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Abstract. Objective: Data acquired during a sleep recording is typically compressed

into a hypnogram; a visual representation of manually annotated sleep stages over

the night. Recently, a richer hypnodensity representation was proposed that provides

a probability distribution over these stages at each point in time. In this work we

investigate how to interpret a hypnodensity plot, and reveal its implicit assumptions.

We, moreover, seek alternative representations to acquire additional information about

continuities in the sleeping brain. Approach: We recap softmax classification theory,

and empirically validate the interpretation of a hypnodensity plot. Unsupervised

learning and the non-linear softmax activation are studied to find representations

that are less dependent on the manual sleep staging decision process. Experiments

are performed both in a synthetic setup, and on sleep recordings. Main results:

A hypnodensity plot, predicted by a supervised classifier, represents the probability

with which the sleep expert assigned a label to an epoch. It thus reflects annotator

behaviour, and is thereby only indirectly linked to underlying continuous dynamics of

the brain. Unsupervised training was shown to result in hypnodensity plots that were

less dependent on this annotation process. Moreover, pre-softmax predictions were

found to better reflect continuous brain dynamics than the post-softmax counterparts

(i.e. the hypnodensity plot). Significance: This study provides insights in, and

proposes new, representations of sleep that may enhance our comprehension about

sleep and sleep disorders.

Keywords : Sleep, Hypnogram, Hypnodensity, Supervised Learning, Contrastive

Predictive Coding, Softmax

1. Introduction

Even though we spend a large part of our lives asleep, there is only a marginal

understanding about the processes that happen in our brain during the night. Until
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the late thirties of the previous century, it was widely believed that sleep is a passive

state of the body [1], opposed to the active state of wakefulness. The discovery of the

electroencephalogram (EEG), a recording that measures electrical activity of the brain

via electrodes on the scalp, has been a fundamental step. Quickly after its discovery,

patterns in the sleeping brain were described, which still form the basis for the way we

describe sleep nowadays.

The current standard for sleep analysis comes from the American Academy of

Sleep Medicine (AASM) [2], which recommends a polysomnography (PSG) measurement

that comprises among others EEG, electromyography (EMG), and electrooculography

(EOG). Five different states have been distinguished, through which a sleeping brain

transitions (multiple times) during the night: rapid eye movement (REM) sleep, non-

REM sleep (subdivided into N1, N2, and N3), and wakefulness (W). Given a PSG

recording, a sleep expert manually labels each non-overlapping 30-second window with

one of the five discrete states to create a hypnogram; a visual representation of assigned

sleep stages over the full night.

While a hypnogram has proven clinical utility, it is a strongly compressed

representation, which can only represent abrupt sleep stage switches. In reality, it

is, however, to be expected that transitioning between two states yields a more gradual

pattern and does not happen at boundaries of pre-defined data windows. As such,

an alternative representation for sleep data was recently proposed, which the authors

called a hypnodensity plot [3]. Rather than selecting one sleep stage for each window,

this hypnodensity representation reveals a probability distribution over the five AASM

stages (see fig. 8 for an example), which may be provided at any temporal resolution.

A hypnodensity plot could give insights in (yet) unexplained phenomena, and therefore

has the potential to induce a paradigm shift in sleep medicine. It was, for example,

already shown to contain discriminative patterns for patients with narcolepsy [3].

Despite the clinical possibilities, hypnodensity plots have not yet been used in

clinical practice. We suspect one important aspect to be the major reason: while a

hypnogram is typically created by a sleep expert that follows the AASM guidelines, a

hypnodensity plot is generally predicted using a computer model. As a consequence,

the exact relation between recorded data and the predicted probability distributions

(i.e. the hypnodensity plot) remained unclear so far. Questions that now arise are: Is

a hypnodensity representation, predicted by a supervised classifier, revealing continuous

dynamics of the sleeping brain, or does it mainly show model uncertainty?, and What

are the implicit assumptions and driving factors that play a role in creating such a

hypnodensity plot? In case it reflects model uncertainty, Can we find alternative ways

that reveal the continuous brain dynamics?

The machine learning model that predicts a hypnodensity plot, as proposed by the

original authors [3], is a supervised neural classifier, of which the final softmax-activated

outputs are considered the hypnodensity representation. Earlier efforts from the machine

learning community have already provided valuable insights about interpretation of

such softmax probabilities [4, 5]; these probabilities are known to reflect a probability
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distribution that coincides with the (expectation of a) decision process of assigning one

of the possible labels to a data point. We thus hypothesize that a hypnodensity plot that

is predicted by a supervised model, reflects the probability with which the data point

(or PSG window in this case) was assigned with a certain label (i.e. AASM sleep stage)

by the expert(s) that annotated the data set. We wonder whether this distribution, as

well, reflects continuous dynamics of the sleeping brain.

The hypnodensity representation [3] was, among other, suggested to be used for

research about disorders that are related to sleep stage dissocations, or local sleep

phenoma [6]. It was, e.g., shown to contain more moments with probability mass

spread over several sleep stages for narcoleptic patients, as compared to non-narcoleptic

controls. Narcoleptic patients are indeed known to exhibit sleep/wake dissociations,

however, given what is known about softmax-activated predictions of supervised models,

it can be questioned whether the difference in hypnodensity plots between the two

groups was truly reflecting underlying differences in brain dynamics, or whether it mainly

reflected a difference in decision processes for manual sleep stage scoring between both

groups [7].

This study will contribute in finding answers to the aforementioned questions. The

contributions can be summarized as follows:

• We formulate a signal- and an annotation model (Section 2) to study the relation

between recordings and annotated AASM stages (i.e. the hypnogram), and its

implications for the hypnodensity representation.

• We generate a PSG-inspired synthetic dataset to experimentally investigate the

relation between recordings and predictions of hypnodensity plots, as a function

of training strategy (supervised vs unsupervised) and final non-linearity (pre- vs

post-softmax predictions) (Section 4).

• We validate drawn conclusions from the synthetic experiments on real PSG

recordings of healthy sleepers. To this end, we compare hypnodensity plots

predicted under the same varying circumstances as in the synthetic experiments,

and validate that the effects of these factors are similar on real data (Section 5).

2. Problem formulation and modelling

The authors of [3] propose to use the softmax-activated outputs of a supervised

neural classifier that is trained on PSG data with expert’s annotations, to acquire a

hypnodensity plot. In this section we discuss the interpretation of predictions from such

a classifier in a synthetic setup that is inspired by PSG recordings. To this end, we first

introduce a generative signal model that generates (heavily simplified) PSG-like data

(Section 2.1), and an annotation model (Section 2.2) that can capture the conversion

from PSG data to an expert’s annotation (i.e. a selected sleep stage). The signal and

annotation model are visually summarized in fig. 1. Section 2.3 subsequently provides

information on the hypnodensity-predicting model and its optimization.
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Figure 1: We distinguish a signal and annotation model. The signal model assumes that all

channels are a non-linear mixture of some implicit (or hidden) classes that each characterize

one of the sleep stages. The annotation model converts the contribution of each of these classes

to one selected sleep stage. Due to uncertainty in expert annotations, we know that scoring is

a stochastic process, which may be modelled as a conditional label distribution per window.

2.1. Signal model

A typical PSG recording X(k) ∈ Rch×W×l, with index k, contains time series of

L = W × l samples (W number of 30-second windows, each of l samples) from ch

number of channels (e.g. multiple EEG channels, EMG, and EOG). We model the data

generation/measurement as a non-linear generative mixing process of C latent signals

s
(k)
c , with 1 ≤ c ≤ C, where each signal aggregates typical characteristics associated

with a specific sleep stage (or class).

In other words, each PSG window is assumed to contain data which are a non-

linear spatial and temporal (over 30 s) accumulation of characteristics that are typical

for certain sleep stages. Given five AASM-defined sleep stages, we may hypothesize that

these data are thus generated from C = 5 latent signals that each represent one sleep

stage. When manually scoring a PSG window, an expert (implicitly) determines how

much of the characteristics belong to either of the five stages, and based on some rules

(i.e. the AASM standard), determines the final sleep stage (more on this in Section 2.2).

The amplitudes ã
(k)
c of the latent signals are modelled to vary over time, i.e.

characteristics belonging to a certain sleep stage can be fully absent in some moments,

while present (with a certain amount) at other moments. The resulting signal model

yields:

X(k) = h
(
Ã(k) ∗ S(k)

)
, (1)

where S(k) ∈ RC×W×l contains the signals of all classes, Ã(k) ∈ RC×W×l
≥0 contains

the corresponding time-varying amplitudes, h : RC×W×l → Rch×W×l is a non-linear

spatial mixing function, and ∗ denotes an element-wise multiplication. The normalized

amplitudes, that sum to one over the C classes at every moment in time, are denoted

with A(k). In the context of non-linear mixing, these normalized amplitudes are also

called mixture coefficients. Figure 1 depicts the described signal model, and table A1 in

Appendix A provides a summary of all introduced notations and symbols.
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2.2. Annotation model

Sleep stage annotations are in clinical practice assigned to 30 seconds of data. We

denote the wth 30-second data window with X
(k)
w ∈ Rch×l, which is of length l = 30×fs,

with fs the sampling frequency in Hz. Analogously, we define Ã
(k)
w ∈ RC×l

≥0 and

A
(k)
w ∈ {RC×l

≥0 :
∑

cA
(k)
w = 1}, being the unnormalized, respectively normalized,

amplitudes of the mixed signals in the window with index w.

A sleep expert assigns a label y
(k)
w to a PSG window by means of an (internal)

decision process. Despite the aim of the AASM rules to standardize this process, both

inter- and intra-rater variability exist [8], which can be explained by the stochastic nature

of human decision making. To model this stochastic decision process, we model each

label as a sample from a probability distribution over sleep stages, that is conditioned

upon the mixture coefficients of the characteristics belonging to these stages. Omitting

the (k)-superscript for readability, this conditional distribution - serving as a generative

label distribution - yields:

p(yw|Xw; τ) = στ{log avgl(Aw)} ∝ exp{ log avgl(Aw)

τ
}, (2)

where στ denotes a tempered softmax function with temperature parameter τ ∈ R≥0,

and avgl(·) returns the average over l samples. In the following, we use the one-hot

embedding of labels, and therefore redefine the domain of a label to: y
(k)
w ∈ {0, 1}C ,

with |y(k)
w | = 1. Figure 1 depicts the described signal and annotation models.

For τ = 1, the selection of a class is linearly related to the mixture coefficients

of each class. On the other hand, when τ → 0+, the distribution becomes degenerate

(i.e. one-hot) and the ‘sampling’ process becomes fully deterministic. This models the

(unrealistic) scenario where experts would always make the same decision, and inter-

and intra-rater variability does not exist.

For 0 < τ < 1, the distribution’s entropy is lowered (compared to τ = 1), and

classes with a high mixture coefficient are selected with a higher probability than denoted

by their contribution to the mixture, while classes with lower mixture coefficients are

selected with a lower probability.

This latter setting (i.e. 0 < τ < 1) models sleep staging according to the AASM

standard, in which non-linear decision boundaries are used. For example, when a K-

complex is detected, the window should in any case be classified as N2, even if only, say,

60% of the window shows characteristics that belong to N2. Similarly, if at least half of

the window shows Wake-like characteristics, the window should be assigned the Wake

label.

Note that in practice, an expert selects a sleep stage directly given the raw data.

Though, the processes of disentangling the raw data into characteristics that describe

various sleep stages and selecting the most appropriate sleep stage, can be considered

an implicit processes that takes place during decision making.
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2.3. Hypnodensity-predicting neural network

The authors of [3] propose to use a feedforward supervised neural classifier to predict a

hypnodensity plot from PSG data. To this end, the classifier model pm, parameterized

by θ, makes a conditional prediction of class probabilities: ŷ
(k)
w ∈ {RC

≥0 : |ŷ(k)
w | = 1},

given some input data X
(k)
w . Model parameters θ are optimized by maximizing the log-

likelihood of the expert labels, using a training set of (X
(k)
w ,y

(k)
w )-pairs that approximate

the data-generating distribution pd(X,y). The optimization problem yields (omitting

all k- and w-super/subscripts for clarity):

θ∗ = argmax
θ

{Ep̂d(X,y) log pm(ŷ|X; θ)}, (3)

where p̂d(X,y) is the approximation of the true data-generating distribution.

We design the hypnodensity-predicting model as a feedforward neural network that

comprises a convolutional encoder, and a a non-linear classifier, similar to the model

proposed by [3]. The convolutional encoder converts a data window X
(k)
w to a latent

representation: z
(k)
w = Enc

(
X

(k)
w

)
∈ RF , with F the number of features in the resulting

embedding.

A standard multi-class classification model subsequently maps each embedding to

class predictions between 0 and 1, with a total sum of 1 over the classes. It takes

the form ŷ
(k)
w = σ

(
Wz

(k)
w + b

)
, with trainable parameters W ∈ RC×F , and b ∈ RC ,

and σ the softmax function. In case of having a classification goal (i.e. when aiming

for an automated sleep stage classifier), the largest entry of the softmax outputs is

conventionally selected. In contrast, the authors of [3] propose to omit this last step,

and directly use the softmax output ŷ
(k)
w , being the predicted hypnodensity plot of

recording k for window w (i.e. ŷ(k) entails the full hypnodensity plot belonging to

recording k). Appendix B provides more details regarding the model architecture and

training procedure.

3. Theoretical background

In this section we provide theoretical background on likelihood maximization of

supervised neural classifiers. The optimization problem, as given in eq. (3), can be

rewritten using the monotonicity and translation invariance of the argmax and argmin-

functions:
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θ∗ = argmax
θ

{Ep̂d(X,y) log pm(ŷ|X; θ)} =

argmin
θ

{
− {Ep̂d(X,y)[log pm(ŷ|X; θ)]

}
=

argmin
θ

{
Ep̂d(X,y)[log p̂d(y|X)− log pm(ŷ|X; θ)]

}
=

argmin
θ

{
DKL

(
p̂d(y|X)||pm(ŷ|X; θ)

)}
. (4)

From the above equalities it can be seen that training a supervised classifier by

maximizing the log-likelihood of the expert annotations, is equivalent to minimizing the

Kullback-Leibler (KL)-divergence between the empirical conditional data distribution

p̂d(y|X) and the conditional distribution as trained by the model pm(ŷ|X; θ) [5, ch. 5].

The KL-divergence between two discrete probability distributions P and Q, both

with C classes, is defined as follows:

DKL

(
P ||Q

)
=

C∑
c=1

Pc log
Pc

Qc

, (5)

and is minimized when both distributions perfectly match. In other words, the

probabilistic predictions of the supervised model mimic the conditional probability over

the classes, as defined in the data set used for training the model.

The above statement only holds under the assumptions of having independent data

points, and using a model that has enough capacity to minimize the aforementioned

KL-divergence. On the other hand, when designing a model with too much capacity,

overfitting happens and the KL-divergence is perfectly minimized, at the cost of

generalizability to unseen data.

4. Synthetic experiments

This section describes the experiments on synthetically-generated PSG-like data. Their

generation is described in Section 4.1. Section 4.2 covers the used methodologies, and

results are discussed in Section 4.3.

4.1. Data generation

We created a synthetic dataset according to the signal model as introduced in eq. (1),

and generated each channel in X(k) as a non-linear combination of a set of (C = 3)

independent classes, where each class represents a (fictitious) sleep stage. The signal

corresponding to each class was generated as a (discretized) sinusoidal signal, with a

class-dependent frequency, a random phase, and an amplitude that is described by a

smoothened square wave, such that it smoothly varies between 0 and 1 over time. The

varying amplitude thus represents the presence (with a certain amount) or absence of

characteristics belonging to a class. We generated K = 200 random ‘recordings’, which
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Figure 2: A sequence from the synthetic test set. Left: the normalized amplitudes that sum to

one and serve as the mixture coefficients of the signals belonging to the three classes. Right:

the corresponding unnormalized amplitudes of the three generated signals over time.

were split into a training, validation and a hold-out test set. Figure 2 shows an example

from the test set, with normalized amplitudes (or mixture coefficients) on the left, and

the corresponding unnormalized amplitudes on the right. Annotations were generated

by sampling from the label distribution, as provided in eq. (2). Appendix C.1 provides

more details about the generation of this dataset.

4.2. Methodology

In order to investigate the factors and assumptions that drive a hypnodensity

representation, we compare pre- and post-softmax predictions, and unsupervised vs

supervised training, for which the methodologies are discussed in Section 4.2.1 and

4.2.2, respectively.

4.2.1. Pre- vs post-softmax predictions The final activation function used in

the hypnodensity-predicting network is the softmax function σ, which converts

unconstrained predictions ˆ̃yw ∈ RC to normalized probabilities ŷw ∈ {RC
≥0 : |ŷw| = 1}:

ŷw = σ(ˆ̃yw) =
exp ˆ̃yw∑
c exp

ˆ̃yw

.

We investigate the effect of the non-linearity as introduced by using a softmax

function as a final activation, by comparing pre-softmax predictions, to post-softmax

(i.e. hypnodensity) predictions. If the (implicit) annotation model of real PSG data

indeed follows a distribution close to the one as given in eq. (2), we deduce that the

pre-softmax predictions would have more tendency than the post-softmax counterparts,

to reveal the (unnormalized) contributions/amplitudes of characteristics in a window

that belong to the different sleep stages.

Since the post-softmax predictions yield a (normalized) probability vector for each

window w, we may use the KL-divergence (see eq. (5)) as a metric to compare this

distribution with both the normalized amplitudes A
(k)
w , and the label distribution

p̂d(y
(k)
w |X(k)

w ) used to generate corresponding labels for supervised training. In our

synthetic setup, we explicitly defined this conditional label distribution according to
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eq. (2), thus p̂d(y
(k)
w |X(k)

w ) := p(y
(k)
w |X(k)

w ; τ). To ease notation in the results section, we

define the following two metrics:

DKL(p̂d||ŷ) :=
1

K

K∑
k=1

medianw

{
DKL

(
p̂d(y

(k)
w |X(k)

w )||ŷ(k)
w

)}
, (6)

DKL(A||ŷ) := 1

K

K∑
k=1

medianw

{
DKL

(
avgl(A

(k)
w )||ŷ(k)

w

)}
, (7)

where medianw computes the median over the W windows. Due to the unnormalized

nature of the pre-softmax predictions, KL-divergences can not be computed on these

unnormalized vectors.

4.2.2. Supervised vs unsupervised encoding Additionally to comparing pre- and post-

softmax predictions, we compare the fully supervised setting, where the model is

trained using input-label pairs, to a setting in which the full encoder is trained in an

unsupervised fashion. A supervised classifier (with its design as described in Section 2.3)

is subsequently trained on the resulting ‘unsupervised embeddings’, while freezing the

encoder’s parameters.

For unsupervised training of the encoder, we leverage Contrastive Predictive Coding

(CPC) [9], a recently proposed framework for self-supervised learning, which has already

been found useful to model EEG data [10]. CPC is able to model slow features [9],

i.e. slowly varying data characteristics, like the normalized amplitudes A in our signal

model.

From a mathematical perspective, predicting the mixture coefficients (or

amplitudes) requires solving a non-linear independent component analysis (ICA)

problem, which has proven to be non-identifiable [11]. However, recent advances

showed that the problem becomes identifiable under the assumed presence of an

auxiliary variable [12]. The contrastive learning paradigm has shown to conform to this

assumption [12,13], and is able to invert the signal model, or data-generating process.

As such we hypothesize that a classifier trained on the unsupervised embeddings

will have more tendency to make predictions that are related to the mixture coefficients,

than a fully supervised model, which has more tendency to depend on the expert’s

annotations.

CPC leverages contrastive learning, which builds upon the idea to teach the model

that ‘similar data points’ should be embedded closely together, while ‘dissimilar data

points’ should be repelled. In the framework of CPC, a similar data point (or positive

sample) is defined as a future embedding, with respect to a current causal embedding (i.e.

incorporating past information as well). Negative samples, on the other hand, are drawn

from a random moment within or between (i.e. from a different) recordings. We use

within-subject sampling, and randomly draw three negative samples per positive sample.

Set Z ′
p
(k) contains the embeddings of these three negative samples, and is renewed for
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every data point and in every training iteration. We define Z ′′
p
(k) := Z ′

p
(k) ∪ {zw+p},

which contains both the negatives and positive embedding. The unsupervised CPC

training objective, yields:

L =
1

P

P∑
p=1

Lp, with (8)

Lp = −Ep̂d(X)

[
log

exp(zT
w+pVpzw)∑

z∈Z′′
p
(k) exp(zTVpzw)

]
,

with P = 10 the number of future windows, zw the current embedding, zw+p the

future embedding at index w + p, and Vp ∈ RF×F a trainable mapping between both

embeddings. In the following, we refer to the model which’s encoder is trained using

CPC, and a subsequent classifier is trained supervised, as the unsupervised or CPC

model.

4.3. Results

4.3.1. Post-softmax predictions We start with an empirical investigation of the post-

softmax predictions of the supervised model. To this end, four supervised models were

trained with labels that have been generated from label distributions as given in eq. (2),

with varying values of τ = {0+, 1
4
, 1
2
, 1}. This parameter can be seen as a slider for the

amount of uncertainty that is present during labelling the dataset (high τ implies high

uncertainty). Table 1 shows the two KL-divergence metrics, as introduced in eq. (6)

and eq. (7) (one model per row). Note that the label distribution equals the normalized

amplitudes for τ = 1.

For all values of τ , it can be seen that the KL-divergence with the label distribution

is lower (or equal, for τ = 1) than with the normalized amplitudes, implying that the

softmax outputs have more tendency to reflect the label distribution, than the data-

characteristic as captured in the normalized amplitudes of the signals belonging to

the different classes. Figure 4 visually compares the prediction of a random test case

example, to the normalized amplitudes, for τ → 0+ (a), and τ = 1
4
(b). Again it

can clearly be seen how the model aims to mimic the label distribution. The difference

between the label distribution and the normalized amplitudes is most apparent for values

of τ close to zero (fig. 4a).

We additionally cross-compare the model predictions with label distributions with

varying values for τ . Figure 3 shows a heat map of these results, in which the x-axis

denotes the value of τ of the distribution from which labels were drawn during training,

and the y-axis indicates this value during evaluation. The heat maps shows that the

model predictions indeed aligns best with the label distribution that was used during

training (seen from the dark green diagonal). The results in this section are all in line

with the proof in eq. (4), which showed that a supervised classifier that is trained by

likelihood maximization aims to mimic the conditional label distribution.
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Table 1: KL-divergence between model

predictions ŷ and the normalized amplitudes

A, and conditional label distribution p̂d,

respectively, for models trained with labels

drawn from p(y|X; τ) for varying τ (each

row is one model). The KL-divergence with

the label distribution is lower than with the

normalized amplitudes, a better match of the

former with the model prediction.

τ DKL(p̂d||ŷ) DKL(A||ŷ)
0+ 6.4e-2 2.1

1/4 8.3e-3 9.8e-2

1/2 6.9e-3 4.1e-2

1 9.5e-3 9.5e-3

0 1/4 1/2 1
τ of ̂pd during training

1

1/2

1/4

0τ 
of

 
̂ p d
 d

ur
in

g 
ev

al
ua

tio
n

log DKL( ̂pd||ŷ)

−4

−3

−2

−1

0

Figure 3: Cross-comparison of KL-

divergences (in log-scale) between label

distributions p(y|X; τ) with varying τ during

evaluation, and models trained with different

values of τ . Lower is better.

0.0

1.0
Normalized amplitudes A(k)

c= 1
c= 2
c= 3

0.0

1.0
Label distribution p(y(k)|X(k); τ→ 0 + )

0.0 0.5 1.0 1.5
Time [hours]

0.0

1.0
Prediction ŷ(k)

(a)

0.0

1.0
Normalized amplitudes A(k)

c= 1
c= 2
c= 3

0.0

1.0
Label distribution p(y(k)|X(k); τ= 1/4)

0.0 0.5 1.0 1.5
Time [hours]

0.0

1.0
Prediction ŷ(k)

(b)

Figure 4: The normalized amplitudes (top), label distribution (middle) and supervised model

prediction (bottom) of a representative sample from the synthetic test set. Predictions of

models, trained with label distributions with a) τ → 0+, and b) τ = 1
4 are shown. It can

clearly be seen that the predictions depend on the value of τ , and have the tendency to follow

the corresponding label distribution.

4.3.2. Pre- vs post-softmax predictions Figure 5a shows the non-linear effect of the

final softmax activation in a supervised neural classifier, trained with label distributions

with varying values of τ . The x-axis denotes the pre-softmax predictions per class, while

the y-axis denotes the corresponding post-softmax prediction. Each dot represents one

window of one recording from the test set.

It can be seen that the pre-softmax input range, and therewith the softmax non-

linearity increased for lower values of τ used during training the model. Mainly in

case of deterministic label selection (i.e. for τ → 0+, when the label distribution has

zero entropy; top row), the softmax tended to push the class probabilities to zero or
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Figure 5: a) The pre-softmax predictions (x-axis) are highly non-linearly related to the post-

softmax predictions (y-axis) for a supervised model with τ → 0+ in the label distributions used

for training (top); the softmax pushes most class predictions towards 0 or 1. When training

with a non-degenerate label distribution (i.e. τ > 0), the softmax outputs are less discrete

(middle, bottom). b) The pre-softmax predictions (for τ → 0+) (bottom) show dynamics that

moderately resemble the unnormalized amplitudes (top).

Table 2: KL-divergence with the normalized amplitudes A (i.e. mixture coefficients) and

the label distribution p(y|X; τ) for encoders trained using Contrastive Predictive Coding, and

classifiers trained with labels drawn from label distributions with varying temperature values τ

(each row is one model). All models show a lower KL-divergence with the mixture coefficients

than with the label generating distribution. For τ = 1, the two are equivalent, hence the

equivalent KL-divergences.

τ DKL(p̂d||ŷ) DKL(A||ŷ)
0+ .21 6.3e-2

1/4 5.2e-2 4.7e-2

1/2 5.1e-2 4.0e-2

1 4.2e-2 4.2e-2

one. For τ > 0, i.e. when sampling from the label distribution is a stochastic process

due to its non-zero entropy, the softmax outputs are not anymore pushed towards such

binary decisions (middle & bottom row). The effect of the softmax activation in a

supervised classifier thus depends on the entropy of the generative label distribution. In

real PSG data, this entropy can be seen as the amount of uncertainty the expert had

when selecting labels for annotating the dataset.

To illustrate that mainly the softmax activation has a large influence on mimicking

the label distribution with the post-softmax predictions, the pre-softmax predictions for

one test set example are plotted in fig. 5b, for the model trained with label distribution

p(y|X; τ → 0+). Indeed, even though the post-softmax predictions were mimicking

the label distribution (as was seen from fig. 4a), the pre-softmax predictions ˆ̃y(k) are

(moderately) resembling the unnormalized amplitudes.
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Figure 6: The normalized amplitudes (top), label distribution (middle) and CPC model

prediction (bottom) of a representative sample from the test set of the synthetic data set.

We display predictions for which the classifiers are trained with label distributions with a)

τ → 0+, and b) τ = 1
4 . The predictions are much less influenced by the value of τ , as

compared to the supervised model, displayed in fig. 4, and therefore show more tendency to

predict the normalized amplitudes.

4.3.3. Supervised vs unsupervised encoding Table 2 shows the KL-divergence metrics

of the (post-softmax) predictions of the unsupervised model. This KL-divergence is,

for all values of τ , lower with respect to the normalized amplitudes A, than with the

conditional label distribution p̂d. This implies that the unsupervised model, in contrast

to the supervised model for which the results were exactly opposite (see table 1), makes

a prediction that is closer to the normalized amplitudes than to the label distribution.

Figure 6 shows the predictions for τ → 0+ (a) and τ = 1
4
(b) for the same test set

example as for which the supervised predictions were shown in fig. 4. It is clearly

visible that the unsupervised model’s post-softmax prediction is rather independent of

the value of τ used for training the classifier. This can be explained by the fact that

the classifier is of such low capacity (only a linear mapping with a softmax activation),

that it is unable to fit the label distribution. As a result, the predictions are closer

to data-characteristics, rather than label-charactersitics, which in this case results in

predictions that are close to the normalized amplitudes.

4.3.4. Interaction effect between softmax and (un)supervised training In fig. 5a it was

already shown that the final softmax activation of the supervised model operated in a

different regime, dependent on the value of τ used during training the model. Figure

7a shows that this effect was almost fully omitted when training the full encoder

unsupervised. Note that the range of the x-axis in the top-row is now equivalent to

the this range in the middle and bottom row, while these ranges highly differed for the

supervised model (see fig. 5a). The pre-softmax predictions of the unsupervised model

seem to be slightly closer to the true unnormalized amplitudes, as seen from fig. 7b,

compared to this prediction of the supervised model, as seen in fig. 5b.
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Figure 7: a) Using unsupervised encoding, the operating range, and thus the non-linear effect

of the softmax function is almost independent of the value of τ used in the label distribution

during training the classifier. b) The pre-softmax predictions (for τ → 0+) (bottom) show

dynamics that slightly better resemble the unnormalized amplitudes (top) than the pre-

softmax predictions of the supervised model (shown in fig. 5b).

5. Experiments on real PSG data

Results on synthetic data showed that the predictions of a supervised neural classifier

revealed label-characteristics, i.e. the generative label distribution. In the context

of sleep recordings this can be seen as predicting the probability that a certain data

window would have been labelled as one of the different sleep stages, by the expert(s)

that labelled the dataset used for training the model. An unsupervisedly-trained model

was shown to yield similar post-softmax predictions, while being less reliant on the

quality of the labels (modelled as τ). Moreover, pre-softmax predictions were shown

to correspond to data-characteristics, i.e. the unnormalized amplitudes of the different

mixture signals. In this section we perform similar experiments on real PSG data, and

compare the effects to the aforementioned conclusions from the synthetic setup.

5.1. Polysomnography data

We used a dataset of nocturnal video-PSG recordings of 96 healthy sleepers, that

were recorded according to the AASM recommendations [2] in Sleep Medicine Center

Kempenhaeghe Heeze, the Netherlands. Annotations were created by visual sleep

staging on windows of 30 seconds, performed by an experienced and certified sleep

technician from Sleep Medicine Center Kempenhaeghe. From the full PSG recordings,

we selected EEG (F3/F4, C3/C4, O1/O2), chin EMG (Chin1/Chin2), and EOG

(E1/E2) derivations, since these are typically used for manual AASM scoring as well.

We randomly generated a training (K = 150), validation (K = 20) and hold-out test

set (K = 22). Appendix C.2 provides more details about the dataset and the applied

preprocessing.
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Figure 8: The hypnogram as annotated by a sleep technician (top), and predicted hypnodensity

plots by the supervised (middle) and unsupervised model (bottom). The general trend looks

similar, but differences are visible (indicated with the red bars), e.g. the unsupervised model

in general shows smoother transitions. Note that the unsupervised model does not just predict

a smoothened version of the supervised prediction: hard transitions (e.g. at 1.2 hours) can

still be predicted as well.
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Figure 9: Scatter plots that plot the pre-softmax against the post-softmax predictions for

the supervised (a) and unsupervised (b) model. Each dot is a window from the full test set.

Given the smooth shapes, also for the supervised model, the manual sleep staging process

must exhibit stochasticity (i.e. τ > 0).

5.2. Results

5.2.1. Supervised vs unsupervised hypnodensity plot Figure 8 shows the (post-softmax)

predictions (i.e. hypnodensity plots) from both the supervised (middle row) and

unsupervised (bottom row) model for one representative recording of the test set. For

reference, the top row shows the hypnogram as annotated by the sleep technician. The

general trend of both predictions looks similar, but differences can be noted (some are

indicated by the red bars between both plots). For example, low amounts of N2 or N3

were sometimes predicted by the unsupervised model, while the supervised counterpart
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Figure 10: Scatter plots that compare the post-softmax (a), and pre-softmax (b) predictions

of the supervised (y-axes) and unsupervised model (x-axes). Each dot is a window from the

full test set. Given the more linear relation between both models’ pre-softmax predictions

(as opposed to post-softmax predictions), it can be implied that the non-linear softmax has a

different effect on both models.

did not show these low contributions. This difference in spread of predicted probabilities

over the classes was also reflected in average entropy of predictions of all windows in the

test set, which was found to be H = 0.30± 0.06 for the supervised, and H = 0.43± 0.1

for the unsupervised model.

Occasions where the hypnogram showed rapid transitioning behavior (e.g. around

6.2 hours), were characterized by high entropy predictions from the unsupervised model,

while the supervised model predicted a lower-entropy but more time-varying distribution

over sleep stages. These rapid changes in predictions of the supervised model possibly

reflect the fact that the model was trained using the annotated hypnogram that also

contains these (discrete) switches between sleep stages. A similar effect was visible in the

synthetic setup, where the supervised model had more tendency to result in more abrupt

transitions (fig. 4 vs fig. 6). Despite the more smooth prediction by the unsupervised

model, note that it is still able to predict abrupt transitions as well (e.g. at 1.2 hours),

so it can not simply be considered a smoothened version of the supervised prediction.

5.2.2. Pre- vs post-softmax predictions Figure 9 plots the pre- versus post-softmax

predictions of all sleep stages, for both the supervised (a) and unsupervised (b) model

(each dot is one window of one recording from the test set). The softmax effect of the

supervised model was found to be less non-linear than was seen for the synthetic case

where τ → 0+ (see fig. 5a), implying that the implicit label distribution in our training

dataset was non-degenerate (i.e. τ > 0). In other words, the expert labels were assigned

with a certain form of stochasticity, which is in line with the known imperfectness of

manual sleep stage scoring. It should thus be realized that thanks to the presence of

inter- and intra-rater disagreement in manual sleep staging, a supervised hypnodensity

plot exhibits a smooth pattern over time.
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Interestingly, the softmax effect seems different across sleep stages, which can best

be seen from the vertical histograms that show the post-softmax distributions (fig. 9).

For example, N1 is by neither of the models predicted with a 100% probability, and

the slope of the scatter plots is clearly steeper for N2 as compared to W, REM and N3

sleep.

5.2.3. Interaction effect between softmax and (un)supervised training To investigate

further in which way the supervised and unsupervised model differed, we plot their

predictions against each other in fig. 10a (post-softmax), and fig. 10b (pre-softmax).

From this visualization, it can be seen that the softmax activation has a different effect

on the supervised model, as compared to the unsupervised model; the pre-softmax

predictions of both models seem linearly related with only small deviations from this

linear trend, while the relation between the post-softmax predictions was more spread

out. So even though the general trend of the predicted hypnodensity plots looked

similar (see fig. 8), when zooming in on window level (as done here, since each dot

is one window), differences in post-softmax predictions do exist between both models,

which might exhibit clinically relevant information.

5.2.4. N3 prediction vs slow wave power Given the fact that both the underlying signal

model and the generative label distribution are evidently unknown in real PSG data,

we seek an additional approach to draw conclusions on the two different type of models

and their pre- and post-softmax predictions. It is known that slow waves (positively)

relate to the depth of sleep [1], and the AASM selection criterion for scoring N3 is

based upon the amplitude of these slow waves [2]. As such, we can use the slow wave

power as a surrogate for the contribution of the deepest sleep phase N3, to the total

mixture of characteristics belonging to different stages. To this end, we compare the

four predictions (i.e. (un)supervised and pre- vs post-softmax) for N3, to the amount

of slow wave (0.5-2 Hz) power in the frontal EEG lead (F3 or F4).

Figure 11a plots both pre- and post-softmax predictions for N3 of both models

against the slow wave power for all windows in the test set. It can clearly be seen that,

for both models, the pre-softmax prediction better follows a linear relation with the slow

wave power, than its post-softmax counterpart. Figure 11b depicts the pre/post-softmax

predictions for N3 from the unsupervised model, and slow wave power over time, for the

same recording as depicted in fig. 8. This figure clearly shows how the softmax outputs

of the unsupervised model, despite being more continuous/smooth than the supervised

predictions, still tended to follow the N3 annotations (in grey), whereas the pre-softmax

outputs better captured the continuity of deep sleep.

Note the tails in fig. 11a-top, where a low value for N3 was predicted, while high

slow wave power was computed. A recheck confirmed that these tails were not caused

by a low-quality measurement for one of the patients in the test set, but was present for

multiple patients. A possible explanation can be that low-frequency content, slightly

above 0.5 Hz (i.e. included in the slow wave range), entered the spectrum during wake
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Figure 11: (a) The frontal EEG slow wave power against the predicted pre-softmax values

(top), and post-softmax probabilities (bottom), over the full test set. The pre-softmax

predictions correspond much better with slow wave power for both models. (b) Illustrative

example that shows the pre- and post-softmax predictions over time for the unsupervised

model. The grey lines indicate windows that were annotated as N3. The pre-softmax prediction

better follows the continuity of slow wave power.

episodes as a consequence of movement artifacts. Figure 11b indeed showed this effect

at 3.7 hours, where high slow wave power was present, but the data were annotated as

Wake (seen from the hypnogram in fig. 8-top).

6. Discussion

In this work, we investigated the interpretation of the recently proposed hypnodensity

representation of a PSG recording [3], being a probability distribution over sleep stages

throughout the night. Great potential is foreseen for this representation, in addition

to the conventional hypnogram, as it, e.g., opens up a legion of research directions

about sleep disorders that are known to be related to sleep stage dissociations or local

sleep phenomena [6]. In order to shed light on the interpretation of a hypnodensity

representation, we proposed a PSG-inspired synthetic dataset that comprised non-

linearly mixed measurements of signals belonging to different classes, analogous to

the sleep stages, labelled with the most prevailing class (see Section 2.1 and 2.2). Of

course these data are simplified and subject to design choices, possibly hampering full

generalizability to real PSG data. Nevertheless, similarities between the results on

the synthetic case and real PSG data were found, validating our proposed signal and

annotation models. In the following, we will discuss the answers to the research questions

as posed in the introduction.

6.1. Answering the research questions

First, we wondered whether a hypnodensity plot reflects continuous dynamics of the

sleeping brain, or whether it shows model uncertainty, and what the implicit assumptions
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and driving factors of its prediction are.

Both theoretical (section 3) and empirical evidence (section 4.3.1) showed that

a hypnodensity plot, predicted by a supervised classifier, reveals the probabilities with

which a window was assigned to either of the classes by the expert(s) that annotated the

dataset used for training the model. This finding is also in line with an observation

the authors made in the original hypnodensity work [3], which stated that the

hypnodensity representation resembled the inter-rater disagreement across multiple

scorers that annotated their dataset. Note that a supervised classifier only mimics

the label distribution under the assumption that the model exhibits the ‘right amount’

of capacity. In other words, a model that is too small has a large amount of inherent

(called epistemic) uncertainty, which increases the average entropy of the probability

distributions in the hypnodensity plot. On the other hand, a model that has too much

capacity has the tendency to over-fit on the training set and becomes over-confident. In

the machine learning community, such models are known as uncalibrated models [14,15].

Given the relatively simple model architecture as used in this work, and the fact that

overfitting was not observed when comparing the training and validation log-likelihood

during training, we assume our model was not uncalibrated.

Given the fact that the supervised model did predict non-zero entropy distributions

(see fig. 8-middle), it can be concluded that the (implicit) label distribution in our

dataset was non-degenerate (i.e. τ > 0, or in other words; our experienced sleep

technician assigned labels in a non-deterministic fashion, i.e. with uncertainty). This

conclusion is in line with the fact that manual sleep staging yields disagreement both

within and among sleep experts [8]. It can thus be concluded that a supervisedly-

predicted hypnodensity representation is able to exhibit smoothness across sleep stages

(and therefore reveals additional information with respect to a hypnogram), thanks to the

inter- and intra-rater disagreement of sleep expert(s) that annotated the dataset. This

is interesting, as scorer disagreement is generally considered a negative consequence

of manual scoring, while a hypnodensity plot, predicted by a supervised classifier thus

actually requires it. It is, however, important to realize that the strong label-dependency

of the supervisedly-predicted hypnodensity plot may result in research conclusions that

are strictly reliant on the expert annotations that were used in the specific study. In

other words, when drawing conclusions about sleep disorders by means of a supervisedly-

predicted hypnodensity plot, researchers may not want to rely on one dataset that is

annotated by, e.g., inexperienced scorer(s), as it might highly influence the hypnodensity

plots.

Predicting a hypnodensity representation using an unsupervisedly-trained encoder,

followed by a supervised classifier, on the other hand, was shown to be less dependent on

the (un)certainty of the expert annotations (modelled with τ in this work, and shown on

synthetic data). This was explained by the fact that only the low-capacity classifier may

be influenced by these, while the full encoder was trained without their availability. The

unsupervisedly-predicted hypnodensity plots on real PSG data exhibited higher entropy,

as compared to these plots predicted by the supervised model. This finding again implies
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a lower dependency of the unsupervised model on the hard/discrete expert annotations,

as opposed to the supervised model. Unsupervised training thus seems a reliable strategy

to acquire a hypnodensity representation of sleep that is less influenced by the quality

of the expert annotations, as compared to models that that are trained in a supervised

fashion.

Second, we wondered whether alternative approaches could be found that would

better reflect continuous brain dynamics. Both for the synthetic and real dataset, it was

shown that the pre-softmax predictions of both the supervised and unsupervised models

revealed continuous data dynamics, which were more smooth over time than their post-

softmax counterparts. Note that the value of a pre-softmax prediction at one point in

time, has no direct physical interpretation, nor relative meaning with respect to other

stages due to the unnormalized nature. Nevertheless, it may contain clinically relevant

information when considering the interplay of these pre-softmax predictions over time

or across classes.

The fact that the final softmax activation was found a main contributor to

convert data-characteristics (e.g. the the slow wave power) to label characteristics

(the hypnodensity plot), validates our annotation model as provided in eq. (2). It

also implies that the uncertainty that is present in the labelling process (visualized in

the hypnodensity representation) is, at least partly, caused by mixture of sleep stage-

dependent data characteristics in the windows. The hypnodensity plot, while displaying

the label distribution, is thus not fully independent of the continuities of the sleeping

brain, and still provides a (non-linear) reflection of those.

6.2. Future work

Despite the fact that the largest part of the unsupervised model was trained without

expert annotations, and the supervised classifier only exhibited low capacity, a difference

was still found between pre- and post-softmax predictions of this model (as discussed

ealier). This difference thus teaches us that the low-capacity classifier still pushed

the post-softmax predictions of the CPC model towards the label distribution. When

interested in the continuous dynamics of the sleeping brain, it was thus seen that the pre-

softmax predictions would be more suitable to consider, but they were already mentioned

to be unnormalized. This finding opens up a new research direction, in which one

may investigate how CPC/unsupervised embeddings can be mapped to AASM classes,

without relying (again too much) on the labels during classifier training.

For the supervised model, the authors of [3] observed a more smooth hypnodensity

representation when using memory, implemented as a Long Short-Term Memory

(LSTM) cell, as part of the model. Addition of such memory is expected to have a

similar effect on both supervised and unsupervised models, and therefore hypothesized

to not change the drawn conclusions. Still, as suggested by [3], it will likely improve

smoothness of the hypnodensity plots of both models, which might be desirable in certain

circumstances. Note, however, that this smoothing property may hamper visibility
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of rapidly-changing patterns, which might be a biomarker of certain sleep disorders.

Memory should therefore be used with caution.

In this research, we did not investigate influence of design choices like data window

length (which was fixed to 30 s), and the number and type of measurement channels

used. The former is, however, not expected to change the drawn conclusions regarding

interpretability of hypnodensity representations, but using smaller windows might

facilitate research to local sleep phenomena as the predictions would suffer less from

temporal aggregation of data. Regarding the number of channels, the authors of [16]

depicted (supervised) hypnodensity plots, predicted from one EEG channel only, and

showed that these plots did not drastically differ dependent on the chosen channel.

However, visual inspection revealed that their single-channel hypnodensity plots yielded

higher entropy than the presented (supervised) hypnodensity plot in this work and

in [3]. Since conventional ICA requires at least a number of measurement channels

equal or larger than the number of sources to be revealed, it might be expected that

the number of channels fed to a machine learning model that (implicitly) performs

(non-linear) ICA under our signal model, may affect the hypnodensity plot as well.

Research that compares hypnodensity plots, predicted from one or multiple channels

might therefore be useful, especially with an eye upon the raising trend of consumer

electronics for measuring sleep that tend to incorporate fewer sensors (i.e. channels)

than the conventional PSG recording.

7. Conclusion

In this work, we investigated how to interpret the recently-proposed hypnodensity

representation [3] of a PSG recording, when predicted by either a supervisedly-

or unsupervisedly-trained (Contrastive Predictive Coding) machine learning model.

Moreover, the final softmax-activated outputs, as well as the pre-softmax predictions, of

both models were analyzed. The following conclusions could be drawn: A hypnodensity

plot, predicted by a supervised model, reveals the label distribution from which sleep

stages were (implicitly) drawn/assigned during manual sleep staging by a sleep expert.

In other words, it reflects the uncertainty of a human decision process of assigning

AASM labels. It, therefore, is a representation of sleep, which is highly dependent on

the amount of the expert’s scoring uncertainty (i.e. the value of τ in our model).

A hypnodensity plot predicted by an unsupervised model, on the other hand, was

shown to be less dependent on this uncertainty, and therefore provides a more robust

representation of sleep.

Despite the revelation of ample information in the hypnodensity plot (with respect

to a hypnogram), potentially relevant information on continues processes in the sleeping

brain may have been non-linearly transformed due to the final normalizing softmax

activation (both for supervised and unsupervised training). The pre-softmax class

predictions, on the other hand, were shown to have a better linear relation with

continuous brain dynamics.
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Thus, when aiming for a hypnodensity representation that represents AASM

label probabilities, using an unsupervisedly-trained model seems most safe to prevent

conclusions that are (too much) biased by label characteristics of the used dataset. When

continuous dynamics of a specific sleep stage are to be investigated, the (unnormalized)

pre-softmax prediction for that stage might be more suitable.

This work opens up new research directions regarding the effect of the number

of channels, used window length, and model design choices on both supervised and

unsupervised models that predict hypnodensity plots. Moreover, biomarkers in both

pre- and post-softmax predictions might be searched for that distinguish different patient

groups.
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Appendix A. Symbols and notations

Table A1 shows the most used symbols and notations, as used in this work.

Symbol Domain Meaning

C N Number of classes, indexed with 1 ≤ c ≤ C

W N Number of non-overlapping 30-second windows in a

recording, indexed with 1 ≤ w ≤ W

K N Number of recordings, indexed with 1 ≤ k ≤ K

l N Number of samples in one 30-second window

L := W × l N Number of samples in one recording

ch N Number of recording channels

X(k) Rch×W×l All data of recording k

X
(k)
w Rch×l 30-second data window with index w of recording k

S(k) RC×W×l Signals of C classes of recording k

s
(k)
c RL Signal belonging to class c for recording k

Ã(k) RC×W×l
≥0 Unnormalized amplitudes of recording k

A(k) {RC×W×l
≥0 :

∑
c A

(k) = 1} Normalized amplitudes of recording k

Ã
(k)
w RC×l

≥0 Unnormalized amplitudes in window w of recording k

A
(k)
w {RC×l

≥0 :
∑

c A
(k)
w = 1} Normalized amplitudes in window w of recording k

ã
(k)
c RL Unnormalized amplitudes of class c of recording k

a
(k)
c RL Normalized amplitudes of class c of recording k

Y(k) {0, 1}C×W One-hot embeddings of ground-truth class labels of

recording k

y
(k)
w {0, 1}C One-hot embedding of ground-truth class label for

window w of recording k

ŷ(k) {RC×W
≥0 :

∑
c ŷ

(k) = 1} ‘Soft’ class predictions of recording k

ŷ
(k)
w {RC

≥0 :
∑

c ŷ
(k)
w = 1} ‘Soft’ class prediction for window w of recording k

ŷ
(k)
w;super := ŷ

(k)
w {RC

≥0 :
∑

c ŷ
(k)
w;super = 1} ‘Soft’ class prediction for window w of recording k by

the supervised model.

ŷ
(k)
w;cpc {RC

≥0 :
∑

c ŷ
(k)
w;cpc = 1} ‘Soft’ class prediction for window w of recording k by

the CPC model.
ˆ̃y
(k)
w;super RC Pre-softmax class prediction for window w of recording

k by the supervised model.
ˆ̃y
(k)
w;cpc RC Pre-softmax class prediction for window w of recording

k by the CPC model.

Table A1: The meaning and domain of the symbols used in this work that are related to data

and their annotations.

Appendix B. Encoder architecture and training details

The architecture of the encoder followed standard practice in supervised classification

model design [5]. Enc(·) comprised three consecutive blocks, where each block containd

a 1D temporal convolutional layer, activated by a LeakyReLU (negative slope of 0.01),

followed by a 1D max pooling layer, and finally a dropout layer (p = 0.1). After the

third full block, a fourth 1D convolutional layer was added, followed by average pooling
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that reduced the temporal dimension to size 1, creating a 1D embedding of size F . All

convolutional layers had a bias term, and used strides and dilations of 1. The number of

channels differed for the real data (16, 32, 64, 128) vs synthetic data (4, 8, 16, 32) setup, to

account for the higher complexity of real data. The used kernels were of size (15, 9, 5, 3)

for the four convolutions, and the max pooling layers used kernels of size 5 (with stride

5).

In order to make the fairest between supervised and unsupervised training (see

Section 4.2.2), we kept both the parameter initializations and the encoder’s design

equivalent for both strategies (except for the dropout rates in the CPC encoding trained

on synthetic data, for which lower values appeared more beneficial: (0.1, 0.0, 0.0)).

All supervised models were trained using the categorical cross-entropy (or negative

log-likelihood) loss, in batches of 128 training pairs. Unsupervised encodings were

trained with the CPC objective as given in eq. (8), and batches of size 64. The Adam

optimizer with default settings [17] was used in all experiments, with a learning rate

of 1e-4 for most experiments. Only the supervised classifier, and CPC encoding on

synthetic data were trained with learning rates of 1e-3 and 5e-4, respectively. All

models were maximally trained for 500 epochs, where one epoch defined one push trough

of each data window in the training set. The classifiers trained after CPC encoding,

were maximally trained for 100 epochs. In each experiment, the model with the lowest

validation loss was finally selected. All experiments were run with the same seed for

randomization.

Appendix C. Data sets

Appendix C.1. Synthetic data

To create a synthetic dataset, the signal model as introduced in eq. (1) was used. Each

channel (ch = 3) in X was modelled as a non-linear combination of a set of (C = 3)

independent signals, where each signal represented a (fictitious) sleep stage. The data

of ‘recording k’ was defined as X(k) = h(Ã(k) ∗ S(k)), where Ã(k) ∈ RC×W×l
≥0 are the

unnormalized amplitudes of recording k, and S ∈ RC×W×l the corresponding signals.

Each signal s
(k)
c was generated as a (discretized) sinusoidal signal, with a frequency

between fc − 0.5 and fc + 0.5 Hz, a random phase, and an amplitude ã
(k)
c that is

described by a smoothened square wave (sw). More specifically, for each k, we defined

three independent signals, with c ∈ {1, 2, 3}:

s(k)c [n] = sin{2π(
fc + u[−1

2
, 1
2
]

fs
)[n] + 2πu[0, 1]}, (C.1)

with u[a, b] being a realization of a uniform random variable between a and b, and

{f1, f2, f3} = {2.5, 6, 11} Hz. Each signal’s length was L = 5.4e5 samples, sampled at a

frequency of fs = 100 Hz, resulting in a ‘recording’ of 5400 seconds, thereby mimicking

the length of one average sleep cycle.
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The (unnormalized) amplitude ã
(k)
c of the cth signal of subject k, was defined as:

ã(k)
c [n] =

Hanningν ⃝∗ sw[n; Φ]

|Hanningν |
, (C.2)

where ⃝∗ denotes a convolutional operator, ν = u[ 1
20
, 1
4
]Lfs is the length of the applied

Hanning window, and the square wave’s parameters are given by Φ = {period =

L, sampling freq = fs, duty cycle = 1
2
, phase = 2πu[0, 1],min value = 1

100
,max value =

u[1
2
, 1]}.
From the earlier definition of X(k) it can be seen that mixing function h(·) is

independent of k, i.e. ‘recording’-independent. This results in a simplified but valid

model, since certain sleep stage characteristics are in practice also measured more in

certain channels than in others for all subjects (e.g. slow waves are mainly recorded

in the frontal EEG electrodes). Only small deviations - resulting from inter-patient

differences - are not captured by choosing one shared setting. For brevity, we define

asc := ã
(k)
c ∗ s(k)c here. We defined the non-linear mixing in h(·) as:

h(A(k) ∗ S(k)) =

 0.3 as1 ∗ as1 + 0.7 as3
0.6 as1 + 0.4 as2 ∗ as3

0.4 as1 + 0.5 as2 + 0.1 (as3)
2

 .

We finally generated K = 200 random ‘recordings’, which were split into a training,

validation and a hold-out test set of sizes 75, 25, and 100, respectively. Figure 2 shows

an example from the test set, with normalized amplitudes (or mixture coefficients) on

the left, and the corresponding unnormalized amplitudes on the right. From the right

figure it can be seen that the heights, phases, and the steepnesses of the amplitudes

differ per signal, caused by the injected stochasticity in the data generating process.

As a result of this stochasticity, we see that at any moment zero to three class signals

stages might co-exist. Absence of characteristics belonging to any of the sleep stages,

might in practice occur when electrodes become disconnected.

Appendix C.2. Polysomnography data

We used a dataset of nocturnal PSG recordings, collected as part of the Healthbed

study, which’s main aim was development of technologies for sleep analyses. The

study prototcol (W17.128) was approved by the medical ethics committee of Maxima

Medical Center, Veldhoven, the Netherlands. The dataset includes one clinical video-

PSG recording for each subject, made according to the AASM recommendations in

Sleep Medicine Center Kempenhaeghe. The data analysis protocol for our study

(CSG 2021 007 00) was approved by the medical ethics committee of Sleep Medicine

Center Kempenhaeghe (11/11/2019).

The study included 96 (60 females) healthy subjects, with an age between 18 and

64. The exclusion criteria were: 1) any diagnosed sleep disorder, 2) a Pittsburgh Sleep

Quality Index [18]≥ 6, or Insomnia Severity Index [19] > 7, 3) indication of depression or
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anxiety disorder measured with the Hospital Anxiety and Depression Scale [20] (score >

8), 4) pregnancy, shift work, use of any medication except for birth control medicine, and

5) presence of clinically relevant neurological or psychiatric disorders or other somatic

disorders that could influence sleep.

Visual sleep staging on windows of 30 seconds was performed according to AASM

criteria [2] by an experienced and certified sleep technician. from Sleep Medicine Center

Kempenhaeghe. In a previous institutional sleep scoring reliability check, inter-scorer

reliability of this technician, compared to other experts was assessed at 85.6% on average

(range 83-88%).

From the full PSG recordings, we selected EEG (F4, C4, O2, F3, C3, O1), chin

EMG (Chin2, Chin1), and EOG (E2, E1) derivations, since these are typically used for

manual AASM scoring as well. Since the EEG and EMG derivations contain redundancy

among the left and right hemisphere, the odd and even measurements of all subjects

were added as separate recordings to the final dataset ‡. For simplicity, the two EOG

recordings were split in a similar fashion, even though these recordings can not be

considered fully redundant. As an example; channel data X(k) ∈ R5×W×l, where k, e.g.,

refers to the even recording of one of the subjects, thus contained the F4, C4, O2, E2,

and Chin2 derivations.

Following [3], all derivations were filtered with a zero-phase (i.e. two-directional)

5th order Butterworth band-pass filter, with cut-off frequencies of 0.2 and 49 Hz. It

was followed by another zero-phase 5th order Butterworth notch filter between 49 and

51 Hz, to better suppress powerline interference. All channels were originally recorded

with a sampling rate of 512 Hz, but (after filtering) down-sampled to 128 Hz to reduce

computational complexity. Channels were normalized within-patient and per channel,

yielding mean subtraction, followed by normalization such that amplitudes of 95% of

the samples were mapped between -1 and +1.

Finally, the data were randomly split in a training, validation and hold-out test

set, comprising respectively K = 150, K = 20, and K = 22 recordings (each recording

being either even or odd). Even and odd recordings from the same subject were in all

cases assigned to the same subset.
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