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An Encoder-decoder Deep Learning Model Combining Mixed Attention
Mechanism and Asymmetric Convolution for Automation of Retinal
Vessels Segmentation
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Abstract—The segmentation of the retinal vascular tree is
the fundamental step for diagnosing ophthalmological diseases
and cardiovascular diseases. Most existing vessel segmentation
methods based on deep learning give the learned features equal
importance. Ignored the highly imbalanced ratio between back-
ground and vessels (the majority of vessel pixels belong to the
background), the learned features would be dominantly guided
by background, and relatively little influence comes from vessels,
often leading to low model sensitivity and prediction accuracy. The
reduction of model size is also a challenge. We propose a mixed at-
tention mechanism and asymmetric convolution encoder-decoder
structure(MAAC) for segmentation in Retinal Vessels to solve these
problems. In MAAC, the mixed attention is designed to emphasize
the valid features and suppress the invalid features. It not only
identifies information that helps retinal vessels recognition but
also locates the position of the vessel. All square convolutions
are replaced by asymmetric convolutions because it is more robust
to rotational distortions and small convolutions are more suitable
for extracting vessel features (based on the thin characteristics
of vessels). The employment of asymmetric convolution reduces
model parameters and improve the recognition of thin vessel. The
experiments on public datasets DRIVE, STARE, and CHASE_DB1
demonstrated that the proposed MAAC could more accurately
segment vessels with a global AUC of 98.17%, 98.67%, and 98.53%,
respectively. The mixed attention proposed in this study can be ap-
plied to other deep learning models for performance improvement
without changing the network architectures.

Index Terms—Deep learning, retinal vessel segmenta-
tion, attention mechanism, asymmetric convolution

[. INTRODUCTION

Fundus photography is a non-invasive method of fundus exam-
ination. It is commonly used to diagnose retinal diseases, such as
macular degeneration, diabetic retinopathy, and glaucoma. It is also
used to diagnose cardiovascular diseases, such as hypertension. The
significant causes of vision loss are age-related macular degeneration,
diabetic retinopathy, and glaucoma [1]. Early diagnosis of these
diseases can prevent blindness. Hypertension is one of the most
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Fig. 1. Afundus retinal image from the DRIVE database. (1) Bright area.
@ Macular area. @ Thick vessels with high contrast. @ Thin vessels
with low contrast. ® Erea of lesion. ® Dark area.

common chronic diseases and the most important risk factor for
inducing various cardiovascular and cerebrovascular diseases. The
earlier the hypertension is controlled, the less harm to cardiovas-
cular and cerebrovascular diseases [2]. Studies have shown that
microaneurysm and vessel diameter are two important biomarkers for
diagnosing diabetic retinopathy [3]. Retinal blood vessel ratio is an
important clinical parameter for the diagnosis of glaucoma [4]. There
are three changes in the blood vessels of the fundus of patients with
hypertension: 1) classic retinal vascular changes in response to blood
pressure (hypertensive retinopathy), 2) changes in retinal vascular
caliber, and 3) changes in global geometric patterns of the retina [5].
Analysis of the retinal blood vessels is a meaningful way to diagnose
ophthalmological diseases such as diabetes, and glaucoma [6], [7].
And the segmentation of the vessel tree is a basic step to extract
these quantitative features. In the past, vascular tree segmentation was
carried out by professional ophthalmologists, which was very tedious
and time-consuming. With the development of artificial intelligence,
the automatic segmentation of retinal vessels has been realized, which
saves doctors’ diagnosis time. However, due to the inconsistency
in the size, shape, contrast, and intensity level of retinal vessels in
different local areas(see Fig. 1), the automatic segmentation of retinal
vessels is still recognized as a challenging task [8].

In recent years, many algorithms for automatic retinal vessel seg-
mentation have been proposed. In general, retinal vessel segmentation
algorithms can be summarized into six categories:(1)methods based
on vessel tracking, (2)methods based on matched filtering, (3)methods
based on morphological operations, (4)methods based on deformation
models, (5)methods based on traditional machine learning, (6)meth-
ods based on deep learning [4]. Given the outstanding performance
of deep learning in the field of computer vision, and has gradually
become a dominative method in medical image processing, this paper
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mainly reviews the retinal vessel segmentation methods based on deep
learning in the past five years.

U-Net model [9] was initially proposed to be used to segment
cells in electron microscope images. It consists of an encoder and
a decoder. The encoder is used to extract features of the shallow
layer, while the decoder is responsible for the recovery of images and
the extraction of abstract features. In addition, a cascade structure
is proposed, which can realize the fusion of the shallow feature
map and the deeper feature map to obtain more comprehensive
context information. Because the encoding and decoding parts are
symmetrical, like a U shape, it is called U-Net. Compared with
other deep learning models, it has the advantages of fewer training
parameters, faster calculation speed, less annotated data needed, and
acceptable input of any shape. In particular, the advantages of low
demand for annotated data and simple and lightweight are consistent
with the characteristics of the small sample and simple semantic
information of medical data (the amount of annotated data is limited
due to the privacy and professionalism of medical data). Therefore,
U-NET is widely used in medical image segmentation. To eliminate
the impact of subjective factors, Li et al. [8] treat the segmentation
problem as a modal conversion problem from fundus images to vessel
images. They used the deep neural network to learn the transform
function and achieved the segmentation results with considerable
accuracy without artificial design features and image preprocessing.
Literature et al. [10], [11] realize that there are two problems in
the traditional deep-learning-based methods that regard the vessels
segmentation problem as pixel classification. Firstly, the non-local
connections between individual pixels or image blocks are ignored.
The second is that both the training and testing phases require
much computation. To obtain a rich hierarchical representation, the
author innovatively transforms the segmentation problem into an edge
detection task. Firstly, the convolutional layer is used to extract the
multi-scale discriminant features. Secondly, the side output layer is
used together with the early convolutional layer to generate local
output. Finally, the CRF(Conditional Random Field) layer is used
to process the non-local connection between pixels. Because the
non-local information between pixels is considered, the segmentation
accuracy is improved. Dai et al. [12] considering the limitations
of the inherent form of traditional convolution kernel, replaced the
traditional convolution kernel with a deformable module based on
U-NET, so that kernel size of convolution and the receiving field can
be adjusted adaptively according to the size and shape of the object
so that more complex vessel structures can be detected. Compared
with U-NET, it can extract more tiny blood vessels, but at the
cost of increased training and reasoning time [13]. To solve the
problem of imbalanced pixels distribution in fundus images, a series
of studies [14]-[16] focused on multi-scale feature extraction to
achieve local feature extraction and global feature extraction, thereby
achieve segment more tiny vessels. Yan et al. [17] proposed a three-
stage network model to solve the imbalance between thick and thin
vessels and the characteristic differences. The first step is to segment
the thick vessels, then segment the thin vessels, and fuse the two
segmentation results. Each model has its loss function, which prevents
the problem of loss dominated by thick vessels. In the end, low-
contrast vessels can also be extracted effectively, and vessels not
annotated by human experts are also extracted [17]. Cherukuri et al.
[18] to solve the problems that current deep-learning-based methods
rely heavily on the quality of training data, ignore the processing
of background noise similar to vessels and the segmentation of thin
vessels. A segmentation network combining geometric features prior
is proposed. Firstly, a representation network is applied to learn the
geometric features of the retinal image. In order to promise the actual
effectiveness of the REPRESENT filter, Cherukuri et al. proposed a

directional constraint and an adaptive noise regularizer to ensure the
geometric diversity of the curve. Then a task network with residual
module and multi-scale representation is used to classify the previous
feature representation results. This architecture can detect thin vessels
accurately, while the network size is very simple and the inference
time is fast. In summary, the segmentation of fundus microvessels is
still the key challenge for the segmentation of fundus vessels. The
continuity of blood vessels is another problem that remains to be
solved, and there are few studies focus on improving the sensitivity
of vessel segmentation.

In this paper, we propose a new retinal vessel segmentation model
based on encoding and decoding structure. This model incorporates
hybrid attention and asymmetric convolution. Mixed attention is
consists of channel attention and spatial attention, which are joined
by the design method. Asymmetric convolution is introduced to
reduce the number of model parameters. Motivation one there is
an imbalance between coarse and fine vessels, background and
target. Previous methods did not notice such imbalances and treated
all features equally, which will lead to the neglect of valuable
features learned from a small sample. We applied attention to
focus on effective features and suppress invalid features so that
useful features are emphasized and preserved. In addition, without
a separate positioning module, the proposed method can also locate
the region of interest. Another motivation is that the model needs
to ensure the lightness of the model and the inference speed is fast
for practical application. In order to maintain the lightness of the
model, an asymmetric convolution module is introduced to reduce
the number of model parameters without losing precision. The main
contributions of this paper include:

(1)We propose a novel model for retinal vessel segmentation
that incorporates the attention mechanism, in which attention gives
different weights to different features. The model can achieve higher
sensitivity and prediction accuracy for retinal vessels segmentation.
(2)We propose an improved hybrid attention mechanism that can be
integrated into any convolutional neural network (CNN). It combines
the features extracted by the deep layer to provide more accurate
channel attention and spatial attention.

(3)We introduced the asymmetric convolution module, which can
save lots of training parameters.

The organization of this paper is as follows. Section II describes
the details of the proposed method. Section III contains details of
the data and experiments. In Section IV, we show the results of
the proposed method on three benchmark datasets with figures and
tables. The effectiveness of the proposed method is also demonstrated
by comparing it with the existing methods and constructing ablation
experiments and cross-training experiments. Finally, we analyzed the
results and shortcomings of the current method and looked forward
to the future research trends and our next research work in SectionV.

[I. METHODOLOGY

The proposed mixed attention mechanism and asymmetric convo-
lution encoder-decoder structure, which we called MAAC encoder-
decoder, is novel in the mixed attention mechanism with signal and
the use of asymmetric convolution module(see Fig.2). The backbone
used in the MAAC model is based on the U-NET, which has an
encoder-decoder structure. The mixed attention module is arranged
in the skip connection to refine the image features learned by the
shallow layer, i.e., the mixed attention module helps to focus on
the meaningful features along the channel and spatial dimensions
and suppress unnecessary ones. All the square convolution kernels
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of the backbone were replaced with asymmetric convolution kernels
to reduce training parameters, reduce calculation, and enhance the
convolution kernel’s robustness.

A. The Framework of MAAC Encoder-decoder

The backbone used in the MAAC encoder-decoder is composed of
encoder and decoder(see Fig.2). In the encoding phase, the features
of the input image were extracted and refined. In the decoding
phase, the feature maps were restored to their original size layer by
layer through the up-sampling layers. The whole MAAC encoder-
decoder consists of five sub-modules. Each sub-module contains an
asymmetric group composed of two asymmetric convolution layers
with kernel size 3*1 and 1*3 connected in series, the strides of each
asymmetric convolution kernel is 1, and padding is set to ’same.
A major advantage of asymmetric convolution kernel is that it can
reduce the number of training parameters of models and increase the
robustness of convolution. Then, the asymmetric convolution groups
are followed by a batch normalization layer (BN) [19], a ReLu [20]
activation function layer, a dropout layer with a dropout rate of
20%, and identical asymmetric convolution groups, a BN layer, and a
ReLu activation function layer. The batch normalization was used to
accelerate model convergence and alleviate the “gradient dispersion”
problem in the deep network. We made the arrangement of activation
layer followed by BN layer because the experiment proved that such
arrangement would produce better results than placing activation
function before BN layer. The dropout layer was adopted to prevent
model overfitting. It is worth noting that each submodule in the
decoding phase has a cascade layer before the convolution layer. The
channels of the convolution layer in each submodule are 32, 64, 128,
64, 32. In addition, the encoder contains two 2*2 max-pooling with
a stripe of 2 to reduce the feature map, and the decoder uses two
2*2 up-sampling with a stripe of 2 to restore the size of the feature
maps. In addition, there are skip connections between the submodules
of the encoder and the corresponding submodules of the decoder.
For the segmentation task, spatial information plays an important
role. But with deepens of the network level, the spatial information
of the feature map and the detailed features of the image will be
gradually lost, which is not beneficial to the accurate segmentation of
the image. Moreover, with the refinement and abstraction of features
layer by layer, lots of information to assist in image restoration will be
missing. Skip connections can combine the detailed features extracted
from the shallow layer with the abstract features learned from the
deep layer, and provide multi-scale and multi-level information for
the image recovery during up-sampling, so more fine segmentation
results can be obtained. A mixed attention module is placed on the
corresponding skip connection. For more details on mixed attention,
see the following subsection, Mixed Attention Mechanism.

B. Mixed Attention Mechanism

Woo et al. proposed a Convolutional Block Attention Mod-
ule(CBAM) and validated that utilizing a combination of spatial
attention and channel attention outperforms using only the channel
attention independently [21]. Oktay et al. [22]point out that a grid-
based gating can allow attention coefficients to be more specific to
the local region and can get better performance than gating based on
a global feature vector. Inspired by Woo et al. and Oktay et al., we
improved the Convolutional Block Attention Block proposed in [21]
by introducing grid-based gating. We named the improved CBAM
”Gating-triggered Convolutional Block Attention Module(GCBAM),”
as shown in Fig 3. Given an intermediate feature map F € ROHW
and a trigger signal g € REHFW o input, they are first processed by
the channel attention module to infer a channel refined feature F’ €
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RC*H*W
RC*l*l

which is the product of channel attention coefficient M. €
and F, and then input F” and signal g into spatial attention
module and get F” € RE*H*W which is the product of spatial
attention coefficient Ms € R™H*W and F’. The mathematical
expression of the whole processing process is as follows:

F/:MC(F79)®F7

1
F'"=Ms(F',g)® F'. M

Where ® denotes element-wise multiplication. Mc() refers to the
channel attention processing while Ms() means the spatial. F” is
the final output of the GCBAM. The following describes the details
of each submodule in the GCBAM.

1) Channel Attention Module: In a convolutional neural net-
work, the number of channels in the feature map is equal to the
number of learned features, and the 2D map of each channel repre-
sents one learned feature. In general, research on image segmentation
treats each channel of feature maps equally, neglecting the different
importance of different features to the segmentation task, which is not
conducive to further improving the accuracy of image segmentation.
In the task of blood vessel segmentation, the features that are benefi-
cial to vessel recognition should be emphasized, and the background
information and so on that is not beneficial to vessel recognition
should be suppressed. Channel attention is to sort each channel by
assigning different weights representing importance to each channel,
calculated by backpropagation. The essence of channel attention is to
focus on” what” is meaningful of an input image. The gating signal
g comes from the deeper layer and has rich contextual information,
which can assist in selecting meaningful channels of the intermediate
feature map that comes from the shallow layer. In addition, the
gating signal g aggregates multi-scale image information to improve
the resolution of the feature map after attention refinement. This
operation is helpful to improve the segmentation performance.

The detailed computation process is shown in Fig. 4. First, max-
pooling and average-pooling are performed on intermediate feature
F and gating signal g, respectively. Generating two spatial context
vector Fyqq and Fg,g about F and two spatial context vector gr,qz
and gg,g about g respectively. Woo et al. [21] point out use both
average-pooled and max-pooled features simultaneously is helpful to
gather object features that are used to infer channel-wise attention.
Next, the sum of Fy,qz plus gmae is fed into the multi-layer
perceptron (MLP), and the sum of Fg, 4 plus gg,g as well. The MLP
that has one hidden layer with C/16 neurons is shared by them. After
shared MLP processing, two output feature vectors are generated and
merged by element-wise summation. Finally, our channel attention
map M. € RE*1*! is obtained after the Sigmoid activation function
is applied to the merge vector. The channel attention calculation
process is expressed as:

Mc(F,g) =S(MLP(AvgPool(F) & AvgPool(g))®
MLP(MaxPool(F) ® MaxPool(g)))
=S(MLP(Favg @ gavg) & MLP(Fiaz®
Imaz))

(@)

where S refers to the Sigmoid activation function. The & means
element-wise summation. The MLP denotes the multi-layer percep-
tron, which has one hidden layer followed by a ReLu activation func-
tion. The grid signal g needs additional processing to be consistent
with the F dimension. Firstly, g is upsampled by 2*2, and then the
output of upsampled is convolved with a convolution whose kernel
size is 3*3, and the number of channels is equal to F. Finally, the
final output gating signal g is obtained after normalization of the
BatchNormalization layer and activation of ReLu function.
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The overview of the proposed MAAC encoder-decoder deep learning framework. The left side of the network is the encoder, which

gradually reduces input image by 2x down-sampling. On the right is the decoder, which mainly for restoring the image. The GCBAM generates

attention coefficients by combining channel and spatial attentions.

g '
Signal g

Spatial
E/ Channel Attentio} patia

Attention|

N J

Input Feature F
® . Element-wise Multiplication

Fig. 3. The overview of GCBAM. The module is composed of spatial at-
tention module and channel attention module. Input features are refined
with attention coefficients computed in GCBAM. Attention informations
are supplemented by analysing both the activations and contextual
information provided by the gating signal (g) which is collected from a
coarser scale.

2) Spatial Attention Module: Unlike channel attention, spatial
attention focus on “where” is important of an input image. For the
image segmentation task, semantic segmentation is the separation of
the target region from the background. So, the location of the target
area will contribute to the improvement of segmentation performance.
In previous studies, they would set additional ROI(region of interest)
extraction and object localization modules to improve the accuracy
of the segmentation task. Different from the previous studies, the
spatial attention used in this paper is soft attention, which can
be calculated without additional modules. The detail of the spatial
attention generation process(see Fig. 5) is described in the following

g oImea

AvgPool
I ~F
@ :Element-wise ) :Sigmoid Function ) :Element-wise
Addition Multiplication

Fig. 4. Diagram of channel attetion. It contains max-pooling, average-
pooling, and a shared network.

paragraphs.

Firstly, we apply max-pooling and average-pooling operation along
the channel axis to aggregate spatial information for each pixel in
the output F’ of channel attention and do the same for gating signal
g. The gating signal g is equal to the g in channel attention. After
the above operation, generating two spatial feature map Fiyqr €
RYHW and F2,, € RM™*H*W about F and two spatial feature
map gpazr € Rl*%*w and gguq € RY™H*W about g. And then
the maps about I’ are concatenated, and the maps about g are
concatenated. After, they are added by element-wise summation and
convolved by a standard convolution layer. The convolution layer is
followed by a Batch Normalization layer. Finally, spatial attention
My (F',g) € R™H*W was obtained Sigmoid function activation.
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Fig. 5. Diagram of spatial attetion. It takes the cascading sum of the
max-pooling and average-pooling outputs of the signal g and the input
features F, and passes them to the convolution layer.

The spatial attention is calculated as follows:
M (F',g) = S(BN(f™"([MazPool(F"); AvgPool (F')]®
[MazPool(g); AvgPool(g)]))) (3)
= S(BN(f™" ([Frax: Fivg) © [gmaz: gava))));

where S denotes the sigmoid and BN denotes the Batch Normal-
ization with a momentum equal to 0.01 and epsilon equal to le-5.
Where @ refers to element-wise summation. And f T represent the
convolution layer with the kernel size of 7*7.

In summary, the proposed spatial attention has two advantages.
One is to help target positioning by suppressing unrelated background
responses. The second is that there is no need to train the additional
network module used to extract ROIL.

C. Asymmetric Convolution

In convolutional neural networks, the model’s performance is
evaluated by time complexity T and space complexity S. T determines
the model’s training time and prediction time. The larger the T, the
longer the training and testing time of the model. S determines the
number of parameters of the model. The more parameters of the
model, the more data is needed to train the model. Mathematically,
the calculation of T is given by:

D
TNO(ZM?'KJZ-Cj_l-Cj), @)
§=0
M = (X — K + 2 % Padding)/Stride + 1, Q)

where D is the total number of convolution layers in the model, M;
is the side length of the feature map output by the jth convolutional
layer, K is the size of the jth convolution kernel, C'; 1 is the number
of channels for the output of the (j-1)th convolution kernel, C; is the
number of channels for the j convolution kernel. Among them, the
calculation of M is shown in (5), where Padding is the padding size
of original image, Stride is the step size of the convolution kernel. It
can be inferred from (4) and (5) that T is related to the size of the
convolution kernel, and the larger the convolution kernel, the larger
T.

The space complexity S is determined by the total parameters of
the model(P) and the size of the feature map output by each layer of
the model during operation(F). The calculation of S is given by:

S ~O(P + F),

D D (6)
S~OO K} -Cjy-Cj+ > M;+Cy),
=0 =0
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3X3 conv 3X1 conv 1 X3conv

Fig. 6. The square convolution is replaced by asymmetric convolution.

[] []

axis

]
horizontal kernel flipped

square kernel flipped

Fig. 7. If the image is flipped upside down, the horizontal 1*3 convolu-
tion can still learn the same features at a symmetrical position, but the
3*3 square convolution learns features at this position different from the
original ones.

the meaning of the parameter is the same as in T. Refer to (6), P
depends only on the size of the convolution kernel, the number of
channels and the number of layers D. F depends only on the feature
map M and the number of channels C. According to (4), (5) and (6),
it is not difficult to conclude that, on the premise that other variables
remain unchanged, the smaller the convolution kernel, the smaller the
time and space complexity of CNN. Thus, 3 x 3 convolution kernel
is adopted by this model.

[23] pointed out that the result of using n*1 and 1*n convolution
cascade to do a convolution operation on a 2D image is equivalent
to the result of using n*n convolution to convolve in the same 2D
image. Asymmetric convolution is the decomposition of a square
n*n convolution into a sequence of two layers withn * 1 and 1 * n
kernels(see Fig.6). Inspired by [23], all the standard 3*3 convolutions
in the model were replaced with 3*1 and 1*3 convolution cascade,
except the attention module and the gating signal g processing
module. This operation can further improve computational efficiency
and reduce the parameters of the model. Based on the formula above
(6), if 3*3 square convolution, the number of parameters is 902, if
3*1 and 1*3 convolution cascade, the number of parameters is 6C2.
The number of parameters required is saved by (9C? - 6C*)9C? =
33% if the asymmetric convolution’s input and output filter channels
are equal to the original square convolution. Similarly, based on (4),
asymmetric convolution can reduce computation by 33%, but only
if the padding is equal to the same. In addition, we assume that
the employment of asymmetric convolution can enhance the model’s
robustness to rotational distortions [24]. As shown in Fig.7, when the
model inputs an upside-down image, the 3*3 convolution will extract
meaningless features, but the horizontal filter will produce the same
output as the original image at the axisymmetric position. Same thing
with vertical convolution.

IIl. EXPERIMENTS
A. Database

The proposed method was evaluated on three public datasets, dig-
ital retinal images for vessel extraction(DRIVE), structured analysis
of the retina(STARE), and the CHASE_DBI1. The following describes
the detail of each dataset listed above:
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1) DRIVE: The DRIVE dataset was first constructed by Staal et
al. [25] for automated segmentation of retinal vessels. It is now the
benchmark for comparison of all segmentation methods of the blood
vessel in retinal images. The dataset consists of 40 fundus images
randomly selected from a diabetic retinopathy screening program in
the Netherlands. The screening population was between the ages of
25 and 90. Of the 40 images, only 7 show signs of early diabetic
retinopathy, while the remaining 33 did not show any sign of diabetic
retinopathy. All images were taken with a Canon CR5 Nonmydriatic
3CCD camera at 45° field of view. Each image has a resolution
of 565 by 584 pixels, with 8 bits per color channel. Each image is
cropped around the field of view(FOV) of approximately 540 pixels in
diameter, and each provides a corresponding binary FOV mask. The
40 images are officially divided into a training set and a test set, each
containing 20 images. For the training set, only one manual vascular
segmentation is provided as ground truth. For the test set, two manual
vascular segmentation are provided, one of which is used as the gold
standard for segmentation, and the other is used to compare automatic
and human segmentation. All the observers who manually segmented
the vessels were trained by an ophthalmologist.

2) STARE: The STARE project was first created by Michael
Goldbaum, M.D., in 1975. Many scientists have contributed to the
project since it was established. Among them, Hoover et al. [26]
selected 20 images for manual labeling as the ground truth vessel
segmentation. And, these 20 pictures were used for the blood vessel
segmentation work. So this dataset contains a total of 20 images, 10 of
which do not have pathology, and the other 10 have pathology. Each
image was captured using 24 bits per pixel at 700 by 605 pixels.
The slides were acquired using a TopCon TRV-50 fundus camera
with a 35° field of view. For this dataset, two manual segmentations
marked by two experts with rich experience in image processing and
retinal image analysis are provided. Generally, the segmentation of
the first expert is used as ground truth [27], and the segmentation of
the second expert is used as a reference for performance comparison
[26]. In addition, the dataset does not provide an official data split,
nor does it provide a binary FOV mask for each image.

3) CHASE_DB1: CHASE DBI1 was provided by FRaz et al.
[28] and is a subset of the Child Heart and Health Study in
England (CHASE) dataset, which was initiated by Owen et al. [29].
CHASE_DBI1 contains 28 retinal digital images collected from 28
eyes of 14 children (aged ten years). The resolution of each image
is 999 by 960 pixels. Each image of the child’s eye was acquired
using the handheld fundus camera(NM-200-D; Nidek Co., Ltd.,
Gamagori, Japan) with a 30-degree field of view (FOV). There are
two sets of ground-truth vessel annotations. In the study of retinal
vessel segmentation, the first set is generally selected for training
and testing, and the second set is generally used as a “human”
baseline. Like the STARE dataset, the CHASE_DB1 dataset also
neither provides an official data split nor binary FOV mask.

B. Preprocessing

In this paper, to simplify the calculation, reduce noise and enhance
the segmentation target, all retinal images(both the training set and
the test set) are preprocessed as follows.

First, all color images were converted to grayscale images to
reduce the impact of light and reduce the computation required for
subsequent processing. Second, image standardization was provided
to implement centralized processing. Image normalization followed
immediately to convert the data to between 0 and 1. The image
details are often unclear in the actual photographing process due
to equipment, shooting Angle, and other reasons. Contrast Limited
Adaptive Histogram Equalization(CLAHE) was adopted to enhance

(a) Original image

(b) Pre-processed image

Fig. 8. An example of pre-processed image from DRIVE

the image’s contrast and make the details clearer. Here, tileSize is
set to 8*8, and the clipLimit is set to 2. And then, the gamma
correction with a gamma value of 1.2 was adopted to highlight dark
field color details, make image brightness consistent, and increase
contrast. Finally, all images were divided by 255 to reduce the pixel
value to [0,1]. The example of the preprocessed image of DRIVE is
shown in Fig. 8.

As we all know, training a deep neural network needs many
data. But as described in Section Database, the number of densely
annotated images in the dataset is relatively small. To solve this
issue, we adopted six data augmentation methods. That includes
translation, flipping along the horizontal and vertical axis, and rotating
by an angle from [90°, 180°, 270°]. After each image is augmented,
there are 7 in total, including the original image. Note that the data
augmentation is performed on the entire image and only on the image
of the training set.

Just as STARE and CHASE_DB1 have no official data split, we
must separate the training and test sets ourselves. For STARE, there
are two split methods used in the general study. In this paper, we use
the method called "leave-one-out,” in which each image is tested, and
training is conducted on the remaining 19 samples [30]. That is, the
training-testing cycle will be repeated 20 times. As for CHASE_DBI1,
we randomly selected 20 images as a training set and the remaining
eight images as a test set, as most studies do. Since STARE and
CHASE_DB1 did not provide the mask of FOV, we apply the color
threshold to generate the mask.

C. Patch Extraction

To further increase the training samples, patches of the prepro-
cessed images are adopted to train the neural network. In this paper,
the dimension of a patch is 48%48. Each patch is randomly generated
by randomly selecting its center point in the whole augmented image.
For the neural network to distinguish the FOV border from blood
vessels, we select patches that are partially or wholly outside the
FOV. The patches extraction rules of the training set on the three
datasets are the same. The DRIVE and CHASE_DB1 datasets both are
extracted 448000 patches from their respective training sets. That is,
randomly extracting 3200 patches in each of the 140 their respectively
training images(including augmented and original images). For the
STARE dataset, a total of 425600 patches were randomly extracted
from 133 training images(including augmented and original images),
i.e., 3200 patches were extracted per image, and 20 cycles were
performed. The remaining unaugmented image is used as the test
image.

The patch is also used for testing, with the same dimension as the
patch in the training set. However, different from the training set’s
patch extraction method, the test set extracts patches sequentially,
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convenient for image recovery. We sample the center points of the
patch with a stride of 5 pixels along the width and height to obtain
multiple consecutive overlapping patches for each image. Note that if
the image does not exactly extract an integer number of patches, the
image will be filled. Then, the average multiple prediction probability
of a pixel is calculated as the final prediction result of the pixel. This
operation helps improve segmentation performance.

D. Implementation Details

For the DRIVE, we use the official data split. For the STARE
and CHASE_DB1, we use the method described in the Preprocessing
section to split the data. The number of patches extracted for training
from each dataset is described in the Patches extraction section. Of
these, 90% of the training set is used for training, and the remaining
10% is used for validation. We train our model with a batch size
of 32, with a maximum number of iterations of 50. The optimizer
selected the Adam optimizer with the default setting. The binary
cross-entropy loss function with a threshold of 0.5 is used as the loss
function. To demonstrate the effectiveness of the proposed model, the
above Settings are valid for all three datasets.

We were coding in python 3.6.9. The neural network is developed
on Keras with TensorFlow 2.3.0 as the backend. The IDE(Integrated
Development Environment) is Spyder. The experiment is run on Tesla
v100 GPU on HPC(Hign Performance Computing).

E. Evaluation Metrics

The blood vessel segmentation task is a two-category classification
problem, and the pixels in the image either belong to the positive or
negative category. After the segmentation task is completed, each
pixel has four possible classifications: true positives(TP), false pos-
itives(FP), true negatives(FN), and false negatives(TN). TP refers to
the number of correctly classified samples as positive examples, and
FP refers to the number of samples incorrectly classified as positive
examples. TN denotes the number of correctly classified samples as
negative examples, and FN denotes the number of samples incorrectly
classified as negative examples. Sensitivity(SE), specificity(SP), ac-
curacy(ACC), precision(PR) are the most commonly used evaluation
indicators for blood vessel segmentation tasks. Calculated as follow:

TP TN
SE_TP+FN’ SP_TN+FP @
ACC — TP+ TN PR — TP

TP+TN+FP+FN’ TP+ FP’

In theory, the higher the ACC, the better the classifier. The PR
represents the accuracy of the prediction in the positive sample
results. Sensitivity measures the classifier’s ability to recognize pos-
itive examples, while specificity measures the classifier’s ability to
recognize negative examples. Under normal circumstances, we hope
that the values of SE and SP are both high, but in fact, we will
find a balance point between SE and SP. At this time, the receiver
operating characteristic(ROC) curve was introduced to express this
process. We also adopt the area under the ROC curve(AUC) metric
to clarify which classifier is better. Other evaluation metrics like the
precision-recall curve, area under the precision-recall curve(AUPR),
the harmonic mean of precision, and recall fl-score were also
adopted.

IV. RESULTS
To verify the effectiveness of the proposed method, we evaluate
the proposed method in DRIVE, STARE, and CHASE_DBI1 by cal-
culating the ACC, SE, SP, AUC, AUPR, F1-SCORE, and Precision.
The proposed method is also compared with the existing techniques

GENERIC COLORIZED JOURNAL, VOL. XX, NO. XX, XXXX 2017

TABLE |
PERFORMANCE OF OUR MAAC MODEL ON DRIVE, STARE,
CHASE_DB1
F1_
Dataset | AUC | AUPR SCORE ACC | SEN | SPE PR

DRIVE |0.9817|0.9169 | 0.8289 |0.9574 | 0.8118 | 0.9786 | 0.8469
STARE |0.9867 | 0.9192 | 0.8204 | 0.9667 | 0.7813 | 0.9874 | 0.8768
CHASE | 0.9853 |1 0.9192 | 0.8342 | 0.9656 | 0.8071 | 0.9846 | 0.8632
_DBI

to observe the advantages and disadvantages of the proposed method
intuitively. In addition, to prove the effectiveness and generalization
of the proposed method, we also conducted ablation experiments and
Ccross-training.

A. Vessel Segmentation

The model trained on the corresponding training set was used to
predict the blood vessel segmentation results of the corresponding test
set. The three binary vessel segmentation samples of DRIVE, STARE,
and CHASE_dbl in their respective test sets are shown in Fig. 9.
The DRIVE, STARE, and CHASE_DB]1 evaluation metrics calculated
from the corresponding segmentation results are shown in the Table
I. For the DRIVE dataset, the AUC, SEN, SP, and ACC values are
0.9817,0.8118, 0.9786, and 0.9574. For the STARE dataset, the AUC,
SEN, SP, and ACC values are 0.9867, 0.7813, 0.9874, and 0.9667.
For the CHASE_DBI1 dataset, the AUC, SEN, SP, and ACC values are
0.9853, 0.8071, 0.9846, and 0.9656. The AUC of the three datasets
all reached above 0.98, and the STARE dataset reached 0.9867 at
the highest. The values of SP of all three datasets were higher than
the values of SE. The performance of the proposed method on the
DRIVE dataset is slightly inferior to that of the other two datasets.

B. Comparison to Existing Methods

We compare the results of the proposed method with those of seven
existing methods. Results from existing methods are extracted from
their respective published papers. The comparison results are shown
in Table II. According to Table II, the AUC, ACC, and F1-score of
the proposed method in DRIVE are all higher than those of the seven
existing methods used for comparison. The SE ranked second among
all methods of comparison. In CHASE_DBI, compared with the
existing seven methods, the method proposed in this paper is the best
in each evaluation metrics. The SP values are higher than those seven
existing methods on STARE, but the rest of the evaluation metrics
are in the medium range. In general, compared with the existing
seven methods, the proposed method achieves the optimal results for
DRIVE and CHASE_DB, and the performance is acceptable even
though it is not optimal for STARE.

C. Ablation Studies

The proposed method has two highlights, one is a mixed attention
mechanism, and the other is an asymmetric convolution module.
To verify the effectiveness of the two innovation points and the
optimal combination of the proposed method, we conducted an
ablation experiment on DRIVE. Because the DRIVE dataset pro-
vides an official data split, it can provide a unified reference for
different studies, which is more convincing. We constructed four sets
of experiments, including backbone only, backbone+gcbam, back-
bone+asymmetric convolution and backbone+gcbam-+asymmetric
convolution(proposed). The experimental results are shown in Table
III. The table shows that the AC_.GCBAM_Unet model achieves the
highest AUC values compared with the other three structures. After
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(a) Original image

(b) Pre-processed image

(c) Ground Truth

(d) Binary output of MAAC model

Fig. 9. Three exemplar vessel segmentation results from DRIVE(top), STARE(middle), CHASE DB1(bottom). From left to right:(a)original fundus

images, (b)pre-processed images, (c)the ground truth, and (d)binary output of MAAC model.

X[Olp

TABLE I
COMPARISON WITH STATE-OF-ART METHODS ON DRIVE, STARE, AND CHASE_DBH1
Y/ X
Dataset Methods Year AUC ACC F1_SCORE SEN SPE

Azzopardi et al. [31] 2015 | 0.9614 | 0.9442 - 0.7655 | 0.9704
Liskowski and Krawiec. [32] | 2016 | 0.9790 | 0.9535 - 0.7811 | 0.9807
Li et al. [8] 2016 | 0.9738 | 0.9527 - 0.7569 | 0.9816
DRIVE Orlando et al. [33] 2017 | 0.9507 - 0.7857 0.7897 | 0.9684
Alom, M. Z., et al. [34] 2019 | 0.9784 | 0.9556 0.8171 0.7792 | 0.9813
Yan et al. [17] 2019 | 0.9752 | 0.9542 - 0.7653 | 0.9818

Tang,X., et al. [35] 2020 | 0.9769 | 0.9551 0.8155 0.9682 -
proposed 2021 | 0.9817 | 0.9574 0.8289 0.8118 | 0.9786
Azzopardi et al. [31] 2015 | 0.9563 | 0.9497 - 0.7716 | 0.9701
Liskowski and Krawiec. [32] | 2016 | 0.9928 | 0.9729 - 0.8554 | 0.9862
Li et al. [8] 2016 | 0.9879 | 0.9628 - 0.7726 | 0.9844
STARE Orlando et al. [33] 2017 - - 0.7644 0.7680 | 0.9738
Alom, M. Z., et al. [34] 2019 | 0.9914 | 0.9712 0.8475 0.8298 | 0.9862
Yan et al. [17] 2019 | 0.9801 | 0.9612 - 0.7581 | 0.9846

Tang,X., et al. [35] 2020 | 0.9883 | 0.9687 0.8312 0.9745 -
proposed 2021 | 0.9867 | 0.9667 0.8204 0.7813 | 0.9874
Azzopardi et al. 2015 | 0.9487 | 0.9387 - 0.7585 | 0.9587

Liskowski and Krawiec. [31] | 2016 - - - - -
Li et al. [32] 2016 | 0.9716 | 0.9581 - 0.7507 | 0.9793
CHAS.DBI Orlando et al. [8] 2017 | 0.9524 - 0.7332 0.7277 | 0.9712
- Alom, M. Z., et al. [34] 2019 | 0.9815 | 0.9634 0.7928 0.7756 | 0.9820
Yan et al. [17] 2019 | 0.9781 | 0.9610 - 0.7633 | 0.9809

Tang,X., et al. [35] 2020 - - - - -
proposed 2021 | 0.9853 | 0.9656 0.8342 0.8071 | 0.9846
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the backbone is integrated into GCBAM, the values of indicators
such as AUC, AUPR, ACC, and F1_SCORE have been improved,
compared with backbone. The backbone + Asymmetric Convolution
not only maintains the backbone performance but also reduces the
total parameters of the model. Furthermore, the total model param-
eters are reduced by 153152 compared with the backbone. Because
AC_GCBAM._Unet is integrated with asymmetric convolution, com-
pared with backbone + GCBAM, it can maintain good performance
and reduce the model parameters. Compared with the backbone, it
not only improves the segmentation performance but also has fewer
model parameters.

D. Cross-Training

To verify the generalization of the proposed method, we carried
out cross-training constructed as shown in [8]. Cross-training refers
to training the model on one dataset and testing the model on another.
Unlike [8], we do not need to retrain the model but directly apply
the pre-trained model of the previous experiment. Note that when
training on the STARE dataset (annotated by the first observers as the
ground truth), all images in the data set are used to train the model.
The cross-training results of the two datasets are shown in Table
IV. The results show that the segmentation performance decreases
on both DRIVE and STARE datasets when trained on STARE and
DRIVE datasets, respectively. When the model trained on the STARE
dataset is tested on the DRIVE dataset, AUC, ACC, and SE values
dropped to 0.9742, 09501, and 0.6659, respectively. Compared with
all methods, SPE achieves the best performance. Although AUC and
ACC are slightly lower than Wu et al. [27], they are better than other
methods. When the model trained on the DRIVE dataset is tested on
the STARE dataset, AUC, ACC, and SPE values dropped to 0.9603,
09507, and 0.9721, respectively. SE achieved the best performance,
but other indicators did not achieve optimal results compared with
all methods.

V. DISCUSSION AND CONCLUSION

In this paper, we have proposed a new convolutional neural
network for retinal vessel segmentation. The network is based on the
traditional encoding and decoding structure and further incorporates
the attention mechanism and asymmetric convolution module. The
proposed network can more effectively focus on the features that
contribute to the segmentation of blood vessels and suppress the
features that are ineffective in the segmentation of blood vessels, thus
more helpful to the segmentation of thin blood vessels. Furthermore,
the proposed network reduces a large number of trainable parameters
by using asymmetric convolution.

Results of blood vessel segmentation on DRIVE, STARE, and
CHASE_DBI datasets show that the proposed method can effectively
improve the performance of blood vessel segmentation, especially the
AUC evaluation index, with values above 0.98 in all three data sets.
Moreover, the accuracy of the three datasets is also more than 0.95,
so we can conclude that the proposed method has robust performance
in classifying blood vessels and background. The specificity of the
three datasets is higher than the sensitivity. Our analysis is due to
the limitation of the fundus image itself: the background pixel in the
fundus image is much more than the blood vessel pixel. Therefore,
there will be more background data in the training process, which
leads to the model learning more background features, so the SP is
higher than the SE in the end. By observing Fig. 10, we can see that
the structure of the vascular tree of the segmentation results of the
three datasets is complete, with almost no disconnection and strong
continuity of the vessels. As shown in the area highlighted by the
yellow box in Fig. 10(b), the small blood vessels in the low-contrast
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I pIRAE If
(a) Original image and (b) Ground Truth and (c) Binary output of
presence of macular presence of macular MAAC model and

and low contrast and low contrast presence of macular
and low contrast

/) \«/ /(Y /
SRS % 2

(d) Original image and (e) Ground Truth the (f) binary output of
the presence of furca- and presence of furca- MAAC model and the

2 X

tion and intersection  tion and intersection  presence of furcation

and intersection

Fig. 10.  Examples of detail segmentation rerults from DRIVE(top)
and STARE(bottom) with two enlarged rectangles showing beneath
each subfigure:(a)original imag and two enlarged recteangles showing
the presence of macular and low contrast, (b)ground truth, (c)binary
output of MAAC model, (d)original image and two enlarged recteangles
showing the presence of furcation and intersection, (e)ground truth,
(c)binary output of MAAC model.

area in the DRIVE are accurately segmented, and even the small
blood vessels that the observer does not annotate are also segmented.
According to the ophthalmologist, these are the correct blood vessels.
The other is the area around the macula (see Fig. 10(c)), it has low
image intensity, which is similar to the strength of blood vessels in
the green channel [8]. However, the thin blood vessels in this area
can also be correctly classified, and the macula is not classified as
blood vessels. Both results indicate that the proposed method has
a solid ability to segment thin blood vessels; As highlighted in the
yellow box in Fig. 10(f), it is the intersection point of blood vessels,
and the intersection point of blood vessels is an indicator to judge
whether the blood vessels of fundus oculars are healthy. The blood
vessel at the intersection is easy to disconnect, but the intersection
of the blood vessel is segmented clearly, and the surrounding blood
vessels are not disconnected; As highlighted in the yellow box in Fig.
10(e), it is the furcation area of the blood vessel. The bifurcation
point of the blood vessel is another indicator for judging whether
the fundus blood vessel is healthy. The blood vessels in this area
are also clearly segmented. Therefore, the proposed method is not
influenced by special positions. In general, the proposed method
shows advantages in the segmentation of small vessels and can also
be used to segment vessels in special regions. It is a method with
high accuracy and stable performance.

In the DRIVE dataset, previous research methods can generally
achieve the AUC index of segmentation results above 0.97 but less
than 0.98. The AUC of the proposed method is higher than 0.98,
which is better than the existing methods, and the accuracy is also the



oNOYTULT D WN =

Page 10 of 11

AUTHOR et al.: PREPARATION OF BRIEF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS (FEBRUARY 2017) 11

TABLE Ill
COMPARISON OF DIFFERENT MODELS ON DRIVE

- AUC AUPR | F1_.SCORE ACC SEN SPE PR Total params
Backbone 0.9809 | 0.9154 0.8252 0.9573 | 0.7925 | 0.9813 | 0.8607 473537
Backbone+GCBAM 0.9814 | 0.9170 0.8298 0.9578 | 0.8081 | 0.9796 | 0.8526 567123
Backbone+Asymmetric Convolution | 0.9811 | 0.9158 0.8276 0.9573 | 0.8044 | 0.9796 | 0.8521 320385
X[0]p| AC_.GCBAM _Unet*(Proposed) 0.9817 | 0.9169 0.8289 0.9574 | 0.8118 | 0.9786 | 0.8469 413971

All the models are adjusted to the highest performance. Except for the dropout rate of Backbone + GCBAM which is different from the
description in the experiment part, the experimental Settings of other models and Backbone + GCBAM are consistent with the description

in the experiment part.
@ The dropout rate of the model is 0.3.

TABLE IV
RESULT OF THE CROSS-TRAINING EVALUATION

Testing | Training | Mothods AUC ACC SPE SE
Fraz et al. [28](2012a) 0.9697 | 0.9456 | 0.9792 | 0.7242
Li et al. [8](2016) 0.9677 | 0.9486 | 0.9810 | 0.7273
DRIVE | STARE | Yan et al. [17](2018b) 0.9568 | 0.9444 | 0.9802 | 0.7014
Yan et al. [36](2018a) 0.9599 | 0.9494 | 0.9815 | 0.7292
Wu, Y, et al. [27](2020) | 0.9761 | 0.9538 | 0.9881 | 0.7187
X[0]p Proposed 0.9742 | 0.9501 | 0.9915 | 0.6659
Fraz et al. [28](2012a) 0.9660 | 0.9495 | 0.9770 | 0.7010
Li et al. [8](2016) 0.9671 | 0.9545 | 0.9828 | 0.7027
STARE | DRIVE | Yan et al. [17](2018b) 0.7027 | 0.9580 | 0.9840 | 0.7319
Yan et al. [36](2018a) 0.9708 | 0.9569 | 0.9840 | 0.7211
Wu, Y, et al. [27](2020) | 0.9635 | 0.9540 | 0.9785 | 0.7378
Proposed 0.9603 | 0.9507 | 0.9721 | 0.7616

highest among all methods. The sensitivity is 0.8118, which is lower
than Tang et al. [35], ranking second. Combining the above three
evaluation metrics shows that the proposed method is superior to all
previous methods and can detect more blood vessel pixels accurately.
In the Chase _DB1 dataset, all indexes of the proposed method are
optimal compared with the previous methods, which further proves
that the proposed method is superior to the previous methods and
has generalization. In the STARE dataset, the performance of the
proposed method is not optimal but compared with Azzopardi et al.
[31], AUC and ACC have increased by 0.04 and 0.017, respectively,
indicating that the segmentation capabilities of the proposed method
have indeed improved. However, the value of SP is the highest among
all methods, indicating that on the STARE dataset, the proposed
method has a stronger ability to segment the background. In addition
to the limited fundus image itself, another reason is that we use the
first expert annotation as ground truth, while the first expert focused
more on thick blood vessels. Hence, many thin blood vessels were
not annotated. There are three reasons why the results on the STARE
dataset are not optimal. One is that the diseased cases in the STARE
dataset are more severe than DRIVE. The second is that the images
of the STARE dataset are of low quality; and the third is that we
directly use unified experimental parameters, such as thresholds are
0.5, while the data characteristics of the STARE data set indicated
that a smaller threshold would have a better effect, and we did not
adopt fine-tuning as in the previous method. In the future, we will
use datasets with more pathological images to train our model and
further explore how to counter the interference of pathological images
to achieve a segmentation model that is less affected by pathology.
In the ablation experiment, the AUC, ACC, and SEN of the
backbone+GCBAM model are increased to 0.9814, 0.9578, and
0.8081, respectively, compared with the backbone, which shows
that the GCBAM module can effectively help the model to classify
the blood vessel pixels and improve the recognition accuracy. The
backbone+Asymmetric Convolution model has improved other indi-
cators except for SPE and PR compared with the backbone model.
Although the improvement is not very big, the parameters of the
model are reduced to 320385. Compared with the backbone+GCBAM

model, the various evaluation indicators of the backbone+Asymmetric
Convolution model are slightly reduced, but its model parameters are
reduced by 246738 compared with the backbone+GCBAM, indicating
that the model parameters are few, but it has achieved relatively
impressive results. Compared with the backbone+GCBAM model,
the AUC and SEN of the MAAC encoder-decoder are increased from
0.9814 and 0.8081 to 0.9817 and 0.8118. And the training parameters
are reduced from 567123 to 413971. In summary, it shows that the
combination of the proposed methods can detect more blood vessels
pixels with higher classification accuracy, and the model has fewer
parameters, which can save computing resources.

In cross-training, the AUC, ACC, and SPE of the proposed method
outperform all the comparison methods for the DRIVE dataset.
The AUC of the Yan et al’s [36] method decreased from 0.9752
to 0.9568, a total decrease of 0.0184, while ours decreased from
0.9817 to 0.9742, a decrease of 0.0075 for the proposed method. The
above shows that the proposed method is more robust than previous
methods. The robust is required for applying the method to practice
because in practice, the trained model will not be retrained, and it has
to face many cases that have never been encountered. Since the first
observer in the STARE dataset mainly annotates thick blood vessels,
when the model trained on the STARE dataset is applied to the
DRIVE dataset, the model’s ability to detect thin blood vessels will
decrease, so the SE on DRIVE is lower. The proposed method’s AUC,
ACC, and SPE were slightly lower than those of previous methods
in the STARE dataset. Because when DRIVE is used as a training
set, there is a lack of pathological feature data at the same level as
STARE, which leads to a slightly more decrease in AUC when tested
on the STARE dataset. However, the SE of the proposed method is
the highest among all methods because the manual annotation of the
DRIVE dataset is very detailed, and most blood vessels are marked,
including thick and thin blood vessels, so when the model trained in
DRIVE is applied to the STARE dataset, there will be strong blood
vessel detection capabilities.

The computation time only needs 30 iterations to train the model
on the DRIVE, STARE and CHASE_DBI1 data sets. The model is
trained and tested on NVIDIA Tesla v100 16GB GPU. The time
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TABLE V
TIME COST OF PERFORMING MODEL TRAINING AND INFERENCING
TEST IMAGE BY OUR MAAC MODEL.

- DRIVE | STARE | CHASE_DB1
Training | 310.38m | 197.2m 254.92m
Testing 1.32m | 0.03m 0.82m

consumed by each dataset is shown in Table V. It can be seen that
the training of the model is very time-consuming. Each model needs
to be trained for more than 1 hour, but the inference speed is fast. For
example, it only takes 1.32 minutes to infer 20 images in the DRIVE
test set, which is much faster than manual annotation. In practice,
we can train the model offline and use the trained model in clinical
practice.

In conclusion, we improved a hybrid attention module and pro-
posed a new retinal vessel segmentation model on this basis. This
model can segment more blood vessels, achieve higher accuracy than
previous methods, and have the potential for medical applications.
And in theory, our approach is not limited to retinal vessel segmen-
tation but can also be extended to other types of image segmentation.
It means the approach has generalization.
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