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Abstract—Many applications in automated auditing and the
analysis and consistency check of financial documents can be
formulated in part as the subset sum problem: Given a set of
numbers and a target sum, find the subset of numbers that sums
up to the target. The problem is NP-hard and classical solving
algorithms are therefore not practical to use in real applications.
We tackle the problem as a QUBO (quadratic unconstrained
binary optimization) problem and show how gradient descent on
Hopfield Networks reliably finds solutions for both artificial and
real data. We give an outlook for the application of specialized
hardware and quantum algorithms.

Index Terms—qubo, binary optimization, hopfield networks,
auditing, financial data analysis

I. INTRODUCTION AND PROBLEM STATEMENT

The financial auditing process involves the writing and
proofreading of financial reports for the audited company.
This process is still largely a manual one: auditors must read
documents, compare document content with previous reports,
check the completeness of the content to financial regulation
checklists and check against both compliance and mathematical
errors.

One aspect of mathematical correctness is the correctness of
numerical tables, e.g. describing profit and loss for a given year
or quarter. All values in these tables must of course correspond
to the actual financial situation of the company, which includes
the correctness of sums in the tables. For example, for a table
depicting the revenue, expenses and income, the values for
expenses and income must sum up to the revenue.

During the manual auditing process, one would apply
knowledge about financial reports to evaluate which values
correspond to which sums for each table and recheck the
correctness of the calculations. This is of course highly time
and labour intensive, and mistakes are easy to make when
auditing a large number of tables.

Automating this process however proves difficult. While
a machine has no problem evaluating the correctness of
calculations for given table entries, evaluating which values
must sum up to which other values is a complex task. Human
auditors are either able to apply knowledge on financial reports
or knowledge on structure of tables in general: While tables are
formatted in a way that human readers can easily evaluate how

sums are structured, e.g. by sum values being at the bottom
of the tables, indicted by text in the row headers, split from
other values by bold lines, teaching a machine to understand
these intuitive rules is almost impossible. A strict rule-based
approach would be highly dependent on the formatting of
specific tables and not generalize well.

A different approach to this problem is therefore ignoring
the table structure altogether. Treating single columns or the
entire table as a (ordered) set of numbers, one can try to find
the values which can be described as a sum of a subset of all
other numbers. This problem can of course be solved exactly
by deterministic algorithms. However, the size of tables and
magnitude of their entries (for financial documents) make many
algorithmic approaches impractical.

In this preprint, we evaluate how stochastic algorithms
based on gradient descent on so-called Hopfield networks
can solve the problem of finding sums in large (both in size
and magnitude) tables:

• We first restate the problem of finding sums in tables
as the subset sum problem and briefly discuss known
deterministic solving algorithms.

• We then derive the general algorithm for gradient descent
on Hopfield networks and how to restate the subset
sum problem as a problem solvable by these networks
(QUBOs).

• We evaluate our Hopfield algorithm on both artificial and
real data and discuss applications and future work.

A. Subset Sum Formulation of the problem

We call a set of rules that describe the behaviour of sums in
a document, e.g. rows 1-4 sum up to row 5, rows 5 and 6 sum
up to row 8, as a sum structure. See Figure 1 for an example.

Many tables found in financial reports show the same
sum structure in multiple columns, e.g. when comparing
financial statements for several quarters and years. Having an
efficient algorithm for discovering sums in columns could aid
consistency checks by applying the algorithm on one column,
extracting a sum structure and checking if the other columns
also comply to the found sum structure. If the new column



Fig. 1: Column of a table containing financial performance
indicators with annotated sums. Numbers from [1].

does not comply to the same sum structure, it is an indication
for some inconsistency happening in the table.

Finding sum structures in tables is closely related to a well
known problem in algorithmic combinatorics, the subset sum
problem. The subset sum problem is defined by a set of numbers
X =

{
x1, x2, . . . , xn

}
⊂ N and a target sum T ∈ N. We aim

to find a subset Y ⊆ X , such that the sum of the subset is
equal to the target sum: ∑

x∈Y
x = T. (1)

In general, due to the fact that there are 2n possible
combinations of numbers for the subset, the problem is NP-
hard.

In the framework of consistency checks and finding sums in
tables, we can consider the entire table as a set of numbers and
apply the problem to each entry: Taken the entry as a target
sum, is it possible to find a subset of all other numbers that
sums up to the target? Iterating a solving algorithm over each
entry in the table yields a sum structure for the table.

B. Classical solving algorithms and algorithms for approximate
solutions

There are several known algorithms for solving the subset
sum problem.

The naive approach consists of cycling through each of the
2n possible subsets, summing up all elements and comparing
the sum to the target sum. This has a total complexity of
O(2nn). The algorithm can be improved by several heuristics
(i.e. sorting the numbers and stopping iteration when the target
sum is surpassed by the subset) but the exponential complexity
remains.

Additionally there exist dynamic programming algorithms for
solving the subset sum problem exactly in pseudo-polynomial
time. That is O(n2C), where C = B −A for A,B being the
lower and upper bounds of the set of numbers S.

C. Rule-based algorithms for finding sums in financial tables

The problem of finding sum structures in tables does not have
to be broken down to the subset sum problem. By ignoring the
inherent structure and logic of the table, the complexity of the
binary combination problem is increased. Applying rule-based
logic and understanding of the general structure of tables can
result in efficient algorithms to solve the problem of finding
sum structures in tables.

These rules-based approaches can apply multiple heuristics
to find sums: sums are generally more likely to be structured
top-to-bottom, sums are likely to occur in adjacent rows to the
corresponding subset, the last entries in columns are likely to
be sums.

However, rule-based approaches require specialization to
each type of table and are hard to generalize.

II. SUBSET-SUM AS QUBO

A quadratic unconstrained binary optimization problem
(QUBO) is defined by a function f : {0, 1}n −→ R which
is a quadratic polynomial over its binary input variables,

f(z) =
∑
ij

pijzizj =
∑
i ̸=j

pijzizj +
∑
i

piizi. (2)

The QUBO problem consists of finding the optimal binary
vector z∗ ∈ {0, 1}n such that

z∗ = argmin
z∈{0,1}n

f(z). (3)

The problem can be rewritten in matrix notation as

z∗ = argmin
z∈{0,1}n

z⊺P z − p⊺z

with a symmetric and hollow matrix P ∈ Rn×n and a vector
p ∈ Rn.

To convert the subset sum problem into a QUBO, we recall
the problem statement. Given set X =

{
x1, x2, . . . , xn

}
and

target value T , determine a subset Y∗ ⊆ X such that∑
x∈Y∗

x− T = 0. (4)

The subset sum problem can therefore be stated as finding
Y∗ such that

Y∗ = argmin
Y⊆X

T −
∑
y∈Y

y

2

. (5)

Collecting the numbers contained in set X in a vector x =[
x1, x2, . . . , xn

]⊺ ∈ Rn and introducing a binary indicator
vector z ∈ {0, 1}n with entries

zi =

{
1 if xi ∈ Y

0 otherwise

the subset sum problem can alternatively be written as

z∗ = argmin
z∈{0,1}n

(
x⊺z − T

)2
.



Expanding the equation we write

z∗ = argmin
z∈{0,1}n

z⊺xx⊺z − 2T x⊺z+ const

≡ argmin
z∈{0,1}n

z⊺P z − p⊺z

=: argmin
z∈{0,1}n

E(z)

where we introduced the shorthands

P = xx⊺,

p = 2T x.
(6)

Closely related to QUBOs are Ising Models, where we
optimize over s ∈ {−1, 1} instead of z ∈ {0, 1}:

s∗ = argmin
s∈{−1,+1}n

s⊺Qs+ q⊺s

=: argmin
s∈{−1,+1}n

E(s)

Both problem statements are in fact equivalent, with conver-
sion via z = 1

2 (s+ 1) and s = 2z − 1.
Converting the QUBO derived from the subset sum problem

above, we have

E(z) = z⊺P z − p⊺z

= 1
4 (s+ 1)⊺P (s+ 1)− 1

2 p
⊺(s+ 1)

= 1
4 s

⊺P s+ 1
4 s

⊺P 1+ 1
4 1

⊺P s− 1
2 p

⊺s+ const

= E(s)

Since matrix P = xx⊺ =
(
xx⊺

)⊺
= P ⊺ is symmetric, we

have s⊺P 1 = 1⊺P s. Therefore

E(z) = z⊺P z − p⊺z

= 1
4 s

⊺P s+ 1
2 1

⊺P s− 1
2 p

⊺s+ const

= 1
4 s

⊺P s+ 1
2

(
P 1− p

)⊺
s

≡ s⊺Qs+ q⊺s

= E(s)

where we introduced the shorthands

Q = 1
4P

q = 1
2

(
P 1− p

)
.

(7)

All in all, we can thus consider the subset sum problem as a
minimzation problem over {−1, 1}n by

s∗ = argmin
s∈{−1,+1}n

s⊺Qs+ q⊺s (8)

with Q and q defined in (6) and P and p defined in (7).

A. QUBO-Solving with Hopfield Networks

A Hopfield Network is a recurrent neural net of n inter-
connected neurons. The state of the network is described by
a bipolar vector s ∈ {−1, 1}n. Each neuron is connected to
every other neuron, with connection weights given by a matrix
W ∈ Rn×n. Each neuron si is a bipolar threshold unit with
threshold θi, such that

si = sign (w⊺
t s− θi) . (9)

A Hopfield network architecture is therefore fully described
by a matrix W , a vector θ and a current state s. An update
of the network is done via (9), either for all neurons at once
or only a subset of neurons.

We define the energy of the Hopfield network by

E(s) := −1

2
s⊺Ws+ θ⊺s. (10)

We find that if the weight matrix W is symmetric and is
hollow (i.e. has diagonal of all zeros), then the Hopfield energy
can never increase when updating one neuron by (9). Since

∇E(s) = −Ws+ θ (11)

the updates in (9) amount to si = sign(−∇E(s) and each
update performs gradient descent on E(s). Since there are
only 2n possible states of the network, successive updates of
single neurons will reach a local or global minimum after
finitely many updates.

This behaviour can be leveraged to solve problems stated as
QUBOs. Encoding the problem in weight and bias parameters
W and θ, such that minimum energy states

s∗ = argmin
s∈{−1,+1}n

−1

2
s⊺Ws+ θ⊺s (12)

solve the underlying QUBO problem, the network may find
solutions to the QUBO by the described gradient descent
updates of single neurons.

To apply Hopfield networks to the subset sum problem,
recall the problem statement as minimization problem over
s ∈ {−1, 1}n in (8). Defining

W := −2Q = −1

2
P

θ = q =
1

2
(P1− p)

(13)

we find suitable weights and biases such that a the state of a
Hopfield network optimized to a global minimum encodes a
solution to the subset sum problem.

Note that a Hopfield network with a random initialization
does not necessarily converge to a global optimum and local
optima are not solutions to the subset sum problem. However,
initializing the network multiple times with random states and
running until convergence increases the chances of finding a
global optimum.

See Algorithm 1 for a description of the full solving
algorithm.

Parallel optimization of multiple independent Hopfield
networks can efficiently be done on GPUs.



Fig. 2: Benchmarking the Hopfield algorithm on the parsed financial documents (left) and artificial data (right).

Algorithm 1 Algorithm for solving the subset sum problem
with Hopfield networks.

Given a vector of numbers x ∈ Nn and target sum T ∈ N,
construct Hopfield network weights W and biases θ by
W ← − 1

2xx
⊺, θ ← 1

2 (xx
⊺1− 2Tx).

Define maximum number of steps smax, s← 0.
while No solution found and s < smax do

Initialize network states, sample s ∈ {−1, 1}n
while Hopfield energy has not converged do

Calculate gradient:
∇E ← −Ws+ θ
Select index of maximum change:
i← argmini∇Ei

Update s at index i:
si ← sign(W ⊺

i s− θi)

if Hopfield energy is minimal: E(s) = 0 then
End algorithm.
return {xi|si = 1}

s← s+ 1

Algorithm has not found a solution in smax steps.
End algorithm.
return None.

III. EXPERIMENTS

A. Data

We conduct experiments with both artificial data and real
data.

To create artificial data we uniformly sample n integers
between Xmin and Xmax, select k of the sampled integers at
random and calculate the target sum T as the sum of the
selected integers.

Note that the selection of n, Xmin and Xmax has a defines
the number of possible solutions to the problem and therefore
influences the difficulty of finding a solution. Given a set X of
n integers between Xmin < 0 and Xmax > 0, the sum of any
subset of X must be in the interval

T = [nXmin, nXmax] (14)

name n k Xmax R

n_016_10k 16 4 1e+4 2.0e−01
n_016_100k 16 4 1e+5 2.0e−02
n_016_1M 16 4 1e+6 2.0e−03
n_032_10k 32 8 1e+4 6.7e+03
n_032_100k 32 8 1e+5 6.7e+02
n_032_1M 32 8 1e+6 6.7e+01
n_064_10k 64 8 1e+4 1.4e+13
n_064_100k 64 8 1e+5 1.4e+14
n_064_1M 64 8 1e+6 1.4e+15
n_128_10k 128 8 1e+4 1.3e+32
n_128_100k 128 8 1e+5 1.3e+31
n_128_1M 128 8 1e+6 1.3e+30
n_256_10k 256 8 1e+4 2.6e+70
n_256_100k 256 8 1e+5 1.3e+69
n_256_1M 256 8 1e+6 1.3e+68

TABLE I: Configurations of artificial data. Numbers sampled in
the interval [−Xmax, Xmax]. Ratio R = 2n/2nXmax describes
the expected number solutions when sampling a set of numbers
and a random target solution.

for a total of #T = n (Xmax −Xmin). However, there are 2n

possible subsets of X . For many combinations of n, Xmin and
Xmax we have 2n >> n (Xmax −Xmin) and therefore some
target values must have multiple solutions. Finding solutions
for a problem with many distinct solutions is of course easier
than finding one correct solution in 2n possible combinations.

We construct artificial data in the configurations described
in Table I. For each configuration, we sample M = 5 different
subset sum problems.

We evaluate our algorithm on a set of real data problems.
We parse a financial report1 containing multiple sheets with
financial reports for the quarters from Q1 2019 to Q4 2020
for a total of 190 independent columns. Each column contains
numbers describing amounts up to multiple billion C, exact to
one cent, for a total of 14 significant figures. See Table II for
details on the dataset.

B. Experiments and Results

We run the Hopfield algorithm on artificial data for up to
1e+8 initializations in batches of 1e+4 on one NVIDIA A100

1Deutsche Bank Financial Data Supplement Q4 2020, https:
//investor-relations.db.com/files/documents/quarterly-results/4Q20 FDS.xlsx

https://investor-relations.db.com/files/documents/quarterly-results/4Q20_FDS.xlsx
https://investor-relations.db.com/files/documents/quarterly-results/4Q20_FDS.xlsx


name M n Xmin Xmax R

assets 15 17 1.7e+07 1.5e+14 5.1e−11
consincome 49 31 −2.5e+12 2.5e+12 1.4e−05
liabilities 29 20 2.5e+10 1.5e+14 3.5e−10
net revenues 97 25 −5.3e+10 2.5e+12 5.3e−07

TABLE II: Configurations of parsed financial data. Each group
describes one table in the financial report, with M individual
subset sum problems (i.e. sums described in the table), a column
length of n+ 1 which corresponds to n values in the subset
sum problem, and values between Xmin and Xmax. Again, R
describes the expected number solutions when sampling a set
of numbers and a random target solution defined by n, Xmin
and Xmax. We see that each R << 1 and in most columns
there is only one unique solution to the subset sum problem.

GPU, for a maximum computation time of around 8 minutes.
For almost all configurations the algorithm reliably finds a
correct solution for all samples. Only for the configuration of
n = 256 and Xmax = 1e+6 not all samples are solved in the
specified maximum number of runs (2 of 5 found). See Figure
2 (right) for comparison of computation time against n and
Xmax. We see that the number of values n has a smaller impact
on the computation time until solution than the magnitude of
the numbers Xmax.

We run the Hopfield algorithm with the same configuration
of the financial data. The algorithm finds a correct solution
to the problem under the maximum number of iterations in
all cases. Note that unlike for most of the artificial data, the
combination of n and Xmax lead to a situation where each
problem likely only contains one correct solution, which is
found by our algorithm. See Figure 2 (left) for a comparison
of computation time for different tables. We see that average
computation time clearly increases with the size of the problem,
i.e. amount of values in the table.

See Tables III and III for statistics on the runs. In total, we
conclude that optimization of binary vectors with Hopfield
networks is a reliable algorithm for solving subset sum
problems and can be applied to real-world examples.

IV. CONCLUSION AND OUTLOOK

In this work we investigated how the subset sum problem
plays a vital part in the automation of the auditing process,
how the subset sum problem can be restated as a well known
problem architecture which can be solved by the application
of Hopfield networks. We found that the proposed algorithm
reliably finds correct sum structures for artificial and real data.

Future work will include an investigation of the application
of special purpose hardware (FPGAs) for QUBO-solving
and implications of this algorithm architecture for quantum
computing applications.

In the near future, the algorithm will be ready to deploy on
existing smart auditing software to directly benefit auditors in
their daily work.

n Xmax mean time mean runs

16 10k 0.4 2.0e+04
100k 0.7 3.2e+04
1M 1.1 4.9e+04

32 10k 0.7 3.3e+04
100k 6.9 3.1e+05
1M 77.2 3.4e+06

64 10k 1.0 4.5e+04
100k 4.9 2.1e+05
1M 40.1 1.7e+06

128 10k 0.3 1.3e+04
100k 9.0 3.6e+05
1M 18.4 7.3e+05

TABLE III: Results for the Hopfield algorithm on artificial
data configurations. The algorithm found a solution for every
given sample. For each data configuration we decribe the mean
time to find a solution in seconds and the mean number of
individual runs until a solution is found.

name n M Mfound n mean time mean runs

assets 17 15 15 17 0.4 1.0e+04
consincome 31 49 49 31 30.4 8.0e+05
liabilities 20 29 29 20 4.1 1.1e+05
net revenues 25 97 97 25 17.6 4.6e+05

TABLE IV: Results for the Hopfield algorithm on artificial
data configurations. For each data configuration we decribe the
mean time to find a solution in seconds and the mean number
of individual runs until a solution is found. Of M subset sum
problems on each table we solved Mfound.
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[14] S. Mücke, N. Piatkowski, and K. Morik, “Hardware Acceleration of
Machine Learning Beyond Linear Algebra,” in Proc. ECML/PKDD,
Springer, 2019.
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