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Abstract—During the past decade, the model predictive control
(MPC) of power electronics and drives has witnessed signif-
icant advancements in both dynamic performance and range
of applications. However, researchers still encounter challenges
with the optimal design of weighting factors, and this lowers
the capabilities derivable from MPC. This study first reviews
the different weighting factor design techniques proposed in the
literature for power electronics and electrical drives (applied to
wind/solar energy conversion, microgrids, grid-connected con-
verters and other high performance converter-based systems).
They are grouped under heuristic, offline tuning, sequential, and
online optimization methods. Next, the study provides real-time
hardware-in-the-loop comparative results for the implementation
of four weighting factor design techniques on a grid-connected
two-level back-to-back power converter-based permanent magnet
synchronous generator wind turbine system. Through these
laboratory results, the advantages and limitations of the different
weighting factor design methods are highlighted.

Index Terms—Weighting factor, model predictive control,
power electronics converters, drives, microgrid, wind turbine,
permanent magnet synchronous generator (PMSG).

I. INTRODUCTION

Model predictive control is emerging as a popular con-
trol technique with application in cross-disciplinary domains.
Over the past half-century, it has found industrial relevance
to petrochemical, aerospace and automotive processing and
manufacturing. Despite MPC’s initial introduction to power
electronics control in the 1980s, its ascendancy occurred in the
past about two decades [1]. This resurgence has been attributed
to the emergence of fast microprocessors with the capability
for MPC’s high computational need. MPC is grouped into
finite control set MPC (FCS-MPC), and generalized predictive
control [2]. However, FCS-MPC (also called direct MPC with
reference tracking [1]) has been more studied because of its
intuitive features and ease of application. Despite its advan-
tages including high performance multi-objective control with
constraints, FCS-MPC (simply called MPC going forward) is
limited by several challenges – among these is the optimal
weighting factor design.

The weighting factor is used to prioritize control objectives
in the single cost function to be optimized in MPC-based
multi-objective control. So, objectives with higher priority
get higher weight assignments. Based on this principle, re-
searchers usually adjust values assigned to weight factors
heuristically until performance indices including total har-

monic distortion (THD), tracking error, average switching
frequency, and steady-state stability are attained. Nonetheless,
this procedure hinders MPC’s optimal performance. Therefore,
researchers in this field have devised several alternative ap-
proaches to overcome this challenge. These can be categorized
as offline heuristic weighting factor tuning, sequential MPC,
simplified-model-based MPC, and online optimization tuning
(comprising both artificial intelligence (AI) and non-AI-based
methods) tuning approaches.

Sequential MPC methods, also called cascaded schemes in
the literature, attempt to simplify the design process by indi-
rectly achieving the purpose of the weighting factor, rendering
it unnecessary [3]. Another method that avoids the weight
factor is the simplified-model MPC. This can be applied
where the competing control objectives can be analytically
transformed into one parameter, so that all objectives have
the same unit [4]–[6]. Online optimization tuning utilizes an
optimization algorithm to select the optimal weighting factor,
with respect to real-time plant and operational conditions [7],
and could increase the computational burden of the controller.
It comprises non-AI, and AI-based methods. AI-based online
tuning schemes optimize the tuning process by using genetic
algorithm, fuzzy logic and other AI schemes [8]. The AI
methods have been shown to have relatively low computational
requirements in control applications [9].

Review studies on MPC for power electronics and drives
have been reported in past publications. Refs. [2], [10], [11]
surveyed MPC of power converters with focus on both aca-
demic and industrial aspects of the prediction model, the cost
function, and the optimization algorithm. The predictive torque
control of switched reluctance machines drives was covered in
[12], [13]. Techniques employed to reduce the computational
burden of long predicition horizon-based MPC were reviewed
in [14]. The authors of [15], [16] reviewed MPC applications
for microgrid converters. However, none of these publications
carried out a detailed study on the design of weighting factor
for predictive control of converters and drives. Also, there is
yet no study that provides a detailed quantitative comparison of
the performance of different weighting factor design methods.
To close this research gap, this study focuses specifically on
the methods for designing weighting factors (or indirectly
achieving their purpose, while avoiding their explicit use),
which is a significant challenge that has been highlighted in
several studies. We provide a detailed comparison of the design
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methods using their underlying mathematical principles, con-
trol schemes, and numerical results of dynamic performances.

The paper introduces the fundamentals of MPC and heuris-
tic weighting factor tuning in Sec. II. Three weighting factor
design methods are presented as follows: sequential MPC
in Sec. III, simplified model MPC in Sec. IV, and online
optimization-based tuning in Sec. V. Laboratory-based HiL
case study and discussion are in Sec. VI. The emerging trends
of this topic are covered in VII, and the conclusion is drawn
in Sec. VIII.

II. FUNDAMENTALS OF MPC FOR POWER CONVERTERS

In this section, the underlying principles of MPC are dis-
cussed, including the system model and weighting factor.

A. System Model

The generic discrete model of a power electronics system
is given by (1), where k ∈ N is the discrete time step,
x is the state vector (with state variables that include filter
current/voltage, and machine fluxes [11]), y is the output
vector (with output variables including output current, voltage,
active/reactive power, speed and torque).

x(k + 1) = f(x(k),u(k)), (1a)
y = x(k). (1b)

Given a sequence of input variables over a prediction
horizon Np ∈ N time steps. We can define a sequence of
possible power converter switching states that the controller
could implement as [11], [17]:

U(k) = [uT (k) uT (k + 1) ... uT (k +Np − 1)]. (2)

The predictive controller seeks an optimal switching sequence

Uopt(k) = min
U(k)

J, (3)

where J is the cost function that captures the control objectives
for the optimization problem. In power electronics systems,
the control objective could track a reference by minimizing a
tracking error magnitude as

J =

k+Np−1∑
k=1

‖yp(k+ 1)− y∗(k+ 1)‖2Q + λu‖∆u(k)‖22, (4)

where Q is the penalty matrix on the tracking error, yp is
the predicted output, y∗ is the reference, λu penalizes the
control effort ∆u(k), and ∆u(k) := u(k) − u(k − 1). MPC
is a receding horizon scheme; therefore, only the first term of
the sequence Uopt(k) is applied to the plant. Recalculation of
the next sampling instant’s predictions and optimal sequence
is done after updated measurements/estimates of the states.

Detailed discussions on holistic design considerations for
MPC, including prediction horizon, control effort, weighting
factor and performance assessment are outside the scope of
this article, but can be found in [1]. In this work, focus will
be on the design methods for optimal weighting factor tuning.

B. Heuristic Weighting Factor Tuning

As earlier mentioned, MPC has the capability to facilitate
the optimal control of the multi-objective terms/parameters in
a predictive cost function. Some of these parameters could
have equal control priorities; for instance, active and reactive
power in grid-connected converters [18]–[20]. However, other
control objectives have differing priorities; e.g., the control
of torque and flux in electrical machine drives. The latter
case needs weighting factors to set a relative importance
between control objectives for optimal system performance
(e.g. low current THD). Although the conventional means
of determining the value of the weighting factors is through
offline heuristic tuning (according to rules provided in [21]),
this results in sub-optimal control results [1]. In the following
discourse, proposed alternative solutions in the literature will
be subjected to objective analyses, highlighting the advantages
and disadvantages associated with each method.
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III. SEQUENTIAL MODEL PREDICTIVE CONTROL

Sequential MPC is a relatively new method that proffers
a solution to the challenges associated with tuning weighting
factors for MPC of power electronic converters. This method
was introduced by [3], and operates on the concept of using
multiple cost functions arranged in a cascaded/sequential order
of computational execution as shown in Fig. 1. In the figure,
n cost functions are arranged sequentially, in decreasing order
of priority, representing the initial cost function J (5) broken
into cascaded cost functions J1 to Jn (6). Note that xpredi is
the predicted term, and x∗i is the reference ∀ i ∈ {1, 2, ..., n}.
After the model prediction stage, the first cost function (repre-
senting the criterion of highest priority) is executed. The output
of block J1 comprises a sorted list of selected optimal voltage
vectors that will be made available to all subsequent cost
function stages J2 to Jn. Stages J2 to Jn each optimize their
individual cost functions with information about the prediction
model and references. The final stage Jn will provide the
switching signals Sabc of the overall optimal voltage vector for
each sampling time. The sequential MPC methods are different
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from the multi-cost-function method presented in [25] which
utilizes the average of different cost-function ranks.

J = |xpred1 −x∗1|+λx2|x
pred
2 −x∗2|+...+λxn|xpredn −x∗n|, (5)

J1 = |xpred1 − x∗1|, (6a)

J2 = |xpred2 − x∗2|, ..., (6b)

Jn = |xpredn − x∗n|, (6c)

Two challenges arise with the basic sequential MPC: i) the
number of selected switching vectors from each stage could
be too limited for optimal control of subsequent stages, and
ii) because the first stage is implicitly given highest priority,
there is a problem with applications where all criteria/cost
functions have equal priorities. The first challenge is addressed
(to an extent) by the dynamic sequential MPC [22], and the
second challenge is solved by the generalized sequential MPC
[26] and even-handed MPC [23]. The dynamic sequential
MPC (shown in Fig. 2) adaptively modifies the sorted list of
selected optimal voltage vectors from each stage to include
all vectors that satisfy a minimum error criterion [22]; thus

giving a better dynamic performance than when a static
number of switching vectors is selected. Furthermore, both
the generalized sequential MPC [26] and even-handed MPC
[23] overcome the challenge inherent in a fixed sequence
of execution of the cost functions. The even-handed method
shown in (Fig. 3), for instance, adaptively selects the order
of execution, based on the simultaneous optimality of all
criteria by a cross-error minimization process. It is especially
beneficial to multiple cost-functions with identical priorities.

The even-handed sequential method operates by minimizing
cross-errors among control objectives, instead of minimizing
the tracking errors of individual objectives. For instance, if we
have a two-level inverter with seven unique voltage vectors
ui|i = {0, 2, .., 6} (only one of two zero voltage vectors is
considered), and the control objectives are for signals x1 and
x2 to track their references x∗1 and x∗2, the criteria C1, C2

can be generated by normalization of the predicted errors for
predicted terms xp1 and xp2 (where x1rated and x2rated are the
rated values of signals x1 and x2):

C1 =
|xp1 − x∗1|
x1rated

, ∀ i = {0, 2, .., 6} (7a)

C2 =
|xp2 − x∗2|
x2rated

, ∀ i = {0, 2, .., 6} (7b)

Using only the above criteria for minimization will give
overall sub-optimal results because when a voltage vector is
highly optimal for criterion C1, it may not be optimal for
C1, and yet both criteria are supposed to be treated with
equal priority. Therefore, to choose this optimal candidate
requires that the cross-errors are ranked and minimized. At
each sampling instant, the criteria are sorted and ranked for
the eight voltage vectors from 1 to 8: (C1r1, C1r2, ..., C1r8),
and (C2r1, C2r2, ..., C2r8). The top three ranks are selected for
the cross-error stage:

err12 = {(C2r1 − C1min), (C2r2 − C1min), (C2r3 − C1min)}
= C2(r1.,r2,r3) − C1min (8)

err21 = {(C1r1 − C2min), (C2r2 − C2min), (C2r3 − C2min)}
= C2(r1,r2,r3) − C2min (9)

Despite their relative ease of implementation, sequential
MPC techniques have been shown to result in sub-optimal
performance [1] to optimally-tuned weighting factors.
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IV. SIMPLIFIED-MODEL-BASED MPC

Simplified-model-based MPC methods aim to avoid the
use of weighting factors by unifying the control objectives.
This is possible where these control objectives are (in)directly
interrelated. For instance, flux and torque can be unified in
drive applications [4]–[6], [24], [30]–[35]. Also, the model of
multilevel converters can be simplified by reducing the number
of switching states or introducing redundant voltage vectors,
without sacrificing good control performance [36]–[40]. The
two cases of this method, i.e., unified control objectives and
reduced switching states will be discussed in detail in this
section.

The overall control scheme of simplified model MPC with
unified control objectives is shown in Fig. 4 for a generic
power electronics system. It involves three basic control
stages: state prediction, reference conversion, and cost function
minimization. Without loss of generality, the figure applies
to the case where two states (x1 and x2) are desired to be
controlled via a single predictive cost function, without the
use of a weighting factor. Since these states are usually in
different units, e.g., flux and torque, the most defining step
of this method is the reference conversion of both states to
the same unit. This could be done by conversion of one
state’s reference to the other (e.g. x∗2 to x∗1, or vice-versa)
as was done in [4]–[6], [24], [24], [30]–[35] via torque to flux
reference, and flux to torque reference [41], [42] conversion.
Alternatively, a third variable ζ could be introduced, and both
references, x∗1 and x∗2, can be converted to ζ∗, as was done
in [4] (flux and torque to voltage reference). For improved
steady-state performance, modifications to Fig. 4 can include
the use of two optimal switching voltage vectors per cycle,

instead of one. To achieve this, two stages can be added for
second voltage vector selection, duty ratio optimization, and
pulse generation control (Fig. 5) [4], [24].

The use of reduced switching states/redundant voltage vec-
tors is the means of simplifying the MPC of multilevel con-
verters like neutral-point clamped converter [40], [43], nested
neutral-point clamped converter [44], matrix converter [45],
rectifiers [43], [46] and quasi-Z-source converter [47].= These
converters are modeled with per-phase (e.g. MMC for HVDC
[27], [36]–[39], [48]–[51]), and the three-phase concepts (e.g.
motor drives [45]). Details on these mathematical models are
outside the scope of this paper, but can be found in [52].
The control objectives include the control of DC-link current
ripple, sub-module voltage ripple, circulating current, output
current, and sub-module capacitor voltage. Furthermore, while
most studies were on FCS-MPC, few like [46], [49]–[51]
reported work on modulated MPC with constant switching
frequency.

Due to the modular design of multilevel converters, as the
number of sub-modules/cells increases, so does the calculation
burden of the control scheme. Therefore, to decrease compu-
tational burden, the literature reduces the applied switching
states. Fig. 6 shows the simplified MPC scheme applied to
multilevel converters. It requires a current reference generation
stage which is used to optimize the cost function J . This is not
done for all the available switching states, which could be as
large as (N + 1)3, where N is the number of sub-modules per
arm. Instead, an optimized set of redundant voltage vectors is
generated for the cost function optimization process, reducing
the computational burden to 3(N + 4) [27]. The literature has
focused significantly on applying variants of this scheme to
modular multilevel converters for HVDC [27], [36]–[39], [43],
[48]–[51]. Among these, only [46], [49]–[51] are designed for
modulated MPC with fixed switching frequencies, while all
others have variable switching frequencies.

V. ONLINE OPTIMIZATION METHODS

In this section, online calculation of optimal weight factor
will be discussed under headings of AI-based tuning, and non-
AI-based optimization.

A. Artificial Intelligence-Based Tuning Methods

Artificial intelligence (AI) is associated with enabling ma-
chines with intelligence that mimicks human learning and
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Fig. 8. Simplified power circuit of a grid-connected ‘voltage source back-to-back power converter PMSG wind turbine system with RL filter, where iabcm and
iabcn are the generator and grid-side current vectors, respectively; vabcm is the output voltage vector of the generator; en is the grid voltage vector; Rn and
Ln are the filter stator resistance and inductance, respectively.

reasoning [53]. In the broad field of power electronics, four
groups of AI techniques have been applied, namely: expert
system, fuzzy logic, metaheuristic techniques and machine
learning [53]. Among these, the latter three have been applied
to MPC weighting factor design in the literature.

Fuzzy logic—the most popular among AI methods in
weighting factor design—forms rules with Boolean logic,
taking uncertainties into consideration. It has been applied to
direct matrix converter [54], three-level neutral point-clamped
converter [55] and electrical machine drives [56]–[61]

Metaheuristic techniques (e.g. genetic algorithm, particle
swarm optimization) utilize biological process for mathemati-
cal optimization [53]. A multi-objective genetic algorithm was
employed in [8], [62] to tune weighting factors for torque, flux
and switching frequency in the model predictive torque control
of an induction motor drive. The dynamic performance was
reportedly better that using a heuristic tuning process. Ma-
chine learning is categorized as supervised learning (uses la-
belled training dataset), unsupervised learning (uses unlabelled
dataset) and reinforcement learning (does not require train-
ing dataset) [53]. Among several existing machine learning
methods, only neural network (a form of supervised learning)
has been applied to online weighting factor optimization. It
has been used for three level neutral-point clamped converter
[63], two-level voltage source converter [64], predictive torque
control of an induction machine [9]. In contrast to the previous
methods that are trained offline, an online self-training neural-
network method was proposed in [65] for seven-level modified
packed U-cell (MPUC7) active rectifier. It combines particle
swarm algorithm optimization for multi-weight factor tuning
and a decoupled Lyapunov stability objective to guarantee
control stability. In summary, machine learning methods are
notable and have promising potential because they do not add
significantly to computational burden, meanwhile, they work
with high accuracy.

B. Non-AI-based Online Optimization

Online optimization techniques carry out real-time opti-
mization of the weighting factors in multi-objective predictive
control of power converters. Since all calculations required to
accurately determine the optimal weighting factor are done

online, these techniques generally increase the computational
burden of the predictive control process. Methods employed
in the literature include: tracking error optimization [7], [28],
[29], [66]–[68], torque ripple optimization [69], [70], coeffi-
cient of variation [71], state normalization/variable sensitivity
balance [72], look-up table [73], [74], grey relational analysis
[75] and continuous function of pre-existing error [76]. To
facilitate the optimal weight factor calculation for predictive
torque and flux control in particular, algebraic methods are
presented in [69], [77], and these are not computationally-
intensive. Fig. 7, depicts an example for online autotuning of
weighting factors which are applied to the next sampling time.

VI. HARDWARE-IN-THE-LOOP CASE STUDY

In the section, a comparative study of four control meth-
ods based on HiL realization of a two-level back-to-back
power converter-based permanent magnet synchronous genera-
tor wind turbine system. The system description and discussion
of results are covered in the following.

A. System Description and Modeling

Fig. 8 illustrates the system to be controlled. It comprises
a machine-side converter (MSC) that functions as an active
front-end rectifier, connected to a DC-link capacitor, which
supplies a grid-connected converter (GSC). For modeling
simplicity, the wind turbine is directly mounted on the PMSG
shaft without any interfacing gear box. System parameters are
provided in Table I.

In order to stay within the scope of this paper the details
of the mathematical models and state predictions for the
MSC and GSC can be found in [78], [79] , and will not be
repeated here. We desire to compare the control characteristics
for classical heuristically-tuned MPC, sequential MPC, even-
handed sequential MPC and online-tuned weighting factor-
based MPC.

The MSC control objectives are: (Objm1) accurate torque
tracking with fast dynamics, and (Objm2) maximum-torque-
per-ampere current tracking. (Objm1) and (Objm2) are both
captured in the current tracking cost function which does not
require a weighting factor [79]:

Jm = (iq∗m − iqm(k + 1))
2

+
(
0− idm(k + 1)

)2
, (10)
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where iq∗m , i
q
m(k + 1), are the reference and predicted q-axis

current terms, and the d-axis current iqm(k + 1) tracks a zero
reference for unity power factor control.

For the GSC control, the control objectives are: (Objg1)
reference tracking of active power and (Objg2) reference
tracking of reactive power, captured in the cost function Jg:

Jg = (P ∗ − P (k + 1))
2

+ λQ (Q∗ −Q(k + 1))
2
, (11)

where {y∗, y(k + 1)}|y ∈ {P,Q} represent the reference and
predicted terms respectively. During normal conditions, λQ =
1 for equal priorities of active and reactive power tracking
of their respective references; but when there is a mismatch
in the grid-side filter Ln (Fig. 8), the weight factor becomes
beneficial to improve robustness [28].

Four control schemes were implemented on real-time HiL
PLECS RT-Box-1 devices (Fig. 9) and compared; the control
schemes in the corresponding literature were implemented on
the system: classical MPC [78], sequential MPC [79], [80],
even-handed sequential MPC [23], and online-tuned weighting
factor-based MPC [28].

TABLE I
HIL PARAMETERS FOR THE TEST SYSTEM.

Parameters Symbols Values
Generator stator resistance Rs 0.137 9 Ω

Generator stator inductance Ls 19.43mH
Nominal voltage Vnom 250V

Generator pole pairs Np 3

Sampling time Ts 20µs
Rotor permanent magnet flux φpm 0.4268 Wb
DC-link capacitance C 1100µF
Grid-side filter resistance Rn 0.015 Ω
Grid-side filter inductance Ln 16mH
Grid-side phase voltage (peak) |eabcn | 210 V
Grid-side voltage frequency ωn 100π

A B

D

C

Fig. 9. Real-time HiL test-bench: A–PLECS user interface, B–signal monitor,
C–real-time controller, and D–plant emulator.

B. Discussion of Results

Fig. 10 shows the overall control performances without any
mismatch in the model parameters. For all the four plots,
three step-parameter-changes were effected to test the transient
performance of the control schemes. The speed reference was
changed from 0.85 p.u. to 1.15 p.u. at 0.06 sec. A 1.8 p.u. pulse
q-axis stator current reference change was initiated between

0.06 − 0.075 sec. The DC-link voltage Vdc was changed by
+0.1 p.u. at 0.12 sec. The d-axis stator current reference was
maintained at zero throughout the test interval.

The performances of DC-link voltage and active power
tracking for the four schemes were identical in rapid response
and low level of ripples. On the other hand, the even-handed
MPC scheme had the best tracking performance with no spikes
during all the transients earlier described. The online-tuned
weighting factor method had good tracking with second lowest
reactive power spikes during transients. Sequential MPC had
low ripples, but the highest reactive power tracking error.
All the four methods also had identical variable switching
frequencies that ranged between 3.5− 5.0 kHz.

Fig. 11 shows the overall control performances when the
actual grid-side filter inductance was set to 1.5Ln versus Ln

in the controller. The same transients earlier described for the
case without parameter mismatch were applied. Just like in
the previous case, the performances of DC-link voltage and
active power tracking for the four schemes were identical
in rapid response and low level of ripples. Although even-
handed sequential MPC had the highest voltage overshoot
after the reference voltage step change, it produced the best
overall performance for reactive power tracking. However, the
tracking accuracy of classical MPC was the worst in the case
of parametric mismatch. These results point to the fact that
for the system tested in this study, even-handed sequential
MPC had the most robust features: it produced the best
reactive power tracking performance during transients and also
under model parameter uncertainties. It also produced the least
ripples of all the four methods under all testing conditions.

VII. FUTURE TRENDS

The trend of development in the design of optimal weighting
factor for the predictive control of power electronics and
motor drives indicate potentials for significant advancements
through emerging methods. First is the use of AI methods
that maximize the availability of data made available through
simulations and experiments. AI techniques, e.g. machine
learning and ANN, when properly deployed, have high per-
formance at low computational expense (as earlier discussed
in Sec. V-A). Although they could be initially challenging
due to the need for large amounts of data, and the large
computational time that could result to train the developed
AI model. However, this hurdle is being surmounted by the
use of multiple processors and cores for CPU-training [64].

Also, although online optimization schemes offer a huge
promise in respect of optimal weighting factor tuning, they
are limited by high computational cost. Therefore, low com-
putational algebraic optimization methods will be beneficial.
Finally, hybrid weight-factor design methods that combine
features of two or more of the four methods described above
are expected to become more popular. For example, [81],
[82] applied sequential MPC with computationally efficient
selection of switching states to a three-level neutral-point-
clamped inverter-based induction motor drive.
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(a) Classical MPC (CMPC) (b) Sequential MPC (SMPC)

(c) Even-handed sequential MPC factor (d) MPC with online-tuned weighting factor

Fig. 10. Overall control performances for Case A (without parameter mismatch): (a) Classical model predictive control (CMPC); (b) sequential model predictive
control (SMPC); (c) even-handed sequential model predictive control; (d) model predictive control with online-tuned weighting factor. Each subfigure, from
the top to the bottom, respectively: speed, machine-side current, the dc-link voltage, grid-side active power, grid-side reactive power, and average switching
frequency.

VIII. CONCLUSION

The weighting factor design in the predictive control of
power converters for renewable energy conversion, electric

drives and smart/micro-grids has been faced with challenges.
Several researchers have resorted to some design methods
that reduce the powerful optimal control potentials of MPC.
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(a) Classical MPC (CMPC) (b) Sequential MPC (SMPC)

(c) Even-handed sequential MPC factor (d) MPC with online-tuned weighting factor

Fig. 11. Overall control performances for Case B (with parameter mismatch): (a) Classical model predictive control (CMPC); (b) sequential model predictive
control (SMPC); (c) even-handed sequential model predictive control; (d) model predictive control with online-tuned weighting factor. Each sub-figure, from
the top to the bottom, respectively: speed, machine-side current, the dc-link voltage, grid-side active power, grid-side reactive power, and average switching
frequency.

This paper has reported a comparison of the state-of-the-art
methods of weighting factor design. First, the review reveals
that: 1) the heuristic tuning of weighting factors does not give

the most optimal control performance, 2) online optimization
sustains the distinctive optimal control properties of MPC,
3) simplified-model-based MPC can reduce the computation
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time of complex systems, 4) sequential MPC could reduce
the optimal control power of MPC. Second, the capabilities
of four methods were assessed through real-time HiL tests
on a two-level back-to-back power converter-based permanent
magnet synchronous generator wind turbine system. The Hil
results show that even-handed sequential MPC had the overall
best reactive power tracking performance during transients,
and also under model parameter uncertainties; it also produced
the least ripples. Sequential MPC and online-tuned weighting
factor methods provided a little better robustness to parameter
mismatch than classical MPC with heuristically-tuned weight-
ing factors.
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