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Abstract— Video classification task has gained a significant 

success in the recent years. Specifically, the topic has gained more 
attention after the emergence of deep learning models as a 
successful tool for automatically classifying videos. In recognition 
to the importance of video classification task and to summarize the 
success of deep learning models for this task, this paper presents a 
very comprehensive and concise review on the topic. There are a 
number of existing reviews and survey papers related to video 
classification in the scientific literature. However, the existing 
review papers are either outdated, and therefore, do not include 
the recent state-of-art works or they have some limitations. In 
order to provide an updated and concise review, this paper 
highlights the key findings based on the existing deep learning 
models. The key findings are also discussed in a way to provide 
future research directions. This review mainly focuses on the type 
of network architecture used, the evaluation criteria to measure 
the success, and the data sets used. To make the review self-
contained, the emergence of deep learning methods towards 
automatic video classification and the state-of-art deep learning 
methods are well explained and summarized. Moreover, a clear 
insight of the newly developed deep learning architectures and the 
traditional approaches is provided, and the critical challenges 
based on the benchmarks are highlighted for evaluating the 
technical progress of these methods. The paper also summarizes 
the benchmark datasets and the performance evaluation matrices 
for video classification. Based on the compact, complete, and 
concise review, the paper proposes new research directions to solve 
the challenging video classification problem.  
 

Impact Statement— The importance of accurate video 
classification task can be realized by the large amount of video 
data available online. Moreover, with an increase in the 
availability of large-scale video data,  deep learning methods have 
demonstrated a high recognition accuracy for classification of 
videos. In recognition to the importance of automatic video 
classification using deep learning, this paper provides a 
comprehensive review on the topic. The paper addresses the 
limitations of existing reviews, provides an updated review on the 
state-of-art approaches, and offers some useful future research 
directions to solve the challenging video classification problem.   
 

Index Terms— Automatic Video Classification, Deep Learning, 
Handcrafted Features, Video Processing.  

I. INTRODUCTION 
IDEO classification task has gained a significant success 
in the recent years. Specifically, the topic has gained more 
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attention after the emergence of deep learning models as a 
successful tool for automatically classifying videos. The 
importance of accurate video classification task can be realized 
by the large amount of video data available online. People 
around the world generate and consume a huge amount of video 
content. Currently, on YouTube only, over 1 billion hours of 
video is being watched by different people on every single day. 
In recognition to the importance of video classification task, a 
combined effort is being made by the researchers for proposing 
an accurate video classification framework. Companies like 
Google AI are investing in different competitions to solve the 
challenging problem under constrained conditions.  To further 
advance the progress of automatic video classification task, 
Google AI has released a public dataset called YouTube-8M 
with millions of video features and more than 3700 labels. All 
these efforts being made demonstrate the need of a powerful 
video classification model. 

An Artificial Neural Network (ANN) is an algorithm based 
on the interconnected nodes to recognize the relationships in a 
set of data. Algorithms based on ANNs have shown a great 
success in modeling both the linear and the non-linear 
relationships in the underlying data. Due to a huge success rate 
of these algorithms, they are  extensively being used for 
different real-time applications [1]–[4]. Moreover, with an 
increase in the availability of huge datasets, the deep learning 
models have specifically shown a significant improvement in 
the classification of videos. This paper reviews studies based on 
deep learning approaches for video classification. There are a 
number of existing reviews and survey papers related to video 
classification in the scientific literature. However, those review 
papers are either old and therefore do not include the recent 
state-of-art works or they have some limitations. Some of the 
recent reviews on video classification with their limitations are 
discussed as follows: (i) Z. Wu [5] presented a concise review 
on video classification specific to deep learning methods. This 
review provides a good description on deep learning models, 
feature extraction tools, benchmark dataset, and comparison of 
existing methods for video classification. However, this review 
was conducted in the year 2016 and it does not cover the recent 
state-of-art deep learning methods. (ii) Q. Ren [6] conducted a 
recent and simple review on video classification methods, 
however the techniques covered in this review are not well 
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described and the review also lacks in   the description of 
research gaps, benchmark datasets, limitations of existing 
methods, and performance metrics. (iii) A more recent review 
is done by A. Anusya [7], this review covers few methods for 
video classification, clustering, and tagging. However, the 
review provided is not comprehensive and lacks in concise 
information, coverage of topic, datasets, analysis of state-of-art 
approaches, and research limitations. (iv) Rani et al [8] also 
conducted a recent review on video classification methods, their 
review covers some recent video classification approaches and 
summary-based description of some recent works. This review 
has also some  limitations including the missing analysis of 
recent state-of-art approaches, and short description of topics 
covered. (v) Y. Li et al [9] have recently conducted a systematic 
and good review on live sport video classification. This review 
covers most of the recent works in live sport video classification 
including the tools, video interaction features, and feature 
extraction methods. This is a comprehensive review but the 
findings are not summarized in tables for research gaps, and 
advantages and disadvantages of existing methods for a quick 
review. Moreover, this review is more specific to live sport 
video classification. (vi) A recent review is also done by Md 
Islam et al [10], in this review they have included all the 
methods for video classification including deep learning. 
However, as the focus of review is not on deep learning 
approaches, therefore these methods are not completely 
covered in this review.  

In contrast to the existing reviews on classification of videos, 
this paper provides a more comprehensive, concise and up-to-
dated review of deep learning approaches for video 
classification. In this current review, most of the recent state-
of-art contributions related to the topic are analyzed and 
critically summarized. Deep learning is an emerging and 
vibrant field for the analysis of videos, therefore we hope this 
review will help in stimulating future research along the line. 
The following are the key contributions to this review paper:  

1. A summary of state-of-art CNN based deep learning 
models for image analysis.  

2. An in-depth review of deep learning approaches for 
video classification highlighting the notable findings. 

3. A summary of breakthrough in automatic video 
classification task. 

4. Analysis of research trends from past towards future.   
5. Description of benchmark datasets, evaluations 

metrics, and comparison of recent state-of-art deep 
learning approaches in terms of performance. 

The rest of the paper is organized as follows: Section II 
reviews some existing Convolutional Neural Networks (CNNs) 
for images, Section III provides an in-depth review on Deep 
Learning models for Video classification, Section IV provides 
a summary for benchmark datasets, evaluation metrics, and 
comparison of existing state-of-art for video classification task, 
and Section V provides conclusion and future research 
directions. 
 

II. CONVOLUTIONAL NEURAL NETWORKS (CNNS) FOR IMAGE 
ANALYSIS 

Deep learning models, specifically Convolutional Neural 
Networks (CNNs) are well known for understanding images. A 
number of CNN architectures are proposed and developed in 
the scientific literature for image analysis. Among these, the 
most popular architectures are LeNet-5 [11], AlexNet [12], 
VGGNet [13], GoogleNet [14], ResNet [15], and DenseNet 
[16]. The trend that follows from the formerly proposed 
architectures towards the recently proposed architectures is to 
deepen the network. A summary of these popular CNN 
architectures along with trend of deepening the network is 
shown in Fig. 1. Where, the depth of network increases from 
left-most (LeNet-5) to right-most (DenseNet). Deep networks 
are believed to better approximate the target function and to 
generate better feature representation with more powerful 
discriminatory powers [17]. Although, deeper networks are 
better in terms of having more discriminatory powers, but the 
deeper networks require more data for training and more 
parameters to tune. Finding a professionally labeled huge 
dataset is still a big challenge faced by the research community 
and therefore it limits the development of more deeper neural 
networks.  

 

Fig. 1: State-of-art image recognition CNN networks. The trend is that the depth 
and discriminatory powers of network architectures increases from formerly 
proposed architectures towards the recently proposed architectures.  

III. VIDEO CLASSIFICATION 
In this section, a very comprehensive and concise review for 

deep learning models employed in video classification task is 
provided. This section covers a description on video data 
modalities, traditional handcrafted approaches, breakthrough in 
video classification, and recent state-of-art deep learning 
models for video classification.  

A. Video data modalities 
As compared to images, videos are more challenging to 

understand and classify due to the complex nature of the 
temporal content. However, three different modalities i-e visual 
information, audio information, and text information might be 
available to classify videos, in contrast to image classification 
where only a single visual modality can be utilized. Based on 
the availability of different modalities in videos, the task of 
classification can be categorized as Uni-modal video 
classification or Multi-modal video classification, as 
summarized in Fig. 2. The existing has literature utilized both 
these models for the video classification task and it is generally 
believed that models utilizing Multi-modal data perform better 
than the models based on Uni-modal data. Moreover, the visual 

Visual/Image recognition:
Popular CNN architectures

AlexNet LeNet-5  VGGNet GoogleNet ResNet DenseNet 

Depth of the network architectures has increased over time
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description of a video works better than the text and the audio 
description for the classification purpose of a video. 

 

Fig. 2. : Different modalities used for classification of videos. 

B. Traditional Handcrafted Features 
During the earlier developments of the video classification 

task, the traditional handcrafted features were combined with 
state-of-art machine learning algorithms to classify the videos. 
Some of the most popular handcrafted feature representation 
techniques used in literature are spatiotemporal interest points 
(STIPs) [18], improved Dense Trajectories (iDT)  [19], SIFT-
3D [20], HOG3D [21], Motion Boundary Histogram [22], 
Action- Bank [23], Cuboids [24], 3D SURF [25], and Dynamic-
Poselets [26]. These hand-designed representations use 
different feature encoding schemes such as the ones based on 
pyramids and histograms. iDT is one of these hand-crafted 
representations, which is widely considered the state-of-the-art. 
Many recent competitive studies demonstrated that hand-
crafted features [27]–[30], high-level [31], [32], and mid-level 
[33], [34] video representations have contributed towards the 
task of video classification with deep neural networks. 

C. Deep Learning frameworks 
Along with the development of more powerful deep 

learning architectures in the recent years, the trend for video 
classification task has followed a shift from traditional 
handcrafted approaches to the fully automated deep learning 
approaches. Among the very common deep learning 
architectures used for video classification is a 3D-CNN model. 
An example of 3D-CNN architecture used for video 
classification is given in Figure 3 [35]. In this architecture, 3D 
blocks are utilized to capture the video information necessary 
to classify the video content. One more very common 
architecture is a multi-stream architecture, where the spatial and 
temporal information is separately processed and the features 
extracted from different streams are then fused to make a 
decision. In order to process the temporal information different 
methods are used and the two most common methods are based 
on (i) RNN (mainly LSTM), and (ii) optical flow. An example 
of multi-stream network model, where the temporal stream is 
processed using optical flow, is shown in Figure 4 [36]. A high 
level overview of the video classification process is shown in 
Figure 5. Where, the stages of feature extraction and prediction 
are shown with the most common type of strategies used in the 
literature. In the upcoming sections, the breakthrough in video 
classification and studies related to classification of videos 
specifically using deep learning frameworks are summarized 
describing the success rate of utilizing deep learning 
architectures and the associated limitations.  

 

Fig. 3: An example of 3D-CNN architecture to classify videos [35]. 

 

Fig. 4: An example of two stream architecture with optical flow [36]. 

 

Figure 5: An overview of video classification process. 

D. Breakthrough 
The breakthrough in recognition of still-images originated 

with the introduction of deep learning model called AlexNet 
[37]. The same concept of still-image recognition using deep 
learning is also extended for videos. Where, individual video 
frames are collectively processed as images by a deep learning 
model to predict the contents of a video. The features from 
individual video frames are extracted and then temporal 
integration of such features into a fixed-size descriptor using 
pooling is performed. The task is either done using high 
dimensional feature encoding [38], [39], or through the RNN 
architectures [40]–[43].  For un-supervised spatiotemporal 
feature learning in 3D convolutions, Restricted Boltzmann 
Machines [44] and stacked ISA [45] are also studied in parallel. 
The 3D CNNs using temporal convolutions to extract temporal 
features automatically were first proposed by Baccouche et al. 
[46] and by Ji et al. [47]. 

E. Basic Deep Learning Architectures for Video Classification 
The two most widely used deep learning architectures for 

video classification are Convolutional Neural Network (CNN) 
and Recurrent Neural Network (RNN). CNNs are mostly used 
to learn the spatial information from videos, whereas, RNNs are 
used to learn the temporal information from videos. As, the 
main difference between these two architectures is the ability to 
process temporal information or data that comes in sequences. 
Therefore, both these network architectures are used for 
completely different purposes in general. However, the nature 
of video data with the presence of both the spatial and the 
temporal information demands the use of both these network 
architectures to accurately process the two-stream information. 

Video Classification based on different 
Modalities

Uni-Modal Multi-Modal

Audio VisualText Combination of Text, Audio, 
and Visual information.
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The architecture of a CNN applies different filters in the 
convolutional layers to transform the data. RNNs on the other 
hand reuse the activation functions to generate the next output 
in a series from the other data points in the sequence. However, 
the use of only 2D CNNs alone limit the understanding of video 
to only spatial domain. RNNs on the other hand have the ability 
to understand the temporal content of a sequence. Both these 
basic architectures, and their enhanced versions, are applied in 
several studies for the task of video classification. 

F. Developments In Video Classification Over Time  
The existing approaches for video classification are 

categorized based on their working principle in Table I. The 
trend observed for the classification of videos from the existing 
literature is that the recently developed state-of-art deep 
learning models are outperforming the earlier handcrafted 
classical approaches. This is mainly due to the availability of 
large scale video data for learning deep architectures of neural 
networks. Besides an improvement in classification 
performance the recently developed models are mostly self-
learned and does not require any manual feature engineering. 
This added advantage makes them more feasible for use in real 
applications. However, the better performing recently 
developed architectures are deeper as compared to the 
previously developed architectures which brings a compromise 
on the computational complexity of the deep architectures. 

Among the initially developed hand-crafted representations, 
improved Dense Trajectories (iDT) [19] is widely considered 
the state-of-the-art. Whereas, many recent competitive studies 
demonstrated that hand-crafted features [27]–[30], high-level 
[31], [32], and mid-level [33], [34] video representations have 
contributed towards the task of video classification with deep 
neural networks. The hand-crafted models were among the very 
early developments of video classification problem. Later, 2D-
CNNs were proposed for video classification, where image 

based CNN models are used to extract frame level features and 
based on the frame level CNN features, some state-of-art 
classification models (for example SVM) are learned to classify 
videos. These 2D CNN models do not require any manual 
feature extraction and these models performed better than the 
competing hand-crafted approaches. After successful 
development of 2D CNN models where features are extracted 
from frame level, the same concept was extended to propose 
3D-CNNs to extract features from videos. The proposed 3D 
CNNs are computationally more expensive as compared to the 
2D CNN models. However, these models consider the time 
variations in feature extraction therefore these 3D CNN models 
are believed to perform better as compared to 2D -CNN models 
for video classification.  

The development of 3D CNN models paved the way for 
fully automatic video classification models using different deep 
learning architectures. Among the developments using deep 
learning architectures, Spatiotemporal Convolutional Networks 
are approaches based on integration of temporal and spatial 
information using convolutional networks to perform video 
classification. To collect temporal and spatial information, 
these methods primarily rely on convolution and pooling layers. 
Stack optical flow is used in two/multi Stream Networks 
methods to identify movements in addition to context frame 
visuals. Recurrent Spatial Networks use Recurrent Neural 
Networks (RNN) to model temporal information in videos, such 
as LSTM or GRU. The ResNet architecture is used to build 
mixed convolutional models. They are particularly interested in 
models that utilize 3D convolution in the bottom or top layers 
but 2D in the remainder; these are referred to as "mixed 
convolutional" models. These also include methods based on 
mixed temporal convolution with different kernel sizes. Besides 
these architectures, there are also hybrid approaches based on 
the integration of CNN and RNN architectures. A summary of 
these architectures in provided in Fig. 6. 

 

TABLE I 
DIFFERENT CATEGORIES OF APPROACHES FOR VIDEO CLASSIFICATION 

Categories Working principle References 
Hand-crafted approaches These representations are handcrafted and employ various feature 

encoding techniques, such as histograms and pyramids. 
 

Spatiotemporal Interest Points (STIPs) [18], iDT 
[19], SIFT-3D [20], HOG3D [21], Motion 
Boundary Histogram [22], Cuboids [24], Action- 
Bank [23], 3D SURF [25], Dynamic-Poselets 
[26]. 

2D- CNNs These are image based models where frame level feature extraction is 
performed using CNN architecture and classification is performed 
using state-of-art classification models, for example SVM. 

[48] 

3D-CNNs 2D image classification extension to 3D for video (For example the 
Inception 3D (I3D) architecture).  

[49] 

Spatiotemporal 
Convolutional Networks 

To aggregate the temporal and the spatial information, these methods 
primarily depend on convolution and pooling. 

[50], [47], [51] 

Recurrent Spatial Networks To represent temporal information in videos, recurrent neural 
networks such as LSTM or GRU are used. 

[52], [40] 

Two/multi Stream Networks In addition to the context frame visuals, these methods use layered 
optical flow to identify movements. 

[53], [54], [55], [43] 

Mixed convolutional models Models built with the ResNet architecture in mind. They are 
particularly interested in models that utilize 3D convolution in the 
bottom or top layers but 2D in the remainder; these are referred to as 
"mixed convolutional" models. Or the methods based on mixed 
temporal convolution with different kernel sizes. 

[56], [57] 

Hybrid Approaches These are models based on integration of CNN and RNN architectures. [58], [59], [60] 
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Different deep learning architectures described above 
employ different fusion strategies. These fusion strategies are 
either for the fusion of different features extracted from the 
video or for the fusion of different models used in the 
architecture. The fusion strategies mainly used for the extracted 
features are (i) concatenation, (ii) product, (iii) summation, (iv) 
maximum, and. (v) weighted. Where, the concatenation 
approach simply combines all the features together and all the 
features are used for classification. The product/summation 
approach performs the product/summation between the features 
extracted using different strategies and uses the result of 
product/summation to perform classification. The maximum 
approach takes the maximum value of the features extracted 
using different strategies and uses that for classification. The 
weighted approach gives different weights to different features 
and performs the classification using the weighted features. 
Different fusion methods are summarized in Fig. 7. 

G. Summary of some notable deep learning frameworks 
A summary of some deep learnings architectures for video 
classification is provided in Table II. These studies are 
summarized based on the architecture, the datasets, the 
evaluation metrics, the fusion strategy, and the notable findings. 
Some notable findings from these studies are as follows: (i) The 
architectures employing CNN/RNN for feature extraction have 
the ability to perform better than hand-crafted features provided 
that enough data is available for training. (ii) Tensor-Train 
Layer based RNN like LSTM and GRU perform better than the 
plain RNN architectures for video classification. (iii) It is 

sometimes necessary to use optical flow for datasets like UCF-
101. (iv) It is not always helpful to use optical flow, especially 
for the case of videos taken from wild e-g Sports-1M. (v) It is 
important to use a sophisticated sequence processing 
architecture like LSTM to take advantage of optical flow. (vi) 
LSTMs when applied on both the optical flow and the image 
frames yield the highest performance measure for Sports-1M 
benchmark dataset. (vii) Augmenting optical flow and RGB 
input helps in improving the performance. (viii) Optical flow 
modality provides complementary information. (ix) A high 
computational requirement of optical flow limits its use in real-
time systems. (x) Multi-Stream Multi-Class fusion can perform 
better than Average fusion, Weighted fusion, Kernel average 
fusion, MKL fusion, and Logistic regression fusion on datasets 
like UCF-101 and CCV. (xi) In 3D group convolutional 
networks, the volume of channel interactions play a vital role in 
achieving a high accuracy. (xii) The Factorization of 3D 
convolutions by separating spatiotemporal interactions and 
channel interactions can lead to an improvement in accuracy 
and a decrease in the computational cost. (xiii) 3D channel-
separated convolutions results in a kind of regularization and 
prevents overfitting. (xiv) Popular frameworks of conventional 
semi-supervised algorithms (which were originally developed 
for 2D images) are unable to obtain good results for 3D video 
categorization. (xv) For semi-supervised learning, a calibrated 
employment of the object appearance cues keenly improves the 
accuracy of the 3D-CNN models. 

 
 

 

Figure. 6: Summary of video classification approaches. 

 

Figure. 7: Different Fusion Types. 

Video Classification Models

Image based Models 
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End-to-End CNN Models 
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Frame Level CNN 
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temporal clues: 
optical flow
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RNN
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LSTM
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TABLE II 
SUMMARY AND FINDINGS OF STUDIES BASED ON DEEP LEARNING MODELS 
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H. Geometric Deep Learning 
Geometric deep learning deals with non-Euclidean graph 

and manifold data. This type of data (irregularly arranged/ 
distributed randomly) is usually used to describe geometric 
shapes. The purpose of geometric deep learning is to find the 
underlying patterns in geometric data where the traditional 
Euclidean distance based deep learning approaches are not 
suitable. There are basically two methods available in literature 
to apply deep learning on geometric data: (i) extrinsic methods, 
and (ii) intrinsic methods. An example of these two methods is 
illustrated in Fig. 8 [61]. The filters in intrinsic approaches are 
applied on the 3D surfaces without being affected by the 
structural deformity. Rather than Euclidean realization, 
intrinsic methods work on the manifold and are isometry-
invariant by construction. Some of the works based on intrinsic 
deep learning include (i) Geodesic CNN [62], (ii) Anisotropic 
CNN [63],  (iii) Mixture model network [64], (iv) Structured 
Prediction Model [65], (v) Localized Spectral CNN [66], (vi) 
PointNet [67], (vii) PointNet++ [68], and (viii) RGA-MLP [69]. 
The application of geometric deep learning (mostly intrinsic 
methods) in analyzing videos can help in better understanding 
from the machine perspective, but it is still an open research 
problem and needs further investigation. 

 
Fig. 8: Illustration of deep learning approaches on geometric data. (a) extrinsic 
method and (b) intrinsic method.  

IV. BENCHMARK DATASETS, EVALUATION METRICS, AND 
COMPARISON OF EXISTING STATE-OF-ART FOR VIDEO 

CLASSIFICATION 

A. Benchmark Datasets For Video Classification 
There are several benchmark datasets being utilized for 

classification of videos, some of these notable datasets are 
summarized in Table III. The details related to these datasets 
such as total number of videos contained in the dataset, number 
of classes present in the dataset, the year of publication of 
dataset, and the background of videos in the dataset are included 
in the summary.  

B. Performance evaluation metrics for Video Classification 
The evaluation of video classification models is done using 

different performance measures. The most common measures 
utilized to evaluate the models are Accuracy, Precision, Recall, 
F1 score, Micro F1, and K-fold [10]. Some of the recent studies 
using these measures are listed in Table IV. 

TABLE III 
COMMONLY USED EVALUATION METRICS FOR VIDEO CLASSIFICATION 
Evaluation Metric Year of Publication Reference 

Accuracy 2020-2021 [70]–[74] 
Precision 2020-2021 [70], [72], [73] 
Recall 2020-2021 [70], [72], [73] 
F1 Score 2020-2021 [70], [72], [73] 
Micro F1 2020 [75], [76] 
K-Fold 2019 [77] 
Top-k  2018,2021 [78], [79] 

 

TABLE IV 
 BENCHMARK DATASETS 

Dataset # of Videos  # of Classes Year Background 
KTH 600 6 2004 Static 
Weizmann 81 9 2005 Static 
Kodak 1358 25 2007 Dynamic 
Hollywood 430 8 2008 Dynamic 
Hollywood2 1787 12 2009 Dynamic 
MCG-WEBV 234414 15 2009 Dynamic 
Olympic Sports 800 16 2010 Dynamic 
HMDB51 6766 51 2011 Dynamic 
CCV 9317 20 2011 Dynamic 
UCF-101 13320 101 2012 Dynamic 
THUMOS-2014 18394 101 2014 Dynamic 
MED-2014 (Dev. set) 31000 20 2014 Dynamic 
Sports-1M 1133158 487 2014 Dynamic 
ActivityNet 27901 203 2015 Dynamic 
EventNet 95321 500 2015 Dynamic 
MPII Human Pose 20943 410 2014 Dynamic 
FCVID 91223 239 2015 Dynamic 
UCF11 1600 11 2009 Dynamic 
Youtube Celebrities Face 1910 47 2008 Dynamic 
Kinetics 300000 400 2017 Dynamic 
Youtube-8M 6.1 M 3862 2018 Dynamic 
JHMDB 928 21 2011 Dynamic 
Something-something 110000 174 2017 Dynamic 
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C. Comparison Of Some Existing Approaches On UCF-101 
Dataset 

UCF-101 is a benchmark action recognition dataset 
published by the researchers of University of Central Florida in 
the year 2012 [80], the videos in the dataset are collected from 
the YouTube. Total videos in the dataset are 13320 with 101 
action categories. The dataset is challenging because of the 
uncontrolled environment in the captured videos and it is 
widely being used by researches working on video 
classification problem. Therefore, it is easy to compare most of 
the existing literature based on this dataset. The existing works 
employing UCF-101 are compared in Table V, where the 
methods are arranged in ascending order based on the 
performance. The results reported in Table V are taken from the 
existing studies in the literature. 

TABLE V 
COMPARISON OF VIDEO CLASSIFICATION METHODS ON UCF-101 

Method Accuracy 
LRCN [41] 82.9 
DT + MVSV [81] 83.5 
LSTM - Composite [42] 84.3 
FSTCN [82] 88.1 
C3D [83] 85.2 
iDT + HSV [84] 87.9 
Two-Stream [53] 88.0 
RNN-FV [85] 88.0 
LSTM [43] 88.6 
MultiSource CNN [86] 89.1 
Image-Based [48] 89.6 
TDD [27] 90.3 
Multilayer and Multimodal Fusion [87] 91.6 
Transformation CNN [88] 92.4 
Multi-Stream [89] 92.6 
Key Volume Mining [90] 92.7 
Convolutional Two-Stream [54] 93.5 
Temporal Segment Networks [31] 94.2 

V. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS 
This article reviews deep learning approaches for the task of 

video classification. Some of the notable studies are 
summarized in detail and the key findings in these studies are 
highlighted. The key findings are reported as an effort to help 
the research community in developing new deep learning 
models for video classification. From the analysis of the 
existing literature, following conclusions are drawn for video 
classification task: (i) The visual description works better than 
the text and the audio description and the combination of all 
modalities can contribute to better performance with an 
increase in computational cost. (ii) The architectures employing 
CNN/RNN for feature extraction have the ability to perform 
better than hand-crafted features provided that enough data is 
available for training. (iii) Tensor-Train Layer based RNN like 
LSTM and GRU perform better than the plain RNN 
architectures for video classification. (iv) It is sometimes 
necessary to use optical flow for datasets like UCF-101. (v) It 
is not always helpful to use optical flow, especially for the case 
of videos taken from wild e-g Sports-1M. (vi) It is important to 
use a sophisticated sequence processing architecture like LSTM 
to take advantage of optical flow. (vii) LSTMs when applied on 
both the optical flow and the image frames yield the highest 
performance measure for Sports-1M benchmark dataset. (viii) 

Augmenting optical flow and RGB input helps in improving the 
performance. (ix) Optical flow modality provides 
complementary information. (x) A high computational 
requirement of optical flow limits its use in real-time systems. 
(xi) Multi-Stream Multi-Class fusion can perform better than 
Average fusion, Weighted fusion, Kernel average fusion, MKL 
fusion, and Logistic regression fusion on datasets like UCF-101 
and CCV. (xii) In 3D group convolutional networks, the volume 
of channel interactions play a vital role in achieving a high 
accuracy. (xiii) The Factorization of 3D convolutions by 
separating spatiotemporal interactions and channel interactions 
can lead to an improvement in accuracy and a decrease in the 
computational cost. (xiv) 3D channel- separated convolutions 
results in a kind of regularization and prevents overfitting. (xv) 
Popular frameworks of conventional semi-supervised 
algorithms (which were originally developed for 2D images) 
are unable to obtain good results for 3D video categorization. 
(xvi) For semi-supervised learning, a calibrated employment of 
the object appearance cues keenly improves the accuracy of the 
3D-CNN models. 

Although, the latest developments in deep learning models 
have demonstrated the potential of these approaches for video 
classification task. However, most of the existing deep learning 
architectures for video classification are basically adopted from 
the favored deep learning architectures in image/speech 
domain. Therefore, most of the existing architectures remain 
insufficient to deal with the more complicated nature of video 
data that contain a rich information in the form of spatial, 
temporal, and acoustic clues. This calls an attention towards the 
need for a tailored network capable of effectively modeling the 
spatial, temporal, and acoustic information. Moreover, training 
CNN/RNN models require labeled datasets and acquiring those 
datasets are usually time-consuming and expensive, and hence 
a promising research direction is to utilize the considerable 
amount of unlabeled video data to derive better video 
representations.  

Furthermore, the deep learning approaches are 
outperforming other state-of-the-art approaches for video 
classification. The deep learning google trend is still growing 
and it is still above the trend for some other very well-known 
machine learning algorithms, as shown in Fig. 9 (a). However, 
the recent developments in deep learning approaches are still 
under evaluated and require further investigations for video 
classification task. One such example is geometric deep 
learning approaches, the worldwide research interest in this 
specific topic is shown in Figure 9 (b). Which describes that this 
topic is still confined to some states of US and has yet to be 
developed and investigated further. The use of geometric deep 
learning in extracting rich spatial information from the videos 
can also be a new research direction for better accuracy in video 
classification task. 
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Figure 9: (a) Google trend on deep learning Vs some other state-of-the-art 
methods. (b) Worldwide research interest in geometric deep learning.  
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