
TCAD-2021-0385 1

Integrated ARM big.Little-Mali Pipeline for
High-Throughput CNN Inference

Ehsan Aghapour, Gayathri Ananthanarayanan, and Anuj Pathania

Abstract—Heterogeneous Multi-Processor System on
Chips (HMPSoCs) combine several types of processors on a
single chip. State-of-the-art embedded devices are becoming
ever more powerful thanks to advancements in the computation
power of HMPSoCs that enable them. Consequently, these
devices increasingly perform the task of Machine Learning (ML)
inferencing at the edge. State-of-the-art HMPSoCs can perform
on-chip embedded inference on its CPU and GPU. Multi-component
pipelining is the method of choice to provide high-throughput
Convolutions Neural Network (CNN) inference on embedded
platforms. In this work, we provide details for the first CPU-GPU
pipeline design for CNN inference called Pipe-All. Pipe-All uses
the ARM-CL library to integrate an ARM big.Little CPU with an
ARM Mali GPU. Pipe-All is the first three-stage CNN inference
pipeline design with ARM’s big CPU cluster, Little CPU cluster,
and Mali GPU as its stages. Pipe-All provides on average 75.88%
improvement in inference throughput (over peak single-component
inference) on Amlogic A311D HMPSoC in Khadas Vim 3 embedded
platform. We also provide an open-source implementation for
Pipe-All under MIT License.

Index Terms—Convolutional Neural Networks (CNNs), Heteroge-
neous System on Chips (HMPSoCs), on-edge inference, throughput.

I. INTRODUCTION

HETEROGENEOUS Multi-Processor System On
Chips (HMPSoCs) combines several processors (such

as an embedded CPU and GPU) on a single chip. Figure 1
shows the abstract block diagram for the state-of-the-art Amlogic
A311D HMPSoC within Khadas Vim 3 embedded platform.
It contains a hexa-core ARM big.Little asymmetric multi-core
CPU and a dual-core Mali GPU. The ARM big.Little CPU itself
contains two CPU clusters – a high-performance high-power
quad-core big CPU cluster and a low-performance low-power
dual-core Little CPU cluster.

Both the CPU clusters and GPU are capable of performing
Machine Learning (ML) inference by deploying state-of-the-art
conventional Convolutional Neural Networks (CNNs) [1]. Though
it is common in non-embedded platforms for GPUs to signifi-
cantly outperform the CPUs while inferencing, embedded GPUs
(given their constrained design) deliver performance comparable
to the embedded CPUs in embedded platforms. Therefore, CPUs
are still relevant for inference in embedded platforms and must
not be ignored [2].

Figure 2 shows the stand-alone inference throughput for both
CPU clusters and GPU on Khadas Vim 3 embedded platform.
The results show that depending upon the network, either the
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Fig. 1: An abstract block diagram of Amlogic A311D HMPSoC
in Khadas Vim 3 embedded platform.
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Fig. 2: The inference throughput for different inference capable
components for different CNNs on Khadas Vim 3.

big CPU cluster or GPU can provide the peak single-component
performance. The Little CPU cluster provides a comparatively
smaller but still significant throughput. However, in absolute
terms, the single-component performance is still low. None of the
benchmarks can attain even 30 Frames per Second (FPS), the least
recommended FPS for basic user experience [3] running on CPU
and GPU alone. Therefore, it is best to use both CPU clusters
and GPU simultaneously for boosting inference throughput in
embedded platforms.

A common approach to boost throughput is to employ multi-
component inference. A CNN consists of several layers that
are generally processed sequentially. However, direct multi-
component inference wherein a given layer from a given frame
(kernels within) processes simultaneously on both CPU clusters
in an asymmetric multi-core is detrimental to the inference per-
formance [4]. Authors of [4] attribute the drop in performance to
the large memory traffic generated on the interconnect to maintain
cache coherence between components while processing the same
layer. Furthermore, there is no known framework capable of
processing a given layer from a given frame simultaneously on
CPU and GPU.

One of the best-known approaches to employ multi-component
inference that leads to a boost in inference throughput is to use a
pipeline design that operates at the layer-level granularity. In such
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Fig. 3: The CNN architecture for Alexnet.
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Fig. 4: The graph for Alexnet in ARM-CL corresponding to its CNN architecture.

a pipeline design, each inference capable component act as one
stage of the pipeline. Multiple frames are then processed through
the pipeline simultaneously, wherein if one stage is processing
layers from Frame N, then the other stage process the layers
from Frame N+1. Consecutive layers of the CNNs are processed
in the same pipeline stage, as much as possible, to minimize off-
component coherence traffic on the interconnect as the output of
the preceding layer is often the input for the succeeding layer.

A CPU-GPU inference pipeline design is best suited for
HMPSoCs, wherein a CPU and a GPU can perform inference
using the same framework. In such HMPSoCs, we can tightly
integrate the CPU and GPU (as a single binary) with minimal
overhead. Therefore, we use ARM-CL to create a pipeline between
an ARM big.Little processor and an ARM Mali GPU in this
work. ARM-CL library in its default release provides support for
highly optimized stand-alone single-component CNN inference
on both ARM CPU clusters or GPUs out-of-the-box. We build
upon the default implementation to create a multi-component
ARM CPU-GPU inference pipeline. We introduce a three-stage
pipeline design, called Pipe-All, that has big CPU cluster, Little
CPU cluster, and GPU as its stages.

Our Novel Contributions: We make the following novel
contributions in this work.

• Our work is the first to create a tightly integrated three-stage
CPU-GPU pipeline between ARM big.Little CPU and Mali
GPU using ARM-CL, called Pipe-All, for CNN inference.
We describe the implementation in detail.

• We implement and evaluate Pipe-All in Amlogic A311D
HMPSoC in Khadas Vim 3 embedded platform, wherein it
provides 75.88% throughput improvement, on average, over
peak single-component inference throughput.

Open Source Contributions: The code for Pipe-All is
publicly available for download at https://github.com/Ehsan-
aghapour/ARMCL-Pipe-All under MIT license.

II. RELATED WORK:
Multi-component inference through pipelining is an active

subject of research. The authors of [4] were the first to create

a layer-level inferencing pipeline between big and Little CPU
clusters in an ARM big.Little asymmetric multi-core processor to
improve CPU’s inference throughput. Their work also employs
ARM-CL. However, their pipeline design works by migrating CPU
threads between big and Little cores. One cannot extend this
design to include a GPU as no one can migrate CPU threads
to a GPU. Authors of [5], [6] propose techniques to optimize the
inference pipelines on asymmetric multi-cores.

Recently, there have been works [7]–[9] that propose to use
CPU and GPU synergistically to improve CNN inference through-
put on embedded platforms with Nvidia GPUs using the TensorRT
framework. These works use GPU primarily as an accelerator to
offload computations from a CPU-only pipeline design. However,
the CPUs used in these works are of symmetric design. These
designs form a potential alternative to the pipeline design we
propose in this work. Nevertheless, direct comparison between
the two designs is difficult given the differences in the platform
and frameworks. Finally, to the best of our knowledge, none of
the works above have made their design open-source.

In contrast to the above works, we are the first to introduce an
open-source integrated three-stage pipeline design, called Pipe-
All, with the big CPU cluster, Little CPU cluster, and GPU as its
stages.

III. INFERENCE WITH ARM-CL

In this section, we elaborate on how one performs inference
with the help of ARM-CL. This information is quintessential to
comprehend the Pipe-All’s implementation details we present in
the next section.

Framework: ARM-CL is a collection of low-level machine
learning functions optimized for ARM Cortex-A CPU and Mali
GPU cores. The library provides ML acceleration on Cortex-
A CPU through Neon (or SVE) and acceleration on Mali GPU
through OpenCL [10]. By design, a CNN consists of some hidden
layers sandwiched between the input and output layers. Each
hidden layer takes in some inputs, which it then processes to
produce an output. The output from a hidden layer forms one of
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the inputs for the next hidden layer connected to it. Weights and
biases, specific to a layer, form the layer’s other inputs. Figure 3
shows the CNN architecture for AlexNet. ARM-CL uses a graph to
represent CNN. Figure 4 shows the ARM-CL graph corresponding
to the Alexnet CNN architecture.

In an ARM-CL graph, an Input and Output node represents
the input and output layer of the CNN, respectively. There exist
a Main node for each hidden layer in the graph. The graph
connects the Input and Output node through a series of
sequentially connected Main nodes. The number of Main nodes
is not required to be equal to the number of layers in the
CNN. For example, the graph subsumes minor non-convolution
layers such as max-pooling layers in AlexNet in the Main nodes
corresponding to convolutions layers. The graph also connects
each Main node with its two exclusive Weight and Bias
nodes. Weight and Bias node provides the weights and biases
input to the Main node, respectively. The primary input for the
Main node itself comes from the preceding Main (or Input)
node in the graph. After processing, the Main node sends its
output to the succeeding Main (or Output) node in the graph.
Therefore, the graph binds the nodes in a nexus of consumer-
producer relationships. In the ARM-CL graph, edges provide the
connections between the nodes. For each edge, there is a unique
tensor that provides the memory for the data getting transferred.

Environment Setup: ARM-CL provides (Application Program-
ming Interfaces) APIs for users to define layers of a CNN and then
connect them. While setting up the execution environment, ARM-
CL begins by generating a graph corresponding to the user-defined
CNN. It then sets up the back-end context on the target processor
(CPU or GPU). For the CPU, the setup includes the generation of
worker threads either automatically based on the number of CPU
cores or as per a user-defined number of requested threads. For
the GPU, it first extracts the details such as the number of cores
and model number. Then, it creates an OpenCL context with a
CLScheduler optimized for the detected GPU device.

After setting up context for the back-end, ARM-CL determines
the features of tensors (such as their shape and data types) based
on the producing nodes of the edges. For each type of the Main
node, there is a corresponding highly optimized implementation
of kernel functions in ARM-CL to support its execution. ARM-
CL selects and configures the optimal implementation for each
node based on specifications of the underlying hardware and the
dimensions of its operands. Consequently, it assigns memory to
the tensors corresponding to the weights and biases and load them
with values. It then serializes the kernels and prepares them for
execution in the correct sequence on the target processor.

Running the Graph: ARM-CL sends the frame (initial input)
to the Input node to trigger the processing of the graph on the
CPU. After loading the frame, kernels start processing the data
within. Kernels primarily perform matrix operations on the data. If
the target processor is CPU, ARM-CL partitions the computations
within the matrix operation and distributes them between the CPU
worker threads. Threads after performing the computation, fill the
results in the corresponding output tensors. The process continues
till all kernels (Main nodes) have finished execution. ARM-CL
puts the output from the last Main node in the input tensor of the
Output node. The Output node then makes the decision based
on the values in this tensor. If the target processor is GPU, after
loading the frame (initial input) in the Input node, ARM-CL

Sub-Graph1
Processing
Frame N+3

Sub-Graph2
Processing
Frame N+2

Sub-Graph3
Processing
Frame N+1

Pipe-ALL Stage 1 Pipe-ALL Stage 2 Pipe-ALL Stage 3

Buffer 0 Buffer 1

Frame N+4 Frame N

Fig. 5: An abstract block diagram showing high-throughput (low-
latency) pipelined inferencing of a stream on a HMPSoC using
Pipe-All design.

Graph Layers Partition
Points

Design
Space

Search Time

AlexNet 11 7 126 2 Hours
GoogleNet 58 12 396 5 Hours
MobileNet 28 27 2106 11 Hours
ResNet50 54 17 816 8 Hours
SqueezeNet 26 18 918 7 Hours

TABLE I: The design space parameters for different CNNs under
Pipe-All.

pushes the kernels to the OpenCL queue instead of CPU worker
threads. OpenCL then executes the kernel on the GPU cores.

IV. Pipe-All CPU-GPU PIPELINE DESIGN

The pipelined design within Pipe-All proposed in this work
process three separate frames simultaneously on Little CPU, big
CPU, and GPU, as shown in Figure 5 with an abstract block
diagram. However, it doesn’t process these frames in their entirety
in any component. The pipeline allows us to distribute the pro-
cessing of a given frame between the three components at node-
level (near layer-level) granularity. The processing distribution
between the components inversely correlates to their inference
capabilities for the given CNN. For example, the Little CPU
cluster always receives the least processing load for a frame as
it is the weakest inference-capable component in the HMPSoC
for all CNNs. Nevertheless, this distribution allows all the frames
processed on HMPSoC with Pipe-All to have the same latency.
The slowest stage in the pipeline determines the inference latency
with the pipeline.

Design Space: Since the number of stages in Pipe-All is only
three and the processing distribution between the stages must
maintain the sequential layer-wise processing order, the design
space for Pipe-All is small. Table I shows the number of layers
and number of partition points in different CNNs. The number
of partition points is less than the number of layers because non-
convolution layers (except fully-connected layers) do not have a
Main node associated with them in the ARM-CL graph and are
therefore not viable partition points. Furthermore, within Pipe-
All, all Main nodes that can be processed independently are
grouped into a single partition point and processed simultaneously
in parallel to maximize throughput.

Let N be the number of potential partition points in a CNN.
To create a three-stage pipeline, we have to choose two partition
points for splitting. Since it is always beneficial for throughput
to engage a component in inferencing, we ignore the possibilities
of empty pipeline stages. So, if we choose to perform the first
split at the first partition point, there are N − 1 partition points
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(2, ..., N) to choose from for the second split. Similarly, if we
choose to perform the first split at the second partition point,
there are N − 2 partition points (3, .., N) to choose from for the
second split. Therefore, under Pipe-All, there can be (N − 1) +
(N − 2) + .... + 1 = N · (N − 1)/2 potential ways to split the
inference workload in the three-stage pipeline. Since each stage
can go on to any of three components (little CPU cluster, big CPU
cluster, and GPU), there are 3! ways to assign a given workload
split between the component.

Therefore, there are 6 ·N ·(N−1)/2 different pipeline configu-
rations possible for a CNN with N partition points under Pipe-All.
Since the CNN inference workload is static, these configurations
can be reliably profiled at design time for throughput quickly.
Even for MobileNet with the highest number of configurations
(2106 configurations) among all CNNs, we can do this in 11 hours
on our platform. Therefore, we obtain the optimal configuration
( with the highest throughput) for all CNN using an exhaustive
search. Table I shows the number of configurations and time for
the exhaustive search for different CNNs. We leave the option of
creating faster design space exploration algorithms open.

V. IMPLEMENTING Pipe-All IN ARM-CL
We now present the new modifications done to the ARM-CL

library that enable the pipeline design within Pipe-All.
Sub-Graphs: We introduce the concept of sub-graphs to ARM-

CL. We add new APIs to ARM-CL that allow users to partition
the network (defined using existing ARM-CL APIs) into sub-
networks. Instead of producing a single graph for the entire
network, we modify ARM-CL to produce multiple sub-graphs,
one for each user-defined sub-network.

Like a graph in ARM-CL, the sub-graph contains Main,
Weight, and Bias nodes, and optionally an Input node or
an Output node. The functionality of these nodes is the same
in sub-graphs as it was in the original ARM-CL graph. In addition
to these nodes, we introduce two new nodes in sub-graphs – a
Transmitter node and a Receiver node. A Receiver
node is at the start of the sub-graph unless it is the sub-graph
representing the first sub-network. In that case, the Input node
replaces the Receiver node. Receiver node receives the in-
put data from the preceding sub-graph. There is a Transmitter
node at the end of the sub-graph unless it is the sub-graph
representing the last sub-network. In that case, the Output
node replaces the Transmitter node. Transmitter node
transmits the output data to the succeeding sub-graph.

Pipeline Setup: Pipe-All employs a three-stage pipeline. We
divide a CNN into three sub-graphs, one for each stage of the
pipeline. Input tensors for the second and third sub-graphs get
their shapes from output tensors of the first and second sub-
graphs, respectively. The selected Pipe-All configuration provides
the parameters which determine the size of the sub-graphs.
Figure 6 shows an example trio of ARM-CL sub-graphs for
AlexNet, wherein we split the CNN at the fourth and sixth layers.
Technically, it is possible to create up to N sub-networks (sub-
graphs) for a CNN with N layers with our new ARM-CL APIs to
support an N-stage pipeline. However, we leave that option open
for exploration in the future.

Environment Setup: We set up the execution environment for
each sub-graph depending upon the target processor it expects to
execute on. For a sub-graph running on the big or Little CPU
cluster, we create worker threads equal to the number of big and
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Fig. 6: The three sub-graphs for Alexnet obtained from partition-
ing it into three sub-networks.

Little cores in the CPU, respectively. To prevent worker threads
from migrating between the clusters at will, we also pin the
threads to corresponding big or Little cores (using taskset)
in the cluster under a one-thread per-core model. For the sub-
graph running on the GPU, we set up an OpenCL context with a
CLScheduler optimized for the detected ARM Mali GPU. We
then prepare the kernels corresponding to the Main nodes within
the sub-graph. Finally, we load the weights and biases in the
Weight and Bias nodes within the sub-graph. The sub-graph
is now ready to execute.

Pipeline Frame Processing: The selected Pipe-All configura-
tion determines the one-to-one mapping between the three sub-
graphs and three processors (big CPU Cluster, Little CPU Cluster,
and GPU) in the pipeline. Since it is infeasible to have a perfectly
balanced pipeline, we use two buffer tensors to synchronize
exchange between the pipeline stages, as shown in Figure 5.
We then trigger a run-time daemon to initiate processing and
subsequent run-time management. The run-time daemon pushes
the first frame in the streaming queue to the initial sub-graph
with the Input node. The initial sub-graph then starts processing
the first frame. Once it finishes processing the sub-frame, it
pushes the processed data into the first-stage buffer tensor through
its Transmitter node. The middle sub-graph pulls the data
from the first-stage buffer tensor into its input tensor through
its Receiver node. It then processes the data and then pushes
the processed data to the second-stage buffer tensor through its
Transmitter node. The final sub-graph then pulls the data
from the second-stage buffer tensor into its input tensor through
its Receiver node. After processing, it pushes the final output
data to the output node signaling the end of processing. Given
its pipelined design, stages in Pipe-All are free to process kernels
from another frame as soon as they finish processing kernels from
their current frame.
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Fig. 7: Results for different CNNs with different approaches.

VI. EXPERIMENTAL EVALUATION

Experimental Setup. We use Amlogic A311D HMPSoC in
Khadas Vim 3 embedded platform, as shown in Figure 1, for
evaluating Pipe-All. It contains a hexa-core asymmetric ARM
big.Little multi-core CPU with two CPU clusters, big and Little.
The quad-core big CPU cluster contains four A73 cores. The
dual-core Little CPU cluster contains two A53 cores. HMPSoC
also contains a dual-core Mali G52 MP4 GPU. The maximum
frequency for big CPU cluster, Little CPU cluster, and GPU
is 1.8 GHz, 2.2 GHz, and 0.8 GHz, respectively. Though both
CPU clusters and GPU support Dynamic Voltage Frequency
Scaling (DVFS), in this work, we run them only at their maximum
frequency, given our emphasis only on performance. A 4 GB
LPDDR4 main memory supports the HMPSoC. In software, the
platform is running Android v9.0 with kernel v4.9. We run ARM-
CL v21.02 on top of it.

Metrics: We evaluate Pipe-All on two metrics – throughput
measured in FPS and latency measured in milliseconds (ms).
Ideally, we want the highest throughput with minimal latency.

Baselines: We use two baselines to evaluate the efficacy of
Pipe-All. The first baseline is the peak single-component infer-
ence performance, symbolized by Peak. We obtain the second
baseline, called Parallel, by performing independent simultaneous
inference on all inference-capable components of HMPSoCs, as
suggested by [1].

Performance Evaluation: Figures 7a and 7b show the through-
put and corresponding latency that we can obtain using different
techniques for different CNNs on our setup. Peak baseline has
a low throughput since only the highest performing component
for a CNN is engaged in inferencing while other components are
idle. However, this approach has a very low latency which also
forms an empirical lower bound of the latency we can achieve
with Pipe-All. On the other hand, Parallel [1] baseline has a
high throughput. However, with this approach, the latency of the
slowest component (the Little CPU cluster) determines the worst-
case latency of the inference. Consequently, the Parallel baseline
suffers from high latency.

Figure 7 shows the Pipe-All approach, on average, provides
5.42% and 75.88% higher throughput than the Parallel and Peak
baseline, respectively. However, compared to the Peak baseline,

high throughput from Pipe-All comes at the cost of only a 55.59%
increase in latency versus a 419.87% increase in latency with
the Parallel baseline. We can attribute the results to the ability
of the pipelined design within Pipe-All to distribute processing
between components to balance out the latency of individual
pipeline stages.

VII. CONCLUSION

ML inferencing on embedded platforms using HMPSoCs is
now ubiquitous. However, to achieve a high enough throughput,
we must engage all components synergistically in inferencing.
High throughput should also not come at the cost of high
latency. Thererfore, in this work, we introduced a new open-
source pipeline design called Pipe-All for multi-component CNN
inference on HMPSoC with ARM big.Little asymmetric multi-
core processors and Mali GPUs. Pipe-All has a three-stage
pipeline with the big CPU Cluster, Small CPU Cluster, and GPU
as its three stages. The on-board evaluations show Pipe-All, on
average, can provide 75.88% higher inference throughput than
single peak-component inference with only a 55.59% increase in
latency. In the future, one must extend the CPU-GPU pipeline to
incorporate ML accelerators in HMPSoCs such as Neural Pro-
cessing Units (NPU) into the design for even higher throughput.
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