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Abstract— Video classification task has gained a significant
success in the recent years. Specifically, the topic has gained more
attention after the emergence of deep learning models as a
successful tool for automatically classifying videos. In recognition
to the importance of video classification task and to summarize the
success of deep learning models for this task, this paper presents a
very comprehensive and concise review on the topic. There are a
number of existing reviews and survey papers related to video
classification in the scientific literature. However, the existing
review papers are either outdated, and therefore, do not include
the recent state-of-art works or they have some limitations. In
order to provide an updated and concise review, this paper
highlights the key findings based on the existing deep learning
models. The key findings are also discussed in a way to provide
future research directions. This review mainly focuses on the type
of network architecture used, the evaluation criteria to measure
the success, and the data sets used. To make the review self-
contained, the emergence of deep learning methods towards
automatic video classification and the state-of-art deep learning
methods are well explained and summarized. Moreover, a clear
insight of the newly developed deep learning architectures and the
traditional approaches is provided, and the critical challenges
based on the benchmarks are highlighted for evaluating the
technical progress of these methods. The paper also summarizes
the benchmark datasets and the performance evaluation matrices
for video classification. Based on the compact, complete, and
concise review, the paper proposes new research directions to solve
the challenging video classification problem.

Impact Statement— The importance of accurate video
classification task can be realized by the large amount of video
data available online. Moreover, with an increase in the
availability of large-scale video data, deep learning methods have
demonstrated a high recognition accuracy for classification of
videos. In recognition to the importance of automatic video
classification using deep learning, this paper provides a
comprehensive review on the topic. The paper addresses the
limitations of existing reviews, provides an updated review on the
state-of-art approaches, and offers some useful future research
directions to solve the challenging video classification problem.

Index Terms— Automatic Video Classification, Deep Learning,
Handcrafted Features, Video Processing.

I. INTRODUCTION

IDEO classification task has gained a significant success
in the recent years. Specifically, the topic has gained more
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attention after the emergence of deep learning models as a
successful tool for automatically classifying videos. The
importance of accurate video classification task can be realized
by the large amount of video data available online. People
around the world generate and consume a huge amount of video
content. Currently, on YouTube only, over 1 billion hours of
video is being watched by different people on every single day.
In recognition to the importance of video classification task, a
combined effort is being made by the researchers for proposing
an accurate video classification framework. Companies like
Google Al are investing in different competitions to solve the
challenging problem under constrained conditions. To further
advance the progress of automatic video classification task,
Google Al has released a public dataset called YouTube-8M
with millions of video features and more than 3700 labels. All
these efforts being made demonstrate the need of a powerful
video classification model.

An Artificial Neural Network (ANN) is an algorithm based
on the interconnected nodes to recognize the relationships in a
set of data. Algorithms based on ANNs have shown a great
success in modeling both the linear and the non-linear
relationships in the underlying data. Due to a huge success rate
of these algorithms, they are extensively being used for
different real-time applications [1]-[4]. Moreover, with an
increase in the availability of huge datasets, the deep learning
models have specifically shown a significant improvement in
the classification of videos. This paper reviews studies based on
deep learning approaches for video classification. There are a
number of existing reviews and survey papers related to video
classification in the scientific literature. However, those review
papers are either old and therefore do not include the recent
state-of-art works or they have some limitations. Some of the
recent reviews on video classification with their limitations are
discussed as follows: (i) Z. Wu [5] presented a concise review
on video classification specific to deep learning methods. This
review provides a good description on deep learning models,
feature extraction tools, benchmark dataset, and comparison of
existing methods for video classification. However, this review
was conducted in the year 2016 and it does not cover the recent
state-of-art deep learning methods. (ii) Q. Ren [6] conducted a
recent and simple review on video classification methods,
however the techniques covered in this review are not well
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described and the review also lacks in  the description of
research gaps, benchmark datasets, limitations of existing
methods, and performance metrics. (iii) A more recent review
is done by A. Anusya [7], this review covers few methods for
video classification, clustering, and tagging. However, the
review provided is not comprehensive and lacks in concise
information, coverage of topic, datasets, analysis of state-of-art
approaches, and research limitations. (iv) Rani et al [8] also
conducted a recent review on video classification methods, their
review covers some recent video classification approaches and
summary-based description of some recent works. This review
has also some limitations including the missing analysis of
recent state-of-art approaches, and short description of topics
covered. (v) Y. Li et al [9] have recently conducted a systematic
and good review on live sport video classification. This review
covers most of the recent works in live sport video classification
including the tools, video interaction features, and feature
extraction methods. This is a comprehensive review but the
findings are not summarized in tables for research gaps, and
advantages and disadvantages of existing methods for a quick
review. Moreover, this review is more specific to live sport
video classification. (vi) A recent review is also done by Md
Islam et al [10], in this review they have included all the
methods for video classification including deep learning.
However, as the focus of review is not on deep learning
approaches, therefore these methods are not completely
covered in this review.

In contrast to the existing reviews on classification of videos,
this paper provides a more comprehensive, concise and up-to-
dated review of deep learning approaches for video
classification. In this current review, most of the recent state-
of-art contributions related to the topic are analyzed and
critically summarized. Deep learning is an emerging and
vibrant field for the analysis of videos, therefore we hope this
review will help in stimulating future research along the line.
The following are the key contributions to this review paper:

1. A summary of state-of-art CNN based deep learning
models for image analysis.

2. An in-depth review of deep learning approaches for
video classification highlighting the notable findings.

3. A summary of breakthrough in automatic video
classification task.

4. Analysis of research trends from past towards future.

5. Description of benchmark datasets, evaluations
metrics, and comparison of recent state-of-art deep
learning approaches in terms of performance.

The rest of the paper is organized as follows: Section II
reviews some existing Convolutional Neural Networks (CNNs)
for images, Section III provides an in-depth review on Deep
Learning models for Video classification, Section IV provides
a summary for benchmark datasets, evaluation metrics, and
comparison of existing state-of-art for video classification task,
and Section V provides conclusion and future research
directions.

II. CONVOLUTIONAL NEURAL NETWORKS (CNNS) FOR IMAGE
ANALYSIS

Deep learning models, specifically Convolutional Neural
Networks (CNNs) are well known for understanding images. A
number of CNN architectures are proposed and developed in
the scientific literature for image analysis. Among these, the
most popular architectures are LeNet-5 [11], AlexNet [12],
VGGNet [13], GoogleNet [14], ResNet [15], and DenseNet
[16]. The trend that follows from the formerly proposed
architectures towards the recently proposed architectures is to
deepen the network. A summary of these popular CNN
architectures along with trend of deepening the network is
shown in Fig. 1. Where, the depth of network increases from
left-most (LeNet-5) to right-most (DenseNet). Deep networks
are believed to better approximate the target function and to
generate better feature representation with more powerful
discriminatory powers [17]. Although, deeper networks are
better in terms of having more discriminatory powers, but the
deeper networks require more data for training and more
parameters to tune. Finding a professionally labeled huge
dataset is still a big challenge faced by the research community
and therefore it limits the development of more deeper neural
networks.

Visual/Image recognition:
Popular CNN architectures
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Fig. 1: State-of-art image recognition CNN networks. The trend is that the depth
and discriminatory powers of network architectures increases from formerly
proposed architectures towards the recently proposed architectures.

III. VIDEO CLASSIFICATION

In this section, a very comprehensive and concise review for
deep learning models employed in video classification task is
provided. This section covers a description on video data
modalities, traditional handcrafted approaches, breakthrough in
video classification, and recent state-of-art deep learning
models for video classification.

A. Video data modalities

As compared to images, videos are more challenging to
understand and classify due to the complex nature of the
temporal content. However, three different modalities i-e visual
information, audio information, and text information might be
available to classify videos, in contrast to image classification
where only a single visual modality can be utilized. Based on
the availability of different modalities in videos, the task of
classification can be categorized as Uni-modal video
classification or Multi-modal video classification, as
summarized in Fig. 2. The existing has literature utilized both
these models for the video classification task and it is generally
believed that models utilizing Multi-modal data perform better
than the models based on Uni-modal data. Moreover, the visual
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description of a video works better than the text and the audio
description for the classification purpose of a video.

[ Video Classification based on different ]

Modalities

Fig. 2. : Different modalities used for classification of videos.

B. Traditional Handcrafted Features

During the earlier developments of the video classification
task, the traditional handcrafted features were combined with
state-of-art machine learning algorithms to classify the videos.
Some of the most popular handcrafted feature representation
techniques used in literature are spatiotemporal interest points
(STIPs) [18], improved Dense Trajectories (iDT) [19], SIFT-
3D [20], HOG3D [21], Motion Boundary Histogram [22],
Action- Bank [23], Cuboids [24], 3D SURF [25], and Dynamic-
Poselets [26]. These hand-designed representations use
different feature encoding schemes such as the ones based on
pyramids and histograms. iDT is one of these hand-crafted
representations, which is widely considered the state-of-the-art.
Many recent competitive studies demonstrated that hand-
crafted features [27]-[30], high-level [31], [32], and mid-level
[33], [34] video representations have contributed towards the
task of video classification with deep neural networks.

C. Deep Learning frameworks

Along with the development of more powerful deep
learning architectures in the recent years, the trend for video
classification task has followed a shift from traditional
handcrafted approaches to the fully automated deep learning
approaches. Among the very common deep learning
architectures used for video classification is a 3D-CNN model.
An example of 3D-CNN architecture used for video
classification is given in Figure 3 [35]. In this architecture, 3D
blocks are utilized to capture the video information necessary
to classify the video content. One more very common
architecture is a multi-stream architecture, where the spatial and
temporal information is separately processed and the features
extracted from different streams are then fused to make a
decision. In order to process the temporal information different
methods are used and the two most common methods are based
on (i) RNN (mainly LSTM), and (ii) optical flow. An example
of multi-stream network model, where the temporal stream is
processed using optical flow, is shown in Figure 4 [36]. A high
level overview of the video classification process is shown in
Figure 5. Where, the stages of feature extraction and prediction
are shown with the most common type of strategies used in the
literature. In the upcoming sections, the breakthrough in video
classification and studies related to classification of videos
specifically using deep learning frameworks are summarized
describing the success rate of utilizing deep learning
architectures and the associated limitations.
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Fig. 4: An example of two stream architecture with optical flow [36].
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Figure 5: An overview of video classification process.

D. Breakthrough

The breakthrough in recognition of still-images originated
with the introduction of deep learning model called AlexNet
[37]. The same concept of still-image recognition using deep
learning is also extended for videos. Where, individual video
frames are collectively processed as images by a deep learning
model to predict the contents of a video. The features from
individual video frames are extracted and then temporal
integration of such features into a fixed-size descriptor using
pooling is performed. The task is either done using high
dimensional feature encoding [38], [39], or through the RNN
architectures [40]-[43]. For un-supervised spatiotemporal
feature learning in 3D convolutions, Restricted Boltzmann
Machines [44] and stacked ISA [45] are also studied in parallel.
The 3D CNNs using temporal convolutions to extract temporal
features automatically were first proposed by Baccouche et al.
[46] and by Ji et al. [47].

E. Basic Deep Learning Architectures for Video Classification

The two most widely used deep learning architectures for
video classification are Convolutional Neural Network (CNN)
and Recurrent Neural Network (RNN). CNNs are mostly used
to learn the spatial information from videos, whereas, RNNs are
used to learn the temporal information from videos. As, the
main difference between these two architectures is the ability to
process temporal information or data that comes in sequences.
Therefore, both these network architectures are used for
completely different purposes in general. However, the nature
of video data with the presence of both the spatial and the
temporal information demands the use of both these network
architectures to accurately process the two-stream information.
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The architecture of a CNN applies different filters in the
convolutional layers to transform the data. RNNs on the other
hand reuse the activation functions to generate the next output
in a series from the other data points in the sequence. However,
the use of only 2D CNNss alone limit the understanding of video
to only spatial domain. RNNs on the other hand have the ability
to understand the temporal content of a sequence. Both these
basic architectures, and their enhanced versions, are applied in
several studies for the task of video classification.

F. Developments In Video Classification Over Time

The existing approaches for video -classification are
categorized based on their working principle in Table 1. The
trend observed for the classification of videos from the existing
literature is that the recently developed state-of-art deep
learning models are outperforming the earlier handcrafted
classical approaches. This is mainly due to the availability of
large scale video data for learning deep architectures of neural
networks. Besides an improvement in classification
performance the recently developed models are mostly self-
learned and does not require any manual feature engineering.
This added advantage makes them more feasible for use in real
applications. However, the better performing recently
developed architectures are deeper as compared to the
previously developed architectures which brings a compromise
on the computational complexity of the deep architectures.

Among the initially developed hand-crafted representations,
improved Dense Trajectories (iDT) [19] is widely considered
the state-of-the-art. Whereas, many recent competitive studies
demonstrated that hand-crafted features [27]-[30], high-level
[31], [32], and mid-level [33], [34] video representations have
contributed towards the task of video classification with deep
neural networks. The hand-crafted models were among the very
early developments of video classification problem. Later, 2D-
CNNs were proposed for video classification, where image

based CNN models are used to extract frame level features and
based on the frame level CNN features, some state-of-art
classification models (for example SVM) are learned to classify
videos. These 2D CNN models do not require any manual
feature extraction and these models performed better than the
competing hand-crafted approaches. After successful
development of 2D CNN models where features are extracted
from frame level, the same concept was extended to propose
3D-CNNs to extract features from videos. The proposed 3D
CNNs are computationally more expensive as compared to the
2D CNN models. However, these models consider the time
variations in feature extraction therefore these 3D CNN models
are believed to perform better as compared to 2D -CNN models
for video classification.

The development of 3D CNN models paved the way for
fully automatic video classification models using different deep
learning architectures. Among the developments using deep
learning architectures, Spatiotemporal Convolutional Networks
are approaches based on integration of temporal and spatial
information using convolutional networks to perform video
classification. To collect temporal and spatial information,
these methods primarily rely on convolution and pooling layers.
Stack optical flow is used in two/multi Stream Networks
methods to identify movements in addition to context frame
visuals. Recurrent Spatial Networks use Recurrent Neural
Networks (RNN) to model temporal information in videos, such
as LSTM or GRU. The ResNet architecture is used to build
mixed convolutional models. They are particularly interested in
models that utilize 3D convolution in the bottom or top layers
but 2D in the remainder; these are referred to as "mixed
convolutional" models. These also include methods based on
mixed temporal convolution with different kernel sizes. Besides
these architectures, there are also hybrid approaches based on
the integration of CNN and RNN architectures. A summary of
these architectures in provided in Fig. 6.

TABLEI
DIFFERENT CATEGORIES OF APPROACHES FOR VIDEO CLASSIFICATION
Categories Working principle References
Hand-crafted approaches These representations are handcrafted and employ various feature  Spatiotemporal Interest Points (STIPs) [18], iDT
encoding techniques, such as histograms and pyramids. [19], SIFT-3D [20], HOG3D [21], Motion

Boundary Histogram [22], Cuboids [24], Action-
Bank [23], 3D SURF [25], Dynamic-Poselets
[26].

2D- CNNs These are image based models where frame level feature extraction is  [48]
performed using CNN architecture and classification is performed
using state-of-art classification models, for example SVM.

3D-CNNs 2D image classification extension to 3D for video (For example the [49]

Inception 3D (I3D) architecture).
Spatiotemporal
Convolutional Networks
Recurrent Spatial Networks

networks such as LSTM or GRU are used.
Two/multi Stream Networks

optical flow to identify movements.
Mixed convolutional models

To aggregate the temporal and the spatial information, these methods
primarily depend on convolution and pooling.
To represent temporal information in videos, recurrent neural

In addition to the context frame visuals, these methods use layered

Models built with the ResNet architecture in mind. They are

[50], [47], [51]
[52], [40]
[53], [54], [55], [43]

[56], [57]

particularly interested in models that utilize 3D convolution in the
bottom or top layers but 2D in the remainder; these are referred to as
"mixed convolutional” models. Or the methods based on mixed
temporal convolution with different kernel sizes.

Hybrid Approaches

These are models based on integration of CNN and RNN architectures.

[58], [59], [60]
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Different deep learning architectures described above
employ different fusion strategies. These fusion strategies are
either for the fusion of different features extracted from the
video or for the fusion of different models used in the
architecture. The fusion strategies mainly used for the extracted
features are (i) concatenation, (ii) product, (iii) summation, (iv)
maximum, and. (v) weighted. Where, the concatenation
approach simply combines all the features together and all the
features are used for classification. The product/summation
approach performs the product/summation between the features
extracted using different strategies and uses the result of
product/summation to perform classification. The maximum
approach takes the maximum value of the features extracted
using different strategies and uses that for classification. The
weighted approach gives different weights to different features
and performs the classification using the weighted features.
Different fusion methods are summarized in Fig. 7.

G. Summary of some notable deep learning frameworks

A summary of some deep learnings architectures for video
classification is provided in Table II. These studies are
summarized based on the architecture, the datasets, the
evaluation metrics, the fusion strategy, and the notable findings.
Some notable findings from these studies are as follows: (i) The
architectures employing CNN/RNN for feature extraction have
the ability to perform better than hand-crafted features provided
that enough data is available for training. (ii) Tensor-Train
Layer based RNN like LSTM and GRU perform better than the
plain RNN architectures for video classification. (iii) It is

sometimes necessary to use optical flow for datasets like UCF-
101. (iv) It is not always helpful to use optical flow, especially
for the case of videos taken from wild e-g Sports-1M. (v) It is
important to use a sophisticated sequence processing
architecture like LSTM to take advantage of optical flow. (vi)
LSTMs when applied on both the optical flow and the image
frames yield the highest performance measure for Sports-1M
benchmark dataset. (vii) Augmenting optical flow and RGB
input helps in improving the performance. (viii) Optical flow
modality provides complementary information. (ix) A high
computational requirement of optical flow limits its use in real-
time systems. (x) Multi-Stream Multi-Class fusion can perform
better than Average fusion, Weighted fusion, Kernel average
fusion, MKL fusion, and Logistic regression fusion on datasets
like UCF-101 and CCV. (xi) In 3D group convolutional
networks, the volume of channel interactions play a vital role in
achieving a high accuracy. (xii) The Factorization of 3D
convolutions by separating spatiotemporal interactions and
channel interactions can lead to an improvement in accuracy
and a decrease in the computational cost. (xiii) 3D channel-
separated convolutions results in a kind of regularization and
prevents overfitting. (xiv) Popular frameworks of conventional
semi-supervised algorithms (which were originally developed
for 2D images) are unable to obtain good results for 3D video
categorization. (xv) For semi-supervised learning, a calibrated
employment of the object appearance cues keenly improves the
accuracy of the 3D-CNN models.
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TABLEII
SUMMARY AND FINDINGS OF STUDIES BASED ON DEEP LEARNING MODELS
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H. Geometric Deep Learning

Geometric deep learning deals with non-Euclidean graph
and manifold data. This type of data (irregularly arranged/
distributed randomly) is usually used to describe geometric
shapes. The purpose of geometric deep learning is to find the
underlying patterns in geometric data where the traditional
Euclidean distance based deep learning approaches are not
suitable. There are basically two methods available in literature
to apply deep learning on geometric data: (i) extrinsic methods,
and (ii) intrinsic methods. An example of these two methods is
illustrated in Fig. 8 [61]. The filters in intrinsic approaches are
applied on the 3D surfaces without being affected by the
structural deformity. Rather than FEuclidean realization,
intrinsic methods work on the manifold and are isometry-
invariant by construction. Some of the works based on intrinsic
deep learning include (i) Geodesic CNN [62], (ii) Anisotropic
CNN [63], (iii)) Mixture model network [64], (iv) Structured
Prediction Model [65], (v) Localized Spectral CNN [66], (vi)
PointNet [67], (vii) PointNet++ [68], and (viii) RGA-MLP [69].
The application of geometric deep learning (mostly intrinsic
methods) in analyzing videos can help in better understanding

IV. BENCHMARK DATASETS, EVALUATION METRICS, AND
COMPARISON OF EXISTING STATE-OF-ART FOR VIDEO
CLASSIFICATION

A. Benchmark Datasets For Video Classification

There are several benchmark datasets being utilized for
classification of videos, some of these notable datasets are
summarized in Table III. The details related to these datasets
such as total number of videos contained in the dataset, number
of classes present in the dataset, the year of publication of
dataset, and the background of videos in the dataset are included
in the summary.

B. Performance evaluation metrics for Video Classification

The evaluation of video classification models is done using
different performance measures. The most common measures
utilized to evaluate the models are Accuracy, Precision, Recall,
F1 score, Micro F1, and K-fold [10]. Some of the recent studies
using these measures are listed in Table ['V.

TABLE III
COMMONLY USED EVALUATION METRICS FOR VIDEO CLASSIFICATION

from the machine perspective, but it is still an open research Evaluation Metric Year of Publication Reference
problem and needs further investigation. Accuracy 2020-2021 [701-[74]
Precision 2020-2021 [701, [72], [73]
Recall 2020-2021 [701, [72], [73]
F1 Score 2020-2021 [701, [72], [73]
. Micro F1 2020 [751,[76]
4 4. K-Fold 2019 [77]
o / . Top-k 2018,2021 [781,[79]
I 5 s |
‘1
@ ®
Fig. 8: Illustration of deep learning approaches on geometric data. (a) extrinsic
method and (b) intrinsic method.
TABLE IV
BENCHMARK DATASETS
Dataset # of Videos # of Classes Year Background
KTH 600 6 2004 Static
Weizmann 81 9 2005 Static
Kodak 1358 25 2007 Dynamic
Hollywood 430 8 2008 Dynamic
Hollywood2 1787 12 2009 Dynamic
MCG-WEBV 234414 15 2009 Dynamic
Olympic Sports 800 16 2010 Dynamic
HMDBS51 6766 51 2011 Dynamic
CCv 9317 20 2011 Dynamic
UCF-101 13320 101 2012 Dynamic
THUMOS-2014 18394 101 2014 Dynamic
MED-2014 (Dev. set) 31000 20 2014 Dynamic
Sports-1M 1133158 487 2014 Dynamic
ActivityNet 27901 203 2015 Dynamic
EventNet 95321 500 2015 Dynamic
MPII Human Pose 20943 410 2014 Dynamic
FCVID 91223 239 2015 Dynamic
UCF11 1600 11 2009 Dynamic
Youtube Celebrities Face 1910 47 2008 Dynamic
Kinetics 300000 400 2017 Dynamic
Youtube-8M 6.1 M 3862 2018 Dynamic
JHMDB 928 21 2011 Dynamic
Something-something 110000 174 2017 Dynamic
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C. Comparison Of Some Existing Approaches On UCF-101
Dataset

UCF-101 is a benchmark action recognition dataset
published by the researchers of University of Central Florida in
the year 2012 [80], the videos in the dataset are collected from
the YouTube. Total videos in the dataset are 13320 with 101
action categories. The dataset is challenging because of the
uncontrolled environment in the captured videos and it is
widely being used by researches working on video
classification problem. Therefore, it is easy to compare most of
the existing literature based on this dataset. The existing works
employing UCF-101 are compared in Table V, where the
methods are arranged in ascending order based on the
performance. The results reported in Table V are taken from the
existing studies in the literature.

TABLE V
COMPARISON OF VIDEO CLASSIFICATION METHODS ON UCF-101
Method Accuracy
LRCN [41] 82.9
DT + MVSV [81] 83.5
LSTM - Composite [42] 84.3
FstCN [82] 88.1
C3D [83] 85.2
iDT + HSV [84] 87.9
Two-Stream [53] 88.0
RNN-FV [85] 88.0
LSTM [43] 88.6
MultiSource CNN [86] 89.1
Image-Based [48] 89.6
TDD [27] 90.3
Multilayer and Multimodal Fusion [87] 91.6
Transformation CNN [88] 92.4
Multi-Stream [89] 92.6
Key Volume Mining [90] 92.7
Convolutional Two-Stream [54] 93.5
Temporal Segment Networks [31] 94.2

V. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

This article reviews deep learning approaches for the task of
video classification. Some of the notable studies are
summarized in detail and the key findings in these studies are
highlighted. The key findings are reported as an effort to help
the research community in developing new deep learning
models for video classification. From the analysis of the
existing literature, following conclusions are drawn for video
classification task: (i) The visual description works better than
the text and the audio description and the combination of all
modalities can contribute to better performance with an
increase in computational cost. (ii) The architectures employing
CNN/RNN for feature extraction have the ability to perform
better than hand-crafted features provided that enough data is
available for training, (iii) Tensor-Train Layer based RNN like
LSTM and GRU perform better than the plain RNN
architectures for video classification. (iv) It is sometimes
necessary to use optical flow for datasets like UCF-101. (v) It
is not always helpful to use optical flow, especially for the case
of videos taken from wild e-g Sports-1M. (vi) It is important to
use a sophisticated sequence processing architecture like LSTM
to take advantage of optical flow. (vii) LSTMs when applied on
both the optical flow and the image frames yield the highest
performance measure for Sports-1M benchmark dataset. (viii)

Augmenting optical flow and RGB input helps in improving the
performance. (ix) Optical flow modality provides
complementary information. (x) A high computational
requirement of optical flow limits its use in real-time systems.
(xi) Multi-Stream Multi-Class fusion can perform better than
Average fusion, Weighted fusion, Kernel average fusion, MKL
fusion, and Logistic regression fusion on datasets like UCF-101
and CCV. (xii) In 3D group convolutional networks, the volume
of channel interactions play a vital role in achieving a high
accuracy. (xiii) The Factorization of 3D convolutions by
separating spatiotemporal interactions and channel interactions
can lead to an improvement in accuracy and a decrease in the
computational cost. (xiv) 3D channel- separated convolutions
results in a kind of regularization and prevents overfitting. (xv)
Popular frameworks of conventional semi-supervised
algorithms (which were originally developed for 2D images)
are unable to obtain good results for 3D video categorization.
(xvi) For semi-supervised learning, a calibrated employment of
the object appearance cues keenly improves the accuracy of the
3D-CNN models.

Although, the latest developments in deep learning models
have demonstrated the potential of these approaches for video
classification task. However, most of the existing deep learning
architectures for video classification are basically adopted from
the favored deep learning architectures in image/speech
domain. Therefore, most of the existing architectures remain
insufficient to deal with the more complicated nature of video
data that contain a rich information in the form of spatial,
temporal, and acoustic clues. This calls an attention towards the
need for a tailored network capable of effectively modeling the
spatial, temporal, and acoustic information. Moreover, training
CNN/RNN models require labeled datasets and acquiring those
datasets are usually time-consuming and expensive, and hence
a promising research direction is to utilize the considerable
amount of unlabeled video data to derive better video
representations.

Furthermore, the deep learning approaches are
outperforming other state-of-the-art approaches for video
classification. The deep learning google trend is still growing
and it is still above the trend for some other very well-known
machine learning algorithms, as shown in Fig. 9 (a). However,
the recent developments in deep learning approaches are still
under evaluated and require further investigations for video
classification task. One such example is geometric deep
learning approaches, the worldwide research interest in this
specific topic is shown in Figure 9 (b). Which describes that this
topic is still confined to some states of US and has yet to be
developed and investigated further. The use of geometric deep
learning in extracting rich spatial information from the videos
can also be a new research direction for better accuracy in video
classification task.
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Figure 9: (a) Google trend on deep learning Vs some other state-of-the-art
methods. (b) Worldwide research interest in geometric deep learning.
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