutual information (NMI) [54]. ACC finds the
best mapping between the true and predicted cluster labels.
NMI finds normalized measure of similarity between two
different labels of the same data point. The ACC and NMI
formulations are shown below:

(6a)
(6b)

N - .
ACC = maxyng, == lizmer(ci)}

— I(l;c)
NMI = max{H(l),H(c)}

where I; and ¢; denote the true and predicted labels for the
data point x;. map(.) indicates the best mapping between
the predicted and true labels of data points. I(l; c) denotes
the mutual information between true labels 1 = {i1, s, ..., In }
and predicted cluster assignments ¢ = {c1, ¢z, ..., en} for all
data points. H(.) presents the entropy function. ACC and
NMI range in the interval [0,1] where higher scores indicate
higher clustering performance.

4.3 Clustering Performance

The effectiveness of our proposed DCSS method is com-
pared against thirteen well-known algorithms, including
conventional and state-of-the-art deep-learning-based clus-
tering methods, using the commonly used evaluation met-
rics ACC and NM]I, defined in Section 4.2

The conventional clustering methods are k-means [5],
large-scale spectral clustering (LSSC) [55], and locality
preserving non-negative matrix factorization (LPMF) [56].
Deep-learning based algorithms are deep embedding clus-
tering (DEC) [25], improved deep embedding clustering
(IDEC) [11], deep clustering network (DCN) [10], deep
k-means (DKM) [9]], variational deep embedding (VaDE)
[57], GAN mixture model for clustering (GANMM) [58],
deep spectral clustering (DSC) [12], and the very recent
contrastive clustering method (CC) [22]. In addition, we
report clustering performance of a baseline method AE +
k-means in which k-means is simply applied to the latent
representation of an AE, that has similar architecture as
of the AE used in the DCSS method, trained based on
minimizing the dataset reconstruction loss. More details
about the comparing algorithms can be found in Section

We also demonstrate the success of the the first phase
of DCSS, presented in Section in creating the reliable
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TABLE 1

ACC and NMI (in parenthesis) on the benchmark datasets for different clustering methods.

M MNIST Fashion MNIST IMNIST USPS CIFAR-10 STL-10 CIFAR-100
-means 53.20 (50.00) | 47.40 (51.20) | 32.31 (44.00) | 65.67 (62.00) 22.90 (8.70) 19.20 (12.50) 13.00 (8.40)
TS5C 7140 (70.60) | 49.60 @9.70) | 39.77 (51.22) | 63.14 (58.94) | 21.14 (10.89) 18.75 (11.63) 14.60 (7.92)
TPME 710 (d520) | 4340 (4250) | 3468 (3869) | 6082 (54.47) 19.10 (8.10) 18.00 (9.60) 11.80 (7.90)
DEC 8430 (8372) | 5180 (54.63) | 4120 (53.12) | 7581 (7691) | 30.10 (3570) | 3590 (27.60) | 1850 (13.60)
DEC 88.13 (8381) | 5290 (55.70) | 4042 (53.56) | 75.86 (77.68) | 3699 (32.53) | 3253 (1885) | 19.61 (14.58)
DCN 83.00 BL.00) | 5122 (5547) | 41.35(46.89) | 73.00 (71.90) | 3047 (24.58) | 33.84 (24.12) | 20.17 (12.50)
DRM 8400 (81.54) | 5131 (5557) | 4175 (36.58) | 7570 (77.60) | 3526 (26.12) | 3261 (29.12) | 18.14 (12.30)
VaDE 9450 (87.60) | 5039 (59.63) | 4035 (5837) | 56.60 (51.20) | 29.10 (24.50) | 28.10 (20.00) | 15.20 (10.80)
GANMM 64.00 (61.00) | 34.00 (27.00) - 50.12 (49.35) - - -
DSC 97.807 (94.10%) | 66.207(64.50%) | 42.36 (4653) | 86.907(85.707) | 22.50 (3.65) 25.60 (15.69) | 21.12 (13.00)
AE + kmeans 86.03 (8025) | 5794 (57.15) | 4401 (62.80) | 75.11(7445) | B0.11(7035) | 95.89 (91.75) | 49.86 (48.57)
cC 8856 (8421) | 6452 (61.45) | 42.15 (5889) | 8121 (79.45) 79.00 (70.50) | 85.00 (76.40) | 42.90 (43.10)
\ DCSS, [ 9599 (89.95) | 6290 (6358) | 45.31"(63.00°) | 5203 (51.84) | 53.40°(71.32") | 96.02° (91.90°) | 50.30° (49.80°) |
\ DCSS || 98.00 94.71) | 66.40 (66.99) | 4857 (67.80) | 87.21(86.10) | 85.32(73.35) | 97.58 (93.74) | 51.10 (50.59)

TABLE 2
ACC and NMI (in parenthesis) with different extracted features.

Dataset Method Resnet-34 Resnet-50 Resnet-101 Resnet-152
DEC 90.10 (83.40)  91.50 (84.20) _ 95.30 (90.207) __ 95.88 (91.01)

IDEC 92.70 (84.00) 93.40 (86.15) 95.81% (89.41) 96.00 (92.14)

DCN 78.12 (77.51) 80.25 (81.12) 90.14 (86.43) 90.25 (84.03)

STL-10 DKM 92.40 (88.20%) 91.10 (88.14%) 92.51 (88.57) 95.50 (91.30)
AE+k-means 92.60 (86.00) 93.20 (87.10) 95.00 (89.90) 95.89 (91.75)
DCSS,, 92.85* (86.26) 93.51* (87.63) 95.20 (90.07) 96.02* (91.90%)

DCSS 94.51 (88.35) 94.60 (89.37) 96.40 (92.00) 97.58 (93.74)

DEC 7251 (6421)  73.25 (61.10)  78.24 (67.41)  81.10 (68.21)

IDEC 71.41 (64.01) 7441 (62.30)  79.65 (68.00)  81.24 (68.57)

DCN 5471 (53.29)  56.20 (51.23)  71.00 (46.20)  64.20 (59.02)

CIFAR-10 DKM 69.52 (60.41) 70.20 (61.25) 80.31 (68.00) 81.90 (69.10)
AE+k-means 78.80 (67.81) 75.60 (62.80) 82.90 (70.80) 80.11 (70.35)
DCSS,, 79.02* (68.01%)  76.00* (62.95%)  83.12* (71.20%)  83.40* (71.32*)

DCSS 79.80 (70.61) 76.40 (64.21) 84.50 (73.13) 85.32 (73.35)

DEC 4156 (4752%)  45.10 (44.25) 4325 (46.61) 4538 (49.41)

IDEC 42.51 (46.41) 45.61 (45.00) 43.45 (47.29) 4491 (49.25)

DCN 40.36 (42.58) 41.25 (41.58) 43.15 (42.64) 44.68 (43.00)

CIFAR-100 DKM 36.80 (46.82) 35.61 (40.29) 37.84 (47.25) 37.40 (46.20)
AE+k-means  47.30 (46.10)  47.36 (45.09)  47.35(47.01)  49.86 (48.57)
DCSS,, 47.66% (46.52)  47.80* (45.44%)  47.43* (47.53%)  50.30* (49.80%)

DCSS 50.10 (48.90) 48.76 (46.40) 48.82 (49.00) 51.10 (50.59)

ACC and NMI (in parenthesis) on the benchmark datasets when employing DCSS as a general framework to improve state-of-the-art AE based

TABLE 3

clustering methods.

Method Datasets MNIST  |Fashion MNIST|  2MNIST USPS CIFAR-10 STL-10 CIFAR-100
DEC+MNet 89.13 (86.97) | 61.25 (56.30) | 4425 (57.35) | 77.58 (78.15) | 83.40 (69.25) | 96.10 (92.00) | 48.86(50.11)
TDEC+MNet 9051 (85.42) | 60.12 (57.16) | 44.83 (58.00) | 76,58 (78.14) | 83.95 (69.93) | 96.18 (92.89) | 47.86 (50.00)
DCN+MNet 8749 (83.25) | 54.23 (58.69) | 45.62 (48.24) | 76.90 (77.59) | 71.23 (62.38) | 92.59 (86.23) | 47.92 (45.81)
DKM+MNet 8831 (8452) | 57.23 (56.26) | 44.34 (49.50) | 77.13 (/8.02) | 82.26 (69.50) | 96.00 (91.88) | 40.22 (49.81)

subspace u in which the data points form hypersphere-
like clusters around their corresponding cluster center. To
this end, we only implement the first phase of the DCSS
algorithm —i.e. we train the DCSS’s AE through minimizing
the loss function presented in (I), where the AE architecture
and its initialization are similar to those presented in Section
1 of the supplementary material file. After training the u
space, we perform a crisp cluster assignment by considering
each data hypersphere-like group, in the u space, as a data
cluster and assigning each data point to the one with closest
center. In the following tables and figures, clustering using
only the first phase is shown as DCSS,. A preliminary
version of DCSS,, is presented in [59].

Clustering performance of DCSS, and DCSS along with
the comparison algorithms are shown in Table [1} For the
comparison methods, if the ACC and NMI of a dataset are
not reported in the corresponding original paper, we ran the
released code with the same hyper-parameters discussed in
the original paper. When the code is not publicly available,
or not applicable to the dataset, we put dash marks (-)
instead of the corresponding results. The best result for each
dataset is shown in bold. The second top results are shown
with *.

Several observations can be made from Table [1} (1) The
proposed DCSS method outperforms all of our comparison
methods on all datasets. (2) The first phase of DCSS (shown
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Fig. 3. Clustering visualization of different phases of DCSS using t-SNE, for different benchmark datasets. For reference, the visualization for the
baseline model AE+k-means is shown in the first row. Axes range from -100 to 100.

as DCSS,,) effectively groups the data points around their
corresponding centers. This can be inferred from DCSS.,’s
ACC and NMI values. Indeed, DCSS., outperforms all the
comparison clustering methods except DSC which is one
of the very most recent state-of-the-art AE-based clustering
methods. DCSS,, outperforms DSC in 4 out of the 7 datasets
and provides competitive results on the remaining three
ones. (3) Effectiveness of the self-supervision with similar
and dissimilar pair of samples, can be inferred by comparing
DCSS with DCSS.,,. It can be seen that DCSS significantly
outperforms DCSS,, on all datasets. (4) Effectiveness of the
AFE’s loss function proposed in equation (1) compare to the
case of training AE with only the reconstruction loss can
be inferred by comparing the DCSS,, performance with the
baseline method AE+k-means. As can be seen, the DCSS,,
clearly outperforms AE+k-means on all datasets.

4.4 t-SNE visualization

Fig. Billustrates the effectiveness of different phases of our
proposed DCSS framework for all datasets, where t-SNE
is used to map the output of DCSS’s encoder and
MNet to a 2D-space. The different colors correspond to the
different data clusters.

The second row of Fig. B] shows the representation of
different data points in the u space, i.e. the latent space
of the DCSS’s AE, only after completing the first phase

discussed in Section[3.1} As it can be seen, after completing
the first phase of DCSS, different cluster of data points are
fairly separated, sit near their corresponding centers and
form spheres; however, not all clusters are well separated.
For example, in the USPS dataset, the data clusters shown
in pink, purple, and magenta are mixed together. This
indicates insufficiency of the reconstruction and centering
losses for the clustering task.

The third row of Fig. |3| shows the data representations
in the u space after completing the second phase of DCSS
discussed in Section 3.2} where u is refined by minimizing
@ and (). As it can be seen, refining the u space employing
pairwise similarities results in a more clear and separate
cluster distributions. For example, the pink, purple, and ma-
genta clusters of USPS are now well distinguishable in the
new refined u space. As another example, see samples of the
three clusters shown in red, olive, and brown of the 2MNIST
dataset. These clusters are more separable in the refined u
space compare to the corresponding representation shown
in the first row.

The last row in Fig. [3| depicts the output space of MNet
(i.e. the q space), in which we make decisions about final
cluster assignments of data points. As is expected, clusters
in this space have low within- and high between- cluster dis-
tances and cluster distributions can take non-hypersphere
patterns. As an example, consider the cyan and the purple
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Fig. 6. The clustering performance of different methods on imbalanced
samples of MNIST.

clusters of the Fashion MNIST. These clusters are mixed in
the u space but they are completely isolated in the g space.

For reference, the data representations in the latent space
of the baseline model AE+k-means is shown in the first row
of Fig. B| Comparing the data distributions shown in the
first and second rows demonstrates the effectiveness of the
proposed loss function presented in (T).

4.5 Effect of Pre-trained Network

In this section, we investigate the effect of the structure of
the employed pre-trained network for extracting features
from RGB images. To this end, we compare the clustering
performance of all the deep-learning-based algorithms pre-
sented in Section using four different ResNet architec-
tures, namely ResNet-34 [51]], ResNet-50 [51]], ResNet 101
[51] and ResNet-152 [51]. All ResNets are pre-trained on
the ImageNet dataset [51]. The corresponding ACC and
NMI are reported in Table 2] The best result for each
dataset is shown in boldface and the second top results are
shown with *. As can be seen, regardless of the employed
structure, the proposed DCSS method outperforms all other
algorithms on all datasets. In addition, the DCSS, method is
the second top method in 19 out of the 24 reported values.

4.6 Loss function convergence

Fig. 4 depicts the average, over different clusters on differ-
ent batches of data points, of the reconstruction, centering,
and total losses corresponding to the first phase of DCSS
(i.e. DCSS.) shown in (). As it can be seen, all losses are
converged at the end of training. The noticeable reduction
in the centering loss shows the effectiveness of our pro-
posed approach in creating a reliable u space in which the
data points are gathered around the centers. Moreover, the
figures show that at the first training epochs, our method
trades the reconstruction loss for an improved centering
performance. This proves insufficiency of the reconstruction
loss in creating a reliable latent space for data clustering.

In Fig. |5} we investigate convergence of the second phase
losses, shown in equations and . Since we initialize
the MNet randomly, at the first few epochs, MNet has little
knowledge about the lower-dimension representation of the
data points in the q space; thus, we face a high loss value.
As the training process progresses, the loss value drops
and converges to zero at the end of the training process.
In the first T> epochs (T> = 5), the algorithm minimizes
the loss presented in (4). It minimizes (5) in the remaining
epochs. The continuity of the loss reduction over epochs
along with the sharp loss drop at the 5th epoch, confirms
the effectiveness of our proposed strategy in employing u
for similarity measurements in the early epochs and then q
in the later epochs.

4.7 DCSS as a General Framework

In this section, we demonstrate the effectiveness of the DCSS
method as a general framework where the u space is trained
with other AE-based clustering techniques. To this end, we
substitute the first phase, presented in Section with
other deep learning based techniques that train an effective
subspace using an AE for the purpose of data clustering.
Among our comparison methods, algorithms DEC, IDEC,
DCN, and DKM are AE-based. For each dataset, we train
AEs using these algorithms, then take their encoder part
and append our proposed MNet to the latent space. Then
we run the second phase of DCSS. Results of such imple-
mentation are reported in Table 3| where X+MNet indicates
the performance of DCSS employing the X method’s latent
space as the DCSS’s u space. Note that, for the RGB datasets,
features are constructed using the pre-trained ResNet-152.
Comparing the clustering results reported in Table|ljand
Table [3| confirms the effectiveness of DCSS as a general
framework to improve the existing state-of-the-art AE-based
clustering methods. On average, MNet improves clustering
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one-hot crisp assignment corresponding to q;.

performance of DEC, IDEC, DCN, and DKM respectively
by 3.58% (1.87%), 2.93% (1.54%), 4.04% (2.98%), and 2.56%
(1.65%) in terms of ACC (NMI).

4.8 Performance on Imbalanced Dataset

To demonstrate effectiveness of our proposed DCSS method
on imbalanced dataset, we randomly collect five subsets
of the MNIST dataset with different retention rates r €
{0.1,0.2,0.3,0.4,0.5}, where samples of the first class are
chosen with probability of » and the last class with proba-
bility of 1, with the other classes linearly in between. Hence,
on average, the number of samples for the first cluster is r
times less than that of the last cluster. As is shown in Fig.
[6} our proposed DCSS framework significantly outperforms
our comparison methods for all r values. This indicates the
robustness of DCSS on imbalanced data. As is expected, in
general, for all methods, increasing r results in a higher

performance because the dataset gets closer to a balanced
one. Higher performance of DCSS on imbalanced datasets
can be associated to the two factors (1) considering an
individual loss for every cluster in the 1st phase, and (2)
considering the pairwise data relations.

4.9 Visualization of q vectors

Fig. [7] shows the representations of the data points, from
various clusters, in the q space. As can be seen, the proposed
DCSS method results in the representations very close to
the one-hot vectors. Note that the kth element of q; denotes
the probability of sample x; being in the kth data cluster.
The closer q; is to the one-hot vector, the more confident
crisp cluster assignment can be performed. As is proved
in Corollary 1.2 of the supplementary material file, if data
point x; has at least one similar neighbor, the maximum
element of q; is greater than ¢. In our experiments, ( is set
to 0.8. This can justify the aggregation of the data points
near the one-hot vectors in the q space.

To further demonstrate convergence of the g represen-
tations to one-hot vectors, histogram of residuals h; =
[ILi — qill1, ¢ = 1,..., N for all datasets are shown in Fig.
where ||.||; indicates the ¢;-norm and I, is the one-hot
crisp assignment corresponding to q; —i.e. the index of the
non-zero element of I; is equal to the index of the maximum
element of q;. As it can be seen in Fig. |8} representation of
almost all data points, in the q space, are very close to their
corresponding one-hot vectors.
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Fig. 10. Changing hyperparameters ¢ and ~ for different datasets. (a) Number of data pairs participating in the second phase of DCSS.

(b)

Clustering performance in terms of ACC and NMI for different datasets for different value of ¢ and ~; the clustering performance of DCSS is less
sensitive to the choice of ¢ and ~ in range of [0.5,0.9] and [0.1,0.5], respectively.

4.10 Hyperparameters Sensitivity

In Fig. ] we investigate the effect of different hyperparame-
ters on DCSS clustering performance. For hyperparameters
of the first phase (i.e. @, m and T1), we report performance
of clustering using DCSS, (as is presented in Section [£.3).

In our proposed method, hyperparameters are fixed
across all datasets, i.e. no fine tuning is performed per
dataset. Hence, one may obtain more accurate results by
tuning the hyperparameters per dataset.

In Fig.[P(a), we explore importance of the centering loss
in the first phase’s loss function, shown in (I), by changing
a € {0,0.01,0.1,1} for MNIST, Fashion-MNIST, USPS, and
CIFAR-10 datasets. As is shown in this figure, by increas-
ing the value of a from 0 to 0.1, our DCSS performance

significantly enhances for most of the datasets in terms of
ACC and NMI, which demonstrates the effectiveness of
incorporating the centering loss beside the reconstruction
loss in the first phase’s loss function. In all our experiments,
for all datasets, « is set to 0.1.

Fig. P[b) shows the impact of the level of fuzziness
m on clustering performance of DCSS, for MNIST, Fash-
ion MNIST, 2MNIST, and STL-10 datasets, where m &
{1.1,1.3,1.5,1.7}. In case of m— 1 (m— o0), group member-
ship vectors converge to one-hot (equal probability) vectors.
As it is shown in this figure, as is desired, the DCSS method
is not too sensitive to m when it is set to a reasonable value.
In all our experiments, for all datasets, m is set to 1.5.

In Fig. P[c), we scrutinize the effect of update interval



Ty in clustering performance of the first phase for 71 €
{2,5,10,15}. As is expected, better clustering performance
in terms of ACC and NMI is acquired for smaller value of
T:. In our experiments, for all datasets, T is set to 2.

In Fig.[0(d), we change the number of training epochs 73,
defined in Section for Fashion MNIST, STL-10, CIFAR-
100, and CIFAR-10 datasets, where 7> € {1,5,10,20}. As
is expected, for a very small T> value, e.g. 7> = 1, where
training the q space is mainly supervised by the q space
itself even at the MNet training outset, DCSS cannot provide
a proper q space, since q is not a sufficiently reliable space
to be used for self-supervision. The figure also shows that
for a very large T, value, e.g. 7> = 20, when we only
trust the u space for supervising the q space, we cannot
train an effective q space. As it is shown, a good clustering
performance can be obtained when T3 is set to a moderate
value. In our experiments, for all datasets, 7 is set to 5. This
demonstrates the effectiveness of the proposed strategy in
supervising the MNet training using both of the u and g
spaces.

In Fig. we change ¢ and v in range [0,1], where
¢ + v = 1, to observe model convergence and accuracy for
different lengths of the ambiguity interval, defined as { —~,
ranging from 1 (when ¢ = 1) to 0 (when ¢ = 0.5). Fig. a)
shows the number of pairs participating in minimizing the
loss functions defined in @ and . As can be seen, at the
beginning of the second phase, our model can make a deci-
sive decision only about a few pairs, and the remaining pairs
are in the ambiguous region. As the second phase training
process progresses, more and more pairs are included in the
loss functions optimization process. Finally, at the end of the
second phase, almost all pairs contribute to the training.

Furthermore, in Fig. [I0{b), we investigate the influence
of ¢ and ~ in clustering performance. As it can be seen,
as is desired, the final clustering performance of our DCSS
framework is not highly sensitive to the choice of ¢ and ~
when are set to reasonable values. In all our experiments
¢ =0.8 and v = 0.2, for all experiments and datasets.

4.11

In order to investigate the effectiveness of our model in
extracting useful features for different datasets, we train a
deep neural network with the same structure as is presented
in Section 1 of the supplementary material file in a supervised
manner, and then we compare the output of the first con-
volutional layers for the trained model and our proposed
DCSS model. As it can be seen in Fig. [11} our DCSS learns
a variety of low- and high-frequency features, which are
similar to features learned in a supervised manner. This
demonstrates the effectiveness of our framework in finding
informative features in an unsupervised manner.

Features visualization

5 NETWORKS ARCHITECTURE

The proposed DCSS method includes an autoencoder and
a fully connected MNet. This section presents structure of
these networks. We use two variations of autoencoders,
depending on the dataset nature (i.e. RGB or gray-scale),
when training the proposed DCSS framework.

For gray-scale datasets, we propose to use an asymmetric
autoencoder; where, following [51], we propose to use the
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Fig. 11. (a) samples of MNIST, Fashion MNIST, 2MNIST, and USPS. The
output of the first convolutional layer using (b) the unsupervised DCSS
method, (c) a supervised manner employing the same network structure
as of DCSS shown in Section 1 of the supplimentary material file.

bottleneck layer shown in Fig.|12(c) in the encoder structure.
Fig.[12(a) and (b) respectively show the encoder and decoder
structures of the proposed asymmetric AE. Employing such
asymmetric structure provides a more discriminative latent
space. Hyperparameters of the proposed AE for each dataset
are indicated in Section[6]

For the RGB datasets, we first apply a ResNet-152 [51],
pre-trained on ImageNet [52], to extract abstract features.
Then we feed the extracted features to a symmetric fully
connected AE. Inspired by [25], we set the AE architecture
to 2048-500-500-2000-d for RGB datasets, where ReL.U acti-
vation function is utilized in all layers.

MNet is a fully connected network that takes the d
dimensional latent space of the AE (u space) as input and
generates a K dimensional output q. The architecture of
MNet is d-128-128-128-K for all datasets except CIFAR-100.
Since CIFAR-100 is a more complicated dataset, it needs
a more complex MNet architecture; so we set the MNet
architecture for CIFAR-100 to d-1000-1000-1000-K. Batch
normalization and ReLU activation function are utilized for
all datasets in all layers of MNet except the last layer in
which we use the soft-max function.

6 IMPLEMENTATION DETAILS

In this section, we discuss hyperparameter values and im-
plementation details of DCSS.

Hyperparameters n, p1, s1, p2, s2, p3, s3, f1, and fo
(shown in Fig. are respectively set to 28, 2, 2, 1, 2, 2,
2,5, and 4 for MNIST, Fashion MNIST, and 2MNIST;, these
parameters are set to 16, 1, 1, 2, 2, 0, 1, 4, and 5 for the
USPS dataset. The latent space dimension d is set to 10 for
gray-scale images and 20 for RGB images.

Following [9, |10} 11, [25], in order to initialize 6., 8, and
p® for k = 1,..., K, we train an autoencoder where the
end-to-end training is performed by only minimizing the
samples reconstruction losses. Adam optimization method
[61], with the same parameters mentioned in the original
paper are used for training. 8., 64 are then initialized with
the parameters of the trained autoencoder’s parameters.
We apply k-means algorithm [5] to the latent space of the



— — — - — —
% ~ ~
Il Il Il
Q v )
~ <
—~ on S RS ﬁ?.
Sllzsl 18l 25! (3] |58 [3] |e 5 5
LlEzllelds ol el s 2 ell=Llells]  |®
S_UE—»Q,—-UN—»QJ—.Sc,‘w—»N‘—»“-—»S s
= n E= Il E= s =} = a a
B n =3 P B - =
5 Il ° 5] o — =] =
a X o o0 X o X @ o -
- wn g 8 on S
8 3
3 3 3
5 S, S
I IS
(a) Encoder

13

o~ &' &5

oo” Il ~

sl 182 (28] |~

S == >3 e < | -

) S5 5 S5 X © © ~

2l 53| |85 [g5] |2 I35 ]2 =

N g o8 a8 g|T AEIREIRE =

- I a5 ol e il il e 2

a Il Il a —

- (Mg ~ o — [32] =
©2 3 [T |3 S x| x| | x 3
X3 é-E X5 o | |= -

o3 A O
3 = =
S & 2
(b) Decoder (c) Bottleneck

Fig. 12. Structure of the proposed asymmetric autoencoder. In the encoder part, in order to obtain an informative lower-dimensional representation
of the data points, we propose to use a Bottleneck layer. Following [51], we use the bottleneck layer after 5 x 5 and 3 x 3 convolutional layers. The

hyperparameter values are presented in Section [6]

trained autoencoder and initialize u™,k = 1,..., K to the
centers defined by k-means.

For all datasets, hyperparameters «, Maxiter;, T1, and m
are respectively set to 0.1, 200, 2, and 1.5. The second phase
hyperparameters ¢, v, T2, and Maxlter, are respectively set
t0 0.8, 0.2, 5, and 20. We utilize Adam optimizer for updating
weights of the AE and MNet and their learning rates are set
to 107° and 1073, respectively.

All algorithms were implemented in Python using Py-
Torch framework. All codes are run on Google Colaboratory
GPU (Tesla K80) with 12GB RAM.

7 CONCLUSION

In this paper, we present a novel, effective and practical
method for data clustering employing the novel concept
of self-supervision with pairwise data similarities. Despite
most clustering methods, the proposed DCSS algorithm em-
ploys soft cluster assignments in its loss function, optimizes
cluster-specific losses, and take advantage of the relevant
information available in the sample pairs. The proposed
algorithm is shown to perform well in practice, compared
to previous state-of-the-art clustering algorithms. We also
show that the DCSS’s self supervision approach can be em-
ployed as a general approach to improve the performance
of state-of-the-art AE-based clustering methods.

APPENDIX A

Notation clarification: Representation of the ith sample in the
q space is shown by q;. The kth element of q; is shown by
gik,k = 1,..., K, where K is the number of data clusters.
Note that q; is the MNet output when the input sample is
x;. Since we employ soft-max as the final layer of MNet,
0 < ¢u < 1 and the ¢;-norm of q; is equal to 1. Furthermore,
as is discussed in the manuscript, parameters ¢( and ~ are
values between 0 and 1.

Definition A.1. Two data points, i.e. i and j, are adjacent (aka
similar) if and only if arq; > ¢C.

Definition A.2. Two data points, i.e. i and j, are in the same
cluster if and only if the index of the maximum value in their
corresponding q vector (i.e. q; and q;) are equal.

Theorem 1. Consider the ith and jth data points. Then :
@)

q; q; < min { mlaX{QizL mla’X{qjl}}

where qF q is the inner product of the two vector q; and q;.

Proof. Assume qj is a maximal vector that satisfies the below
inequality:

®)

where [|qj|[1 = 1. In addition, assume the index of the maxi-
mum element of q; is :

a/q; <q;qj,

©)

r = arg max{qi }
1

In the following, we first prove by contradiction that q; must be
a one-hot vector. Then we prove (7).

Assume qj is not a one-hot vector. Therefore, there exists at least
one index, i.e. ¢, that its corresponding element g, is non-zero:

Jde:e#r and ¢, # 0. (10)
Now, let’s define a vector §; as follows:
Gje+q;- fl=r
Gt =140 ifl=e, (11)
a5 ow

where ¢;; denotes the I" element of ¢;. Since ||q}||1 = 1, we can
immediately show that ||q;||1 = 1. Moreover, we can represent
the inner products q; q} and q; §; as shown in and (13),
respectively.

@A} = GG+ GieGie + D, qudy (12)
l#r,e

a4 45 = qir (@ + G5e) + Gie X 0+ Y qud;i (13)
l#r,e

Since g; is the maximum element of q;, we can readily show
that qZTq; < g7 §;, which contradicts the assumption shown in
equation (8); thus, q; must be a one-hot vector. Therefore:

a; q; < max{ga} (14)
Considering (14) and (§), we have:
a/ q; < max{gu}. (15)

Similarly, for the ith sample, we can show that q; Tq; <
max;{g; }, hence:
a; q; < max{g;}. (16)

and (16) proves (7).
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Corollary 1.1. If two samples i and j are adjacent, the maximum value
among their elements is greater than (.

Proof. This statement is a corollary of Theorem (1} that can be
proved from (7), {15), (16) and the adjacency definition provided
in Definition[A 1] In other words:

C < qir
¢ < gjo
where the index of the maximum element of q; and q; are

respectively shown by r and o - i.e, r = argmax;{¢;} and
o = arg max;{q; }. O

¢ <alq; <min(gir,gjo) — { 17)

Corollary 1.2. If a data point has at least one adjacent neighbor, the
maximum element of its corresponding q is greater than (.

Proof. We first empirically test the validity of the employed
assumption, i.e. existence of at least one adjacent (i.e. similar)
sample for a data point, on our datasets. Fig. shows the
number of data samples that are not similar to any other data
points in the g space. As it can be seen, at the beginning of
the second phase of DCSS, since MNet is initialized randomly,
many data points do not have any adjacent neighbor (i.e. almost
Vi, g, i # 7 aiq; < C). By minimizing (4) and (5) in the
second phase of DCSS, similar samples are tightly packed in
in the q space; therefore, almost all samples have at least one
adjacent neighbor. For example, only 0.5% of the samples in the
CIFAR-100 dataset have no adjacent sample by the end of the
training phase. Note that CIFAR-100 presents the worst case
among the other datasets shown in Fig All in all, we can
roughly assume that each data point has at least one adjacent
sample.

Lets consider an arbitrary data point i, and one of its adjacent
data points j. From Corollary [I.T} we can conclude that:

< i
¢ < max;{ga} (18)
¢ < maxi{g;i}
Thus, we proved that the maximum element of q;, where i is an
arbitrary data point, is greater than . O

Corollary 1.3. Assume each data point has at least one adjacent
neighbor and v < ¢>. If two data points i and k are dissimilar, i and k
are not from the same cluster.

Proof. We prove this corollary by contradiction where the con-
tradiction assumption is: i and k are dissimilar, yet from the
same cluster where v < ¢2.

Since i and k are in the same cluster, the index of the maximum
element of q; and qi are the same. (i.e. 5 = argmax;{qu} =
arg max;{qu: }). Since each data point has at least one adjacent
neighbor, from Corollary we can conclude that:

<q
C<4ip (19)
¢ < aqxs
and we can represent qf qx as follow:
qz'TQk = qipQqkp + Z qilqkl (20)

I#pB

Therefore, gisqrs < q; qi. Also, we know i and k are dissimilar.
From (19), we can conclude that:

¢ < qisars < aiaw < (1)
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contradicts the assumption of v < ¢*. Hence, i and k are in
different clusters. O

Theorem 2. For 2 < (, if i and j are adjacent, they are in the

same cluster — i.e. r is equal to o where r = argmax;{qy} and
o = argmax,;{q;i }.

Proof. First we find an upper bound for q? q;, when the ith and
jth samples are adjacent, but from different clusters.

Since i and j are not from the same cluster, we can represent al q;
as follows:

q’zrqj = qirqjr + dioQjo + Z qi1q;1

l#o,r
Vi: ¢1<qj0
— =T < GirQjr + QioQjo + Z GilQjo
l#o,r
= Qirqjr + Qjo ( Z qil)
l#r

Sy qi1=1—qir
— = GirQjr + Gjo(l — qir)

4jr<1—4qjo
% < qir(1 — gjo) + @jo(1 — qir)
f; (17)
< qir(1= )+ qo(1— Q)
{dirs 4501€[0,1] <2(1-0¢).

Note that gj» < 1 — gj, because >, , ¢ji + qjr + gjo = 1. Note
that all elements of a q vector are probability values between 0
and 1.

Hence, as is shown , if two samples are not from the same
cluster then the inner product of their corresponding q has an
upper bound of 2(1 — (). Therefore, if two samples i and j are
adjacent (see Definition 1) but from different clusters, then:

(<aiq; <2(1-¢)
L (BN B
Thus, for % < ¢,1iand j cannot be from two different clusters. In
other words, if two samples i and j are adjacent AND the user-
settable parameter ( is set to a value greater than 2, then the two
samples are from similar clusters, i.e. 7 = o. In this paper we set
(=08>2. O

(22)

(23)

Corollary 2.1. Assume ¢ > % Consider three data points i, j, and
k. If i and j also i and k are adjacent, then j and k are from the same

cluster.

Proof. Since i and j (i and k) are adjacent and ( > %, from

Theorem we can conclude thatiand j (i and k) are in the same
cluster; hence, the three samples i, j, and k all are in the same
cluster. O

Theorem 3. Consider three data points i, j, and k where i and j also
i and k are adjacent (aka similar). Assume ¢ > 2. If v < (?, then the
two samples j and k are not dissimilar (i.e. quqk £ 7).

Proof. Considering Theorem [2} i and j and k are in the same
cluster. Therefore, we do not want to include the pair of j and k
samples as a dissimilar pair when minimizing the loss function
defined in equation (5) of the original manuscript.

Since j and k are in the same cluster and knowing that the index
of the maximum element in a q vector shows cluster of the
corresponding sample, we have:

n = arg max{q;; } = arg max{qx:}. (24)
! !
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Fig. 13. Number of data points that do not have any adjacent neighbors
during the DCSS training in the second phase.

Thus,
Ak = > Gigr + QinGen- (25)
I#n
Therefore,
qj Ak > Gindrn- (26)
Since ¢ < qf q; and ¢ < qf qx, we can infer from (7).
< .
C = qJ’] (27)
C f; qkn
From and (27), we can obtain below:
¢* < Ginarn < @) ar. (28)

Thus, if we choose v < (¢?, we will not include the pair of
samples j and k as a dissimilar pair in equation (5) of the main
manuscript. In this paper yis set to 0.2,i.e. v = 0.2 < 0.82. O
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