
Practices and Infrastructures
for ML Systems – An Interview
Study in Finnish Organizations

Dennis Muiruri, Lucy Ellen Lwakatare, Jukka K. Nurminen and Tommi Mikkonen
Department of Computer Science, University of Helsinki
Email: dennis.muiruri, lucy.lwakatare, jukka.k.nurminen, tommi.mikkonen @helsinki.fi,

Abstract—Practices and infrastructures for developing and maintaining machine learning (ML)
enabled software systems are often reported by prominent and experienced data-driven
organizations. However, little is known about the state of practice in other types of organizations.
Using interviews, we investigate practices and toolchains for ML-enabled systems from sixteen
organizations across various domains in Finland. Our study observes the high adoption of some
well-established AI engineering practices and tools, especially in conducting ML model
experiments. However, the field still needs to define and establish practices and tools for the
end-to-end testing of ML systems and monitoring the ML models in production.

1. Introduction
Today, artificial intelligence (AI) is incorpo-

rated in many real-world software systems and
services. However, research on the development,
deployment, and maintenance of AI-enabled sys-
tems in industrial settings report this to be a
challenging task [1, 2]. Large companies, like
Google [3] and Facebook [4], often report their
development practices and infrastructure for AI
solutions that are useful for learning. However,
many organizations are yet to adopt and tailor
the suggested development practices and infras-
tructures to narrow the gap from mere prototyping
to deploying to production AI solutions [5].

Machine learning (ML) is a subset of AI,
and its techniques involve the use of high-quality
data. ML logic is not explicitly programmed but
is rather learned from data. The development of
industrial ML-enabled software systems involves
ML pipelines that consist of several interlocking
steps. To support the different steps, end-to-end in
one environment, ML platforms like TensorFlow
Extended (TFX) [3] have been proposed to ensure

increased automation across the steps.
Since industrial ML pipelines can be complex,

understanding their characteristics is essential.
In a large organization like Google, some 3000
ML pipelines comprising over 450,000 trained
ML models continuously update the models at
least seven times a day [6]. The need to support
regular model training and updates in produc-
tion is a common requirement in most industrial
ML-enabled systems because the performance of
models deteriorates over time [1].

Most empirical literature presents develop-
ment and maintenance practices of ML-enabled
systems from the perspective of a single, often
large and experienced online organization. In
contrast, we aim to provide empirical evidence
of the practices and infrastructure setups across
a diverse set of companies in various domains.
Through interviews, this study investigated ML
workflow practices and toolchains that are used
in the development, deployment, and maintenance
of ML-enabled systems in selected organizations
in Finland. Our main contributions include:

1



• Empirical evidence of the enacted practices in
ML workflows (Section 4),

• Tool adoption in ML pipelines (Section 5) and
areas of future research (Section 6).

2. Background and related work
2.1. Software engineering (SE) for ML

Adaptation and incorporation of well-
established SE methods in the development
of ML systems are crucial [7]because they
emphasize other important aspects beyond ML
algorithms [1]. With the practices, organizations
can address several challenges reported at the
different stages of the taxonomy that depicts
the evolution of the use of ML components
in software-intensive systems (experimentation,
non-critical deployment, critical deployment,
cascading deployment, and autonomous ML
components) [2].

Serban and van der Blom [5] developed a
catalog of 29 SE practices for ML applications
based on literature and later measured their adop-
tion rate through a survey with 313 practition-
ers.The catalog includes SE practices about data
(e.g., employing sanity checks for all external
data sources), training (e.g., use versioning for
data, model, and training scripts), coding (e.g.,
using continuous integration), deployment (e.g.,
automate model deployment), team (e.g., collab-
orating with multidisciplinary team members),
and governance (enforcing fairness and privacy).
Compared to our study, some of the reported SE
practices are too general. The lack of details gives
room to multiple interpretations, for example, the
named practice to use continuous integration. In
addition, we study practice enactment also by
investigating the toolchains, for which the authors
[5] had only speculated to influence the adoption
rate of specific practices.

2.2. ML workflow and pipelines
ML workflows describe different tasks per-

formed to develop, deploy, and operate ML mod-
els [7]. ML pipelines express complex input/out-
put relationships between different tasks/opera-
tors of an automated ML workflow [6]. Gener-
ally, ML pipelines plug together several tools to
automate ML workflows [8].

A typical ML workflow life cycle includes
model requirements, data collection, cleaning, la-

beling, feature engineering, model training, eval-
uation, deployment, and monitoring [7]. Studies
show that end-to-end automation of ML work-
flows improves ML models’ quality, traceability,
development time, and deployment rate [6, 8].
Furthermore, it allows organizations to reuse
common workflow steps across multiple ML sys-
tems [3, 8].

Few studies report the characteristics of ML
pipelines in terms of their components, archi-
tectures, and tools [8, 6]. Unlike our qualitative
analysis, Xin et al [6] quantitatively analyzed
over 3000 ML pipelines at Google and presented
their high-level characteristic concerning pipeline
lifespan, complexity, and resource consumption.
For the complexity of ML pipelines, the au-
thors analyzed typical input data shape, feature
transformation, and model diversity. Model di-
versity showed that a large portion was neural
networks (NN) (64%) and model type and archi-
tecture influence the characteristics of the result-
ing ML pipelines. The authors [6] identified data
management-related areas as key for optimizing
ML pipelines.

3. Methodology
An exploratory multiple-case study [9] was

conducted between March and August 2021. The
research method was selected to gain a deep
understanding of the enacted practices and tool
support for ML systems in real-world settings.
The main research questions (RQ) include:

• RQ1. What practices are applied in the de-
velopment, deployment, and maintenance of
industrial ML-enabled software systems?

• RQ2. What tools are used to support the de-
velopment, deployment, and maintenance of
industrial ML-enabled software systems?

3.1. Research design and case selection
The main goal of our study is to understand

the state-of-practice of ML-enabled systems’ de-
velopment and toolchain within the Finnish con-
text. In this study, a case (Table 1) is an organi-
zation in Finland with experience in developing,
deploying, and maintaining ML-enabled software
systems. The main criterion for case selection
is that the ML-enabled software system must be
operational in a production environment.

2



We first identified relevant practitioners from
different organizations and adapted an interview
guide used in earlier research [2]. For the current
study, we modified questions under the project
background and characteristics section of the in-
terview guide to only inquire about operational
ML systems rather than practitioners’ general
experience in ML projects. This was done to
exclude ML systems in the experimental stage
because they often have immature practices and
toolchains [2]. In addition, we added new ques-
tions to the interview guide that inquired about
the infrastructure and tools used. The identified
practitioners (or their organizations) were primar-
ily known to be working on ML solutions by
the researchers, and others were gathered from
LinkedIn.

We reached out to 37 organizations via e-
mail, out of which 16 agreed to participate in the
study. Generally, practitioners were free to choose
whether (and who) to participate, but researchers
purposefully ensured that the organizations were
varied in terms of sector and size. Interviewed
practitioners had varying roles, as seen in Table
1. Academically, ten (43%) practitioners hold a
Ph.D. degree, ten (43%) hold a Master’s degree,
and two (9%) have a Bachelor’s degree. Ten cases
are large organizations, and five constitute small
or medium-sized organizations with revenues be-
low C50 million based on 2020 financial reports.

3.2. Data collection
Research data was primarily collected through

semi-structured interviews conducted by two re-
searchers. A total of 23 practitioners from the
16 organizations were interviewed between 24th

March and 27th April 2021. All interviews were
conducted virtually due to COVID-19. Each in-
terview session took, on average, 80 minutes.

During the interview session, the researchers
presented details of the study and requested con-
sent to record the interview. One researcher asked
the question outlined in the interview guide that
contained five broad categories: data manage-
ment, model training, model deployment, model
monitoring, and general challenges. The inter-
view guide was not strictly followed to allow
probing questions depending on the interviewees’
responses and expertise. All recorded interviews
were automatically transcribed using Otter.ai, and

the researchers manually corrected errors in the
transcriptions.

3.3. Data analysis
Analysis of the interview transcripts mainly

consisted of two coding steps and a session to
discuss and harmonize the codes [9]. A deductive
approach formed the first stage of our coding
process in which main themes informed by the
structure of our interviews were outlined. The
themes constituted the high-level codes in our
analysis, and these included: role and responsi-
bility, organization, ML usecase, Practices, Chal-
lenges, and Tools. The actual coding of data was
done in an iterative manner using both deductive
and inductive [9] approaches within each group
and applied broadly at a paragraph or statement
level. The sub-groups were further refined during
researcher meetings.

4. Practices in ML workflow (RQ1)
This section presents common practices ob-

served across the cases as summarized in Table 2.

4.1. Data management
Data collection and storage are handled in

various ways: batch loading data from internal
systems, streaming from devices/sensors, extract-
ing from third-party vendors APIs or open-source
repositories. The training data is then commonly
stored in cloud platforms, as shown from data
sources in Table 1.

Low-level metrics such as IOPS (I/O Opera-
tions Per Second) are considered when choosing
a storage architecture; data fetching can constitute
a sizeable amount of the overall model train-
ing time. Case E uses a mounted discs solution
instead of a network drive accessed via a web
interface.

Data storage formats are factored in when
considering the scalability of data processing
pipelines, data portability between computing en-
vironments, and support of different ML frame-
works. Case H uses Apache Parquet in favor of
CSV (Comma Separated Values) or TSV (Tab
Separated Values) file formats commonly used
to store structured data for analytics purposes.
Case G uses NetCDF to implement a generic data
interface to abstract data across ML frameworks
and computing platforms.

3



Table 1. Summary of ML usecase, frameworks, data sources and storage platforms across cases. (*of the ML usecase)
(Cases often use cloud storage providers with data centers in Finland or within the European Union, following customer
preferences or regulatory constraints)
GCP: Google Cloup Platform, AWS: Amazon Web Services, AC: Azure Cloud

Case Interviewee Role ML usecase (Type) Domain* Data Source Storage ML-Framework

A Chief ML Eng.,
Founder

Object Detection (NN) IoT Camera GCP Tensorflow

B Chief ML Eng. Form data extraction (NN) Finance Internal Systems AWS Tensorflow
C Architects (2), data

scientist (2)
Form data extraction (NN) Public

Services
Internal Systems On-

premise
Tensorflow,
PyTorch

D Chief Scientific
Officer

Transcription (NN) Healthcare Internal Systems GCP Kaldi ASR frame-
work

E Head of NLU Speech based UI (NN) E-Commerce Open-source,
End-users

GCP PyTorch

F ML Eng, Founder MLOps (NN, Non-NN) IT Services Camera - Multiple
frameworks

G ML Eng. MLOps (NN, Non-NN) Energy Internal systems AWS Tensorflow, Scikit-
Learn

H Solution Architect Risk management (Non-
NN)

Finance Internal systems AWS Scikit-Learn,
Heuristics

I Data Science Mgr Predictive maintenance
(Non-NN)

Engineering Sensor and Tech-
nicians

AWS Spark Analytics,
Heuristics/Rules

J Data Architect Predictive maintenance
(Non-NN)

Biochemicals Sensor AC -

K Data Scientist Anomaly detection (Non-
NN)

Real Estate Meters AC Scikit-learn,
XGBoost

L Computational Bi-
ologist

Data analysis (Non-NN) Pharmaceutical Device, Genome AC R

M Data scientists (2),
Director of Con-
sulting Business

Report/Document classifi-
cation (Non-NN)

Healthcare Internal systems AC PyTorch,
Scikit-learn
(Classification)

N Principal Data Sci-
entist

Chatbots, Profiling (NN) Finance Internal systems AWS Watson(IBM), Ten-
sorflow

O Solution Architects
(2)

ML pipeline automation
(Non-NN)

IT services Internal Systems AC -

P Data Scientist Marketing/campaign man-
agement (NN)

Media Internal systems AWS Scikit-learn, Tensor-
flow, fastText

Data discoverability and accessibility is em-
phasized in setups that feature a data lake or
where different data types are collected. Case O
describes a solution to this problem based on
maintaining a data catalog where data and its
value are described. Data governance and related
processes can limit the use and scope of data
accessible for ML purposes.

Data validationtechniques are commonly ap-
plied as a means of controlling data quality.
However, data types influence the type of valida-
tion approaches used. Validation of Image/video,
speech, and text tend to require human actors
supported by custom tools. For example, a hu-
man validator ensures that objects fall within the
annotated bounding boxes in an object detection
setting. While a human speech validator ensures
recorded utterances are coherent and consistent
with corresponding text. Case D uses additional
heuristics for detecting anomalies between gen-
erated texts and submitted utterances. Numerical

data types usually are easier to validate automat-
ically.

Data validation in Case O is done at a
schema and data level. A dedicated data stewards
maintain the schema. Delegating quality control
ensures a team managing the data lake ingests
data indiscriminately. When data is sourced from
third-party vendors, the vendor is expected to
maintain quality controls (Case P).

Data integrity controls ensure data is not
changed unexpectedly. Case D and F apply hash-
ing as part of data processing pipelines; this
ensures training data is verifiable and traceable
with respect to a model’s lineage. Additionally,
this practice ensures that attempts to overwrite
data are flagged appropriately.

Generally, when hashing is not a suitable
approach, for example, when dealing with image
files, other custom tooling and heuristics are used
to perform anomaly detection; Cases B and I
make use of this approach.

4



Data labelling and annotation tend to be un-
dertaken manually using custom tools developed
to standardize the process. Inconsistent labels are
sometimes encountered due to subjective interpre-
tations, resulting in poor data quality. Case B im-
plements a standardized way of normalizing and
giving common meaning to concepts to overcome
such issues.

Data understanding requires domain knowl-
edge for teams to generate valuable insights from
data in specialized domains. Domain knowledge
is cited as a necessity in the entire life cycle of the
data. For example, handling data from chemical
processes or mechanical parts of large systems is
represented in cases I, J, and L.

In general, challenges in data management
practices are mainly attributed to data quality as-
pects. For example, sensor problems, inconsistent
labeling, programming errors in data handling
software, etc.

4.2. Model training
ML algorithm selection and transfer learning

The choice of ML algorithms is influenced by
training data type and formulation of the learning
problem during requirement elicitation. Heuristics
are used in cases H and I to complement ML
algorithms; in both cases, an explicable decision
based on heuristics is preferred compared to
an ML solution with high prediction accuracy
but inexplicable. The ML-heuristic trade-off
tends to arise due to business sector regulatory
constraints.

Transfer learning is typically used to train
large NN efficiently, for example, in speech
recognition and computer vision settings. This
is mainly because model convergence can be a
prolonged process that requires significant com-
puting resources. Transfer learning is based on
publicly available models or proprietary models.

In cases A and F, computer vision systems uti-
lize transfer learning to test different CNN archi-
tectures. Case M’s NLP solution is trained using
transfer learning to overcome data insufficiency
challenges. Case B applies transfer learning based
on proprietary models as a cost management
strategy.

Training NN without transfer learning can be
driven by two factors observed in cases D and
E. One, there is sufficient data and computing

resources for training a model to convergence.
Two, there is limited availability of suitable open-
source models.

ML frameworks used across the cases can
be broadly categorized as either Neural Net-
work (NN) or classical (non-NN) frameworks.
Tensorflow-Keras and PyTorch are the two com-
monly used frameworks for developing NN mod-
els, as summarized in Table 1.

Although ML frameworks may provide simi-
lar core features, the choice of the framework can
be based on a framework’s usability, flexibility,
or underlying efficiency in utilizing computing
resources. For example, both cases D and E
develop ASR models but use Kaldi and PyTorch
frameworks, respectively. Frameworks can ma-
ture into specific domains at varying rates, and
therefore teams might adopt different frameworks
for such historical reasons. Analytics frameworks
such as Spark also feature in case I.

Overall, challenges in model training relate to
infrastructure costs, complexities of tuning, and
identifying explainable factors about a model’s
performance.

4.3. Model evaluation and experiment
management

Model training is an iterative process with
distinct stages; determining the suitability of data
and algorithms, parameter and hyper-parameter
optimization, and model evaluation. Managing
metadata from these stages makes the ML work-
flow traceable and reproducible.

We note three unique approaches used to
evaluate models. One, data is stored according
to its quality, which enables composing datasets
with different levels of quality for training and
validation purposes (Cases D and E). The sec-
ond approach uses model ensembles, where each
model is trained on a unique subset of the data
(Case B). The third approach applies a config-
urable inference algorithm where each configura-
tion uses a unique adaptation of the model (Case
E).

To manage model evaluation results, case or-
ganizations either use dedicated experiment track-
ing tools (case G, I, N, O, and P), log process
metadata (case B, E, F) or generate hashes (case
D). Hashing involves computing hash values on
given combinations of ML artifacts (data, con-

5



Table 2. Summary of practices and challenges

Practices Challenges
ML workflow

Data management • Batch or stream data loads largely from internal systems, third party vendors
or devices and sensors

• Co-location of data and compute to reduce I/O latency in data transfer
• Selecting data storage formats (e.g., Apache Parquet) with great considera-

tion of scalability, portability, ML frameworks
• Data documentation (e.g., data catalogue) for fast data identification
• Employing data validation approaches (e.g., descriptive statistics and

schema) that are tailored to the types of data
• Maintaining data quality by a dedicated team or third party vendor
• Determining data quality metrics from domain knowledge especially in

highly specialized settings

• Determining ownership of data quality aspects especially in large
organizations or when data collection is outsourced

• IoT related factors such as sensor outage, network latency or low
traffic priority, sensor quality etc.

• Programming defaults in data collection components can lead to
poor data quality through subtle hard to notice errors.

• Lack of standardized annotation formats across DL networks espe-
cially in computer vision reduces interoperability across network
architectures.

Model training
& evaluation • Selecting ML algorithm based on available data and learning problem

formulation during requirement elicitation and exploratory experiments
• Using heuristics to compliment or over ML algorithm when constrained by

regulations or the complexity of models
• Employing transfer learning to effectively and accurately train DL models.
• Flexibility to choose standard ML frameworks e.g. Tensorflow and PyTorch

as popular in DL, and Scikit-Learn and XGBoost in non-DL
• Using ML frameworks that offer great flexibility, efficiency and usability
• Employing multiple approaches to evaluate quality of ML models e.g., using

validation dataset stratified by quality
• Managing and tracking model evaluation results using experiment tracking

tools, or metadata and hash-based approaches.

• The cost of training deep learning models from a clean start can
be prohibitively high

• Determining model explainability
• Feature extraction and hyper parameter tuning can be a time

consuming activity especially in organization with different types
of data.

• Model benchmarking was highlighted as an inherently difficult task
given that it is challenging to replicate publicly available state of
the art models and related results.

Model
Deployment &
Monitoring

• Inference serving through REST based API endpoints deployed in public
cloud environments

• Inference serving with strict latency requirements through gRPC endpoints
as opposed to REST endpoints.

• Model deployment for either batch inference or online inference purposes
• Monitoring at different parts of the pipeline, to ensure data quality, model

quality and performance and infrastructure utilization

• Deploying models within organizations that do not use the cloud
environment can be a lengthy process due to relevant data gover-
nance protocols.

• Monitoring model or data drift in deployed systems can be a
challenge due to lack of visibility especially in scenarios where
input data cannot be saved due to GDPR related constraints.

ML Pipeline • Version control code and all pipeline related artifacts e.g. in git, and
provision execution environment using infrastructure-as-code frameworks
e.g. Terraform

• Encapsulating ML training workflows in docker containers to increase
portability

• Using common container orchestration platforms e.g., Kubernetes to build
scalable containerised pipelines

• Using ML workflow automation tools e.g. Argo and kubeflow to execute
schedule ML training pipelines and queues

• Tracking ML training experiments largely in custom ways e.g. hashing and
custom web tools but also with ML workflow automation tools.

• Employing continuous integration tools e.g., Jenkins to test and build docker
images prior to deployment

• Maintaining an up to date stack of tools frameworks requires
rigorous testing to avoid regression errors and dependency breaks
across tool chains.

• Pipelines can become quite complex especially when dealing with
complex DL architectures where multiple models are maintained.

• Skills required to run end-to-end automated ML pipelines are not
easily available.

figurations, model) following the execution of an
ML pipeline.

Case E and F generate and collect metadata
(e.g., Git hashes), which are used to produce
custom reports. These approaches are summarised
in Table 3.

Systematic management of experiments facil-
itates workflow automation and further increases
the traceability and reproducibility of ML work-
flows.

4.4. Model monitoring

Training data drift commonly occurs due to
structural changes in the data generating process.
Identifying drift in numeric data types is be
achieved by using visual tools such as graphs or
descriptive statistics (cases G, H, I), image-based
data makes use of histograms (case F). Speech
and text-based data is also susceptible to drift but
can be more challenging to monitor. For example,
case D mentioned the emergence of the word
COVID-19 in the medical sphere recently, but
the word is not available in any historical corpus.

6



Typically, heuristics are used to monitor drift in
these speech or NLP settings.

Model drift can occur due to data or concept
drift, and it is often manifested by a loss in a
model’s accuracy. Metrics such as accuracy and
error rates are commonly used to monitor pro-
duction models. For example, in a transcription
setting, measuring the character and word edits
required after inference were used (Case D) as
error metrics to monitor production models and
characterize any drift in the model.

Infrastructure monitoring is applied to ensure
models efficiently utilize resources (GPU/CPU,
memory, disk, network, etc.) or to flag technical
problems such as scaling designs and I/O bottle-
necks during training or inference. Cases D, E,
and G closely monitor endpoint latency since it
forms an important requirement of the entire ML
solution.

5. Tools in ML pipelines (RQ2)
This section presents common tools observed

across the cases as summarized in Table 3.

5.1. Version management
Model training code, often written in note-

books, and other project artifacts are version con-
trolled using tools like Git, Gitlab, and Bitbucket.
Data versioning is done by generating and ver-
sioning metadata using specialized tools, such as
DVC. Model training is conducted in public cloud
settings for most cases, while a few cases train
on-premises. To consistently provision training
environments, ’infrastructure-as-code’ practices,
using tools like Terraform (Cases A and E).
Inference serving is either done in batch or online
format.

5.2. ML training workflow
We observe that most case organizations

containerize (using docker) individual workflow
steps instead of encapsulating all workflow steps
in a single container. In ML, containerization
facilitates the isolation of different workflow
tasks/steps, making the workflow modular, trace-
able, and reproducible. We further note that con-
tainers are commonly orchestrated using Kuber-
netes, allowing easier migration of pipelines (or
parts of it) across infrastructure vendors. Data
transfers across workflow steps during training

are done using standard persistent volumes. How-
ever, large datasets may require using network
mounts (Case F).

ML workflows may include steps specifying
feature extraction, model training, and validation.
The complexity involved in these steps can vary
depending on the ML domain. Workflows can be
managed using a custom configuration tool (e.g.,
YAML-based) or a dedicated workflow toolkit.
In complex ML setups, frameworks such as Argo
(Case D) and Metaflow (Case G) are preferred.
We note that although high-level ML workflow
platforms, such as AWS SageMaker, provide an
end-to-end integration advantage, they are also
challenging to use when developing complex
models due to inflexibility (Cases B, G).

Those in support of custom tooling appreciate
the flexibility to add different tools to the work-
flow. For example, a tool such as an explainer
dashboard that facilitates a model’s explainability
is added as part of an ML workflow (Case A). An
alternative workflow setting can have a single step
containing multiple containers (data access data
and model training). Customized components that
provide access to these containers can be created
to monitor independent utilization of computing
resources at the container level (Cases C, G).

One overall advantage of using ML workflow
tools is that event-based training queues can be
orchestrated, for example, based on the continu-
ous arrival of training data. Tools like Apache air-
flow provide the functionality to schedule model
training based on given triggers.

ML experiments can be tracked using custom
web-based UI tools; this facilitates the evaluation
of results and model performance comparison
during the development process (Cases B and
F). To their advantage, custom platforms can
freely include any metadata the team considers
relevant (Case F). Plugins can also be developed
to integrate with existing open-source solutions
such as MLflow (Case G). Low-level training
metrics are observed with Tensorboard (Case A).

5.3. Continuous integration (CI) and testing
CI tools, such as Jenkins, are used to run tests

and build docker images based on model artifacts
resulting from the training workflow (Cases A,
D, G). Static code analysis and other tests check
general container functionality during the image

7



Table 3. Tools (*planned, - tool information not provided)

Case Version Man-
agement

Container
Platform

ML Training
Workflow

ML Experiment
Tracking

Model Reposi-
tory

ML Deployment,
Serving

Monitoring

A Github, Gitlab,
Bitbucket

Kubernetes Apache Airflow Tensorboard GC Container
Registry

Embedded with over
the air updates

Logging, Grafana

B Git Kubernetes Custom Metadata - API endpoint using
Bamboo

-

C Github OpenShift Custom None Nexus, S3 ob-
ject storage

REST API endpoint
on OpenShift,

(Prometheus,
Grafana)*

D Git Kubernetes Argo Hashing - API Prometheus,
Grafana

E GitHub Kubernetes Custom Metadata PostgreSQL - Prometheus,
Grafana

F - Kubernetes - Metadata - natively supports
REST API endpoint
on Kubernetes

Logging, Elastic
Search, tool’s
Web UI

G GitHub Kubernetes Custom,
Metaflow

MLflow, Docker registry gRPC API endpoint
on Kubernetes, Kafka

-

H Git AWS Elastic
Container

Apache Airflow - S3 storage - AWS
CloudWatch,
Splunk

I GitLab - AWS SageMaker AWS SageMaker -
J - Kubernetes AzureML - Azure container

registry
Edge Server Azure Monitor

K Git - Azure ML - Streamlit -
L - - Azure ML - - R-Shiny apps -
M - - - - Nexus

repository
Batch prediction -

N Git AWS lamda AWS SageMaker AWS SageMaker S3 storage,
Databricks
model registry*

Batch prediction, Java
apps

AWS
CloudWatch

O Git, DVC Kubernetes Apache Airflow,
Kubeflow

MLflow,
kubeflow

MLFlow model
registry

REST API on Kuber-
netes

Logging, Grafana

P - - Databricks MLflow S3, MLFlow
model registry

API, batch, embedded -

building process (Case A, G). Domain-specific
tests are also executed to ensure the scope of a
model’s inputs and outputs is unchanged. These
tests generally extend testing to the entire pipeline
using small amounts of input data (Case D, F, G).

Docker images created from the CI system
are (automatically) deployed to a staging envi-
ronment for additional tests before deployment
to production. Typically, this may include testing
the model API’s data type (Case A, D), ensuring a
model makes sound predictions (Case E) and also
ensuring that the deployment procedure loads a
serialized model into the relevant API endpoints.

Trained models are generally stored in classic
data storage solutions or dedicated container im-
age registries. For example, Case E stores a model
and metadata about the model to a PostgreSQL
data warehouse. Case C stores trained models in
Nexus while case G uses docker registry to store
the models before deployment to production.

5.4. ML deployment and serving
The majority of the models are deployed

as REST (Representational State Transfer) API
endpoints on public cloud or on-premises servers.
Other deployment targets include embedding the

model on the actual application, such as a mobile
application (Case P) or deploying to IoT devices
through over-the-air deployments or onsite instal-
lations.

Models with strict inference latency require-
ments are deployed as gRPC (Google Remote
Procedure Call) API endpoints. Case C business
application has strict latency requirements and
uses the gRPC, which supports streaming.

Most cases implement custom serving infras-
tructure, although emerging model serving sys-
tems like KFServing and Seldon are tested in
Cases C and O, respectively.

Finally, we note that data scientists often do
not undertake deployment-related tasks, but these
are done by other dedicated teams with special-
ist knowledge, such as Kubernetes configuration
(Case G).

5.5. Monitoring
After model deployment, monitoring is per-

formed at different levels of granularity. The most
common form of monitoring is undertaken for
infrastructure management. Logging, monitoring,
and alerting services and tools, like Prometheuse
and Kubernetes logging (stackdriver), are used to

8



collect a cluster’s performance metrics. Metrics
are then visualized on dashboards using tools
like Grafana, Tableau, or other business analytics
tools. For models deployed as API, model logging
(e.g., model predictions) integration with services
like Elasticsearch and BigQuery can be used
to perform model health and quality checks in
production, e.g., average accuracy on sampled log
(Cases A, F, and O). Maintaining the collective
set tools used across a pipeline can develop into
a complex task, especially when dealing with NN
architectures.

6. Discussion and conclusion
As the AI engineering field is still making

progress in defining well-established processes,
there is a need for details on how such systems
are engineered [10]. Compared to existing litera-
ture, our findings of practices in ML workflows
(Section 4) and tools in ML pipelines (Section
5) presents the ‘how’ knowledge, in contrast to
cataloging the practices or tools used in ML
applications. This information can be used to
objectively analyze practices applied across or-
ganizations and identify areas to guide future
research that seeks to improve knowledge in the
field of AI engineering.

Following the taxonomy and challenges de-
scribed in [2], we consider the presented cases
to be at the critical deployment stage where ML
components need to co-exist with other general
software components in production systems. We
observed that practitioners were implementing
practices that also address all of the challenges
associated with this critical deployment stage [2].
In particular, tools and practices adopted in ML
workflows that are summarised in Table 3 and
Table 2 respectively are indicative of these solu-
tions. However, the challenge related to data man-
agement remains an active research area given
the increasing amount of data and disparity in
data types. Similarly, the challenges in subsequent
stages also need to be addressed, particularly
new techniques for monitoring the final models
observed in both studies.

Similar to [5], our results reveal a low adop-
tion of SE best practices in the deployment cat-
egory and a medium-to-high adoption in other
categories (data, training, team, and coding). We
also observed that smaller and younger orga-

nizations found it easier to adopt SE practices
and emerging tools than older organizations with
larger and distributed teams. We attribute this
disparity to legacy systems and processes in the
older organizations.

While the survey indicated that teams with
low experience have low adoption of the SE
practices, we observed the contrary that there
was a high adoption of the SE practices in
teams with limited experience. We attribute this as
mainly due to the field of AI engineering having
clearly defined the specific practices (e.g., track-
ing of model experiments) with supporting tools
(MLflow, Kubeflow) in academia and industry.
There remain several areas in the AI engineering
field where certain practices, e.g., data versioning,
are considered valid but lack well-established
knowledge of how to enact the practice and thus
are least adopted in the industry.

6.1. Implications to research
Practices and tools for data discoverability.

Obtaining good quality training data for ML
purposes is an arduous task more so due to the
increasing amount of data being produced and
the variability of data handling procedures across
different data types. Establishing efficient data
discoverability procedures would shorten ML
production cycles and increase experimentation
of ML models for R&D purposes.

Although feature stores have emerged as an
intermediate solution for managing data in ML
settings, there lacks empirical research on their
adoption rates, benefits, and applicability across
various data types and business settings.

Practices and tools for testing the ML models
and monitoring them in production. We observed
a lack of extensive end-to-end testing of ML
pipelines in the studied cases. In some cases
though, static analyses were performed on the ML
training code and the resulting container images
were tested.

We further note that monitoring of ML-
enabled system needs to extend beyond the
general infrastructure monitoring practices. A
model’s utility can be reduced by degrading ac-
curacy levels as a result of model drift. Although
data drift can be detected during development,
concept drift is more challenging to control in
production settings. The empirical effects of con-

9



cept drift and control practices are yet to be
explored in literature.

6.2. Implication to practice
Platforms vs. independent tools in ML. Gen-

erally, we make a similar observation to [6] that
practices in ML workflows and pipelines vary
based on factors, such as the type of data being
used in model training, availability of computing
resources, and the type of ML solutions being
developed. However, we also note two primary
ways organizations developed their ML pipelines.
One, they can compose a variety of tools to
orchestrate a pipeline. Two, teams can use inte-
grated frameworks/platforms such as SageMaker,
which contain inbuilt tools for various stages
of an ML pipeline. Most of the studied teams
preferred the first approach because it offers flex-
ibility and the ability to extract low-level infor-
mation provided by independent tools. However,
a common challenge when using separate tools
is the required high maintenance efforts. The few
teams that use the second approach preferred
the instant integration and support offered by
platform providers.

Dominant tools. Some well-established tools
in SE remain useful when engineering AI sys-
tems. Such tools relate to version management
(Git), containerization (Docker), and monitoring
(Prometheus). However, some of these tools are
arguably insufficient for other AI artifacts. For
example, code version management tools are not
suitable for data version management. Alternative
tools dedicated to ML settings are emerging to
address some of the inefficiencies encountered by
practitioners.

Model inference infrastructure. Following
general SE practices, ML API endpoints are
based on custom webservers. However, we note
there are initiatives to standardize model serving
servers through open development of a serving
API, which is realized by frameworks and tools
like NVIDIA’s Triton Inference Server.

6.3. Validity Threats
Construct validity. considers whether the con-

structs discussed in the interview questions were
interpreted in the same way by the researchers
and the interviewees. This was mitigated by shar-
ing the study objective and an outline of the

interview guide to practitioners before the inter-
view. During the interviews, a brief presentation
was given by researchers to communicate the
interview framework, and later the discussion was
tailored to practitioners’ expertise.

External validity. concerns generalization of
the findings and other threats that can cause
incorrect conclusions to be drawn from the study.
Despite having a global presence, the involved
organizations are from one geographical loca-
tion (Finland). This means the conclusions drawn
about the state of practice and tools for ML may
not be generalized for the whole SE industry
population.

Reliability. concerns the extent to which
data and analysis are dependent on specific re-
searchers. This threat to validity was mitigated
by having at least two researchers throughout
the research process. Furthermore, the results
were shared with practitioners to review before
submission for publication.

REFERENCES
1. D. Sculley et al, “Hidden technical debt in machine

learning systems,” in Advances in neural information
processing systems. Curran Associates Inc., 2015, pp.
2503–2511.

2. L. E. Lwakatare et al, “A taxonomy of software engineer-
ing challenges for machine learning systems: An empiri-
cal investigation,” in Extreme Programming Conference.
Springer, 2019, pp. 227–243.

3. D. Baylor et al, “TFX: A tensorflow-based production-
scale machine learning platform,” in International Con-
ference on Knowledge Discovery and Data Mining.
ACM, 2017, pp. 1387–1395.

4. K. Hazelwood et al, “Applied machine learning at Face-
book: A datacenter infrastructure perspective,” in In-
ternational Symposium on High Performance Computer
Architecture. IEEE, 2018, pp. 620–629.

5. A. Serban et al, “Adoption and effects of software
engineering best practices in machine learning,” in Inter-
national Symposium on Empirical Software Engineering
and Measurement. ACM, 2020.

6. D. Xin et al, “Production machine learning pipelines:
Empirical analysis and optimization opportunities,” in In-
ternational Conference on Management of Data. ACM,
2021, p. 2639–2652.

7. S. Amershi et al, “Software engineering for machine
learning: A case study,” in International Conference on
Software Engineering: Software Engineering in Practice.
IEEE, 2019, pp. 291–300.

8. W. Hummer et al, “ModelOps: Cloud-based lifecycle
management for reliable and trusted AI,” in International
Conference on Cloud Engineering, 2019, pp. 113–120.

9. P. Runeson and M. Höst, “Guidelines for conducting and
reporting case study research in software engineering,”
Empirical Software Engineering, vol. 14, no. 2, 2008.

10. I. Ozkaya, “What is really different in engineering AI-

10



enabled systems?” IEEE Software, vol. 37, no. 4, pp.
3–6, 2020.

Biographies
Dennis Muiruri is a member of the empirical software

engineering research group at the University of Helsinki. His
research interests include deployment and operations of ML
systems.

Lucy Ellen Lwakatare is a postdoc at the University of
Helsinki. She received her PhD from University of Oulu. Her
research interests include agile, DevOps and ML engineering.

Jukka K. Nurminen is a professor at the University
of Helsinki. He received PhD from Helsinki University of
Technology. His main interests are on tools and techniques
for data-intensive software systems, testing of AI solutions,
and software development for quantum computers.

Tommi Mikkonen is a professor of software engineering
at University of Helsinki and University of Jyväskylä. He
received his Ph.D. from Tampere University of Technology.
His interests include IoT, software architectures, and software
engineering for AI.

11


	Introduction
	Background and related work
	Software engineering (SE) for ML
	ML workflow and pipelines

	Methodology
	Research design and case selection
	Data collection
	Data analysis

	Practices in ML workflow (RQ1)
	Data management
	Model training
	Model evaluation and experiment management
	Model monitoring

	Tools in ML pipelines (RQ2)
	Version management
	ML training workflow
	Continuous integration (CI) and testing
	ML deployment and serving
	Monitoring

	Discussion and conclusion
	Implications to research
	Implication to practice
	Validity Threats


