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ABSTRACT Model interpretability and robustness are becoming increasingly critical today for the safe
and practical deployment of deep learning (DL) models in industrial settings. As DL-backed automated
document processing systems become increasingly common in business workflows, there is a pressing
need today to enhance interpretability and robustness for the task of document image classification, an
integral component of such systems. Surprisingly, while much research has been devoted to improving
the performance of deep models for this task, little attention has been given to their interpretability and
robustness. In this paper, we aim to improve upon both aspects and introduce DocXClassifier, an inherently
interpretable deep document classifier that not only achieves significant performance improvements over
existing approaches in image-based document classification, but also holds the capability to simultaneously
generate feature importance maps while making its predictions. Our approach attains state-of-the-art
performance in image-based classification on two popular document datasets, RVL-CDIP and Tobacco3482,
with top-1 classification accuracies of 94.17% and 95.57%, respectively. Additionally, it sets a new record
for the highest image-based classification accuracy on Tobacco3482 without transfer learning from RVL-
CDIP, at 90.14%. In addition, our proposed training strategy demonstrates superior robustness compared
to existing approaches, significantly outperforming them on 19 out of 21 different types of novel data
distortions, while achieving comparable results on the remaining two. By combining robustness with
interpretability, DocXClassifier presents a promising step towards the practical deployment of DL models
for document classification tasks.

INDEX TERMS Document Image Classification, Explainable Document Classification, Model Inter-
pretability, Inherent Interpretability, Model Robustness, Corruption Robustness

I. INTRODUCTION

In recent years, deep learning (DL) has made significant
breakthroughs in the field of document analysis demonstrat-
ing exceptional performance on a range of tasks such as
document classification [1]–[3], key information extraction
(KIE) [3], [4], and layout analysis [5]. Despite these perfor-
mance gains, however, there remain two major challenges
that continue to hinder the safe and secure deployment of
such DL-based systems in real-world scenarios: their inher-
ent black-box nature [6], [7] and their poor robustness to out-
of-distribution (OOD) data [8]–[11].

The lack of transparency in DL-based automated decision-
making is particularly concerning. A number of recent stud-
ies have demonstrated that DL models are prone to learning
biases from the data [12]–[14], resulting in unfair decisions
or discrimination against individuals from certain racial or
gender identities [6], [7]. Such biases can have catastrophic
effects in the context of document classification. For instance,
a DL-based document classifier that categorizes applicant
resumes as acceptable or otherwise could potentially learn
to discriminate against women or minority groups. For these
reasons, model interpretability is crucial, as it can help
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identify biases in the data and provide insights into the
model’s decision-making process, ultimately enabling their
safe deployment [13], [14].

Besides fairness and ethical considerations, model robust-
ness is another important factor for the scalable and efficient
deployment of DL-based systems in practical settings [10].
Recent studies have shown that DL-based systems perform
poorly when faced with minor distribution shifts in the
data [9], [15], [16], even when trained with a number of
data augmentations [10]. Such distribution shifts are com-
monly occurring in real-world scenarios [10], especially in
the document domain [11], [17], where documents are often
corrupted with novel distortions at test time, such as the
addition of noise, blur, ink-bleed, or stain marks [11], [18].
One straightforward example is mobile-captured documents,
which are commonly used by the end users but may end up
with transformations or noise due to varying lighting condi-
tions [19]. Such OOD data if encountered at test time may
result in model failure modes [11]. Note that transparency of
decision-making is also crucial in this context to identify the
potential reasons behind these failures.

In recent years, a wide variety of approaches have been
proposed that attempt to explain the predictions of black-box
DL models [6], [20]–[24]. In the image domain, post-hoc
attribution-based approaches [20]–[22] are the most popu-
lar, which generate feature importance maps to identify the
areas in the image that were most important to the model’s
prediction. Despite their widespread use, however, they are
not without limitations, such as their costly processing
times [25], [26] and potentially unfaithful explanations [27],
[28]. On the other hand, numerous studies have also explored
different strategies to enhance model robustness to OOD
data [10], [29], [30], with data-augmentation strategies [31]–
[34] being particularly popular in this regard.

In this paper, we tackle the challenges of both model
interpretability and robustness in the context of document
image classification, which is a core component of modern
document processing pipelines [17], [35]–[37]. Despite a
significant amount of research dedicated to improving the
performance of DL models for this task [1], [3], [17], [36],
[38], we found that research paying attention to their robust-
ness and interpretability is relatively scarce [39]. In this work,
therefore, we focus on all three aspects: performance, robust-
ness and interpretability, and propose DocXClassifier, a high-
performing and inherently-interpretable deep convolutional
neural network (ConvNet) for document image classification.
Our approach involves modifying the architecture of the
recently introduced ConvNeXt model [40] with an additional
attention-pooling mechanism that allows it to attribute impor-
tance to image features in a single forward pass, removing
the need to use costly post-hoc attribution methods [25], [26]
for generating explanations. In order to achieve improved
performance and robustness, we devise a two-stage training
strategy and apply several data augmentation strategies, in-
cluding RandomAugment [31], CutMix [41], Mixup [32],
and RandomErasing [33], in combination with modern train-

ing approaches, such as Label Smoothing [42], Exponential
Moving Average (EMA), and LayerDecay [40]. To the best
of authors’ knowledge, this is the first work that explores
the combination of all these approaches in this context. The
overall contributions of this paper are two-fold:

– We propose an inherently-interpretable deep ConvNet
for document image classification, which has the ca-
pability to generate feature-importance maps for input
images in a single forward pass. To the best of authors’
knowledge, this is the first work in this direction.

– Our proposed approach not only achieves a state-of-
the-art performance in image-based document classifi-
cation, but also outperforms some existing multimodal
approaches. We demonstrate the effectiveness of our
method on two well-known document classification
benchmark datasets, RVL-CDIP [17] and Tobacco3482.
On RVL-CDIP [17], our approach achieves an accuracy
of 94.17%, significantly surpassing the previous state-
of-the-art, which had an accuracy of 92.31%. On the
Tobacco3482 dataset, we trained our models with and
without RVL-CDIP [17] pre-training and obtained accu-
racies of 95.57% and 90.14%, significantly outperform-
ing the previous state-of-the-art methods that yielded
accuracies of 94.04% and 85.9% respectively.

– Our proposed training strategy demonstrates superior
robustness to existing state-of-the-art document image
classification approaches, outperforming them on 18 out
of 21 different novel distortion types, while achieving
comparable results on the remaining ones.

II. RELATED WORK
A. DOCUMENT IMAGE CLASSIFICATION
The subject of document image classification has been ex-
tensively explored in the past few decades. Earlier attempts
to classify document images were either based on traditional
computer vision techniques, such as feature matching [43],
[44] or classical machine learning approaches, such as K-
Nearest Neighbors [45], or Random Forest Classifiers [44].
For a detailed overview of these approaches, we refer the
reader to a related survey [35].

With the advent of deep learning, the field of document
image classification has experienced a major transforma-
tion. Kang et al. (2014) [46] were the first to investigate
Convolutional Neural Networks (ConvNets) in the context
of document image classification and demonstrated signif-
icant performance improvements over classical feature en-
gineering approaches with just a shallow network. Afzal et
al. (2015) [47] and Harley et al. (2015) [17] in parallel
explored the potential of transfer learning in combination
with deep networks in their work, showing that fine-tuning
models already pre-trained on the large-scale ImageNet [48]
dataset can lead to significantly better feature representations
and consequently better performance. Afzal et al. (2017) [36]
later extended these works to much deeper ConvNets achiev-
ing breakthrough performance improvements in document
image classification. In a more recent approach, Ferrando
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et al. (2020) [1] investigated parallel training techniques
on EfficientNet [49] models and achieved a new peak per-
formance for image-based document classification. Vision
Transformers (ViTs) [11], [50], [51] have also gained some
attention in document image classification [52], however,
more work is needed before they can match the performance
of the latest ConvNets in this domain.

Recently, there has been an increased emphasis on mul-
timodal classification techniques [2], [53], [54], in which
document images are preprocessed to extract the textual con-
tent using stand-alone optical-character-recognition (OCR)
software, and then visual, textual, and other layout features
are used together for classification. Initial work in this area
focused on using two separate deep network streams [2],
[37] for multimodal classification. Recently, however, large-
scale transformer-based document foundation models such
as LayoutLM [3], [55], TILT [4], and UDOP [56] have
become more popular that simultaneously use visual, tex-
tual, and layout features as input and produce an integrated
multimodal document representation for resolving various
document understanding tasks. These approaches, however,
require extensive pre-training with large amounts of docu-
ment data.

It is worth mentioning that since multimodal approaches
require a pre-processing step that uses a standalone OCR
software to extract the textual information from the docu-
ments, their performance is heavily dependent on the perfor-
mance of the OCR system which not only adds additional
computational overhead but also additional complexity in
the system. Moreover, the robustness aspects of such models
are rarely discussed in the literature even though the OCR
systems could be severely affected by novel distortions in the
document data which could in turn degrade the performance
of such systems.

B. EXPLAINABLE AI (XAI)
The field of eXplainable AI (XAI) has attracted consider-
able attention in recent years, with numerous approaches
developed to explain the predictions of black-box artificial
intelligence (AI) models [6], [20]–[22]. These approaches
range from model-agnostic gradient-based methods such as
GradCAM [21], IntegratedGradients [57], or DeepLIFT [58],
to perturbation-based approaches such as LIME [20], or
SHAP [22]. Gradient-based approaches utilize model gra-
dients to determine the importance of each input feature.
Perturbation-based approaches, on the other hand, perturb the
input and measure the impact of perturbation on the model’s
prediction in order to determine feature importance. While
such attribution-based methods have been widely adopted to
generate explanations for DL systems on various tasks [6],
[25], they also have some potential limitations. These include
the requirement of significant domain knowledge for inter-
preting explanations [27], [28], costly computation [25], [26],
potentially unfaithful explanations [59], and the challenges of
selecting the appropriate perturbation model when applying
perturbation-based approaches [26].

In light of these limitations, many researchers have
recently argued against the use of model-agnostic ap-
proaches [27], [28], and have brought forward the idea that
deep learning models should be made interpretable by de-
sign [27]. This has led to the development of prototype-based
approaches [60], and explainable deep neural networks [61],
[62]. In this work, we adhere to the same spirit and focus
on interpretability by design instead of relying on model-
agnostic approaches to generate explanations. Besides those
discussed, there are several other interpretability approaches
that have been proposed in the literature in recent years, such
as concept-based explanations [63], and generative models-
based explanations [23], [24].

C. MODEL ROBUSTNESS
Model robustness has also been the subject of extensive
research in the past few years, which has been mainly divided
into two broad categories: (1) adversarial robustness [64],
which deals with robustness against adversarial attacks, and
(2) corruption robustness [10], [30], which deals with ro-
bustness against novel corruptions in data, such as blur,
noise, occlusions, and pose variations. In this work, we are
primarily concerned with improving corruption robustness
since it is more relevant to real-world deployment scenarios.
Therefore, further related work pertaining to this aspect is
subsequently discussed.

In recent years, many advanced data augmentation strate-
gies [33], [34], [65] have been proposed that allow DL
models to learn better features, reduce model overfitting,
and improve robustness against out-of-distribution (OOD)
data. Techniques such as AutoAugment [65] and RandAug-
ment [31] search for the optimal data augmentation policy
to augment input images, which are then used to train the
model for enhanced robustness. Random Erasing [33] is a
data augmentation techniques that randomly erases parts of
the image and has been demonstrated to improve robustness
against partially occluded images. More recent strategies
like CutMix [41], Mixup [32], and AugMix [34], on the
other hand, augment input images by mixing samples from
multiple classes and have been demonstrated to be very
effective for enhancing overall robustness. These techniques
are also often accompanied by Label Smoothing [42], which
regularizes the models by preventing them from predicting
the output labels too confidently.

Hendrycks et al. (2019) [10] recently proposed robustness
benchmark datasets for standard ImageNet [48] datasets in
order to evaluate the robustness characteristics of deep neural
networks. Subsequent research has extensively used these
datasets to evaluate and improve the robustness of deep
learning models using various strategies [30], [34]. Taking
inspiration from this, Saifullah et al. (2022) [11] recently
introduced two robustness benchmark datasets, namely RVL-
CDIP-D and Tobacco3482-D, designed for the document
domain. These datasets were generated by applying 21 differ-
ent types of novel distortions to generate out-of-distribution
counterparts for the RVL-CDIP [17] and Tobacco3482 doc-
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FIGURE 1. Block configurations of ConvNext, ResNet and Swin Transformer
are shown for comparison.

ument datasets, respectively. Furthermore, the datasets were
used to evaluate the robustness characteristics of several ex-
isting state-of-the-art document image classification models.
In this work, we use both of these datasets for evaluating the
robustness of our proposed models.

III. METHODOLOGY
In this section, we present the details of our proposed ar-
chitecture, the data augmentation techniques investigated for
improving model robustness, and the training strategies that
were utilized in our study.

A. DOCXCLASSIFIER: MODEL ARCHITECTURE
Our work is an extension over the recently proposed Con-
vNeXt [40] model that is not only heavily inspired by the
state-of-the-art ViTs, but can also outperform them in the
domain of natural image classification. In particular, Con-
vNeXt [40] was developed by making various design modifi-
cations to the standard ResNet model [66]—modifications in-
spired by both modern convolutional neural networks (Con-
vNets) and the recently introduced Swin Transformers [67], a
variant of ViTs. Since ResNet-50 has been previously investi-
gated for document classification by Afzal et al. (2017) [36],
we will briefly explain the modifications in the following
sections to emphasize the distinctions between our work and
theirs. The design changes between ConvNeXt and ResNet
model fall into two main categories: Macro Design and Micro
Design.

Macro Design. ConvNeXt uses a stage compute ratio
of 1:1:3:1 as compared to 1:1 1

3 :2:1 in ResNet-50, which
is directly inspired by the Swin Transformers [67]. An-
other important difference is that ConvNeXt uses a Patchify
layer [40], as is common in ViTs [50] for initial down-
sampling of images. The standard ResNet model uses a
7x7 convolutional layer followed by a max-pooling layer
for this purpose, whereas the Patchify layer in ConvNeXt
is implemented with a non-overlapping convolutional layer

of kernel size 4x4 and a stride 4. Compared to ResNet-
50, ConvNeXt uses depth-wise convolutions [68] instead
of using standard convolution operations as in ResNet-50.
In addition, the inverted bottleneck was introduced in each
block, but with the convolutional layers shifted up in order, a
design decision again inspired by Transformers, where the
multi-self-attention blocks are generally placed before the
fully connected layers.

Micro Design. Some minor architectural changes were
also made for improving performance. For example, the
ReLU activations were replaced with GELU activations,
which are commonly used in latest Transformer models. The
total number of activations were reduced so that there was
only a single activation function at the end of each block. The
total number of normalization layers were also reduced and
batch normalization was removed in favor of layer normaliza-
tion. Finally, the initial residual block in ResNet was removed
and instead a separate downsampling layer, followed by layer
normalization, was added between each stage to mimic the
Swin Transformers [67].

Attention-Based Pooling. Although a considerable num-
ber of design changes were made, the resulting ConvNeXt
model is just another ConvNet without any sophisticated
components, as can be observed in Fig. 1. In this work, we
modify the existing ConvNeXt model with an attention-based
mechanism to force its predictions to be based on different
regions of the image, ultimately making it inherently inter-
pretable. Since the original ConvNeXt models are simply
ConvNets, they are not capable of generating feature im-
portance maps out-of-the-box and are generally augmented
with a linear layer with global average pooling to perform
the classification task. We modify the ConvNeXt architecture
by substituting the global average pooling of ConvNeXt
with an attention-based pooling mechanism [62] as shown in
Fig. 2. In particular, the attention-based pooling mechanism
employs a query class token to aggregate the output feature
map vectors of the model as a weighted sum based on their
similarity to a trainable class (CLS) vector of dimension
d, which is similar to a class token in transformers [69].
Whereas, the similarity is computed using the standard scaled
dot-product attention operation [69]:

Attn(Q,K, V ) = softmax(
QKT

√
dk

)V (1)

where K, Q, and V represent the query, key, and value
matrices of the attention layer, respectively, and dk repre-
sents the feature dimension of the kth attention head. With

TABLE 1. Number of channels and blocks per stage for different variants of
the DocXClassifier model.

Model Channels Blocks

DocXClassifier-B (128, 256, 512, 1024) (3, 3, 27, 3)
DocXClassifier-L (192, 384, 768, 1536) (3, 3, 27, 3)

DocXClassifier-XL (256, 512, 1024, 2048) (3, 3, 27, 3)
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FIGURE 2. Complete configuration of the proposed DocXClassifier model. The base ConvNeXt model is used as the backbone for generating a feature map for the
input image. The feature map is then transformed and fed into a attention-based pooling mechanism to force the predictions of the models to be based on different
regions of the image. Finally, a linear classification head is used to generate the class prediction scores.

the attention mechanism applied only once, using a single
softmax operation, the model is essentially forced to assign
importance to certain feature vectors for each specific class.
The resulting aggregated vector is then added to the CLS
vector and processed by a feed-forward network. Finally, a
linear classification head is used to perform the classification.

Note that before applying the attention-mechanism, we
also first apply point-wise convolution to the output feature
map of the model to transform its dimensions from C ×H ×
W to d×H×W so that it matches the dimensions of the CLS
token, and then reshape the output feature map to a (HW )×d
dimension. These HW feature vectors which are then fed to
the attention-based pooling mechanism as shown in Fig. 2.
This feature transformation step was necessary as the out-
put dimensions of the feature map for different variants of
the model can result in different channel dimensions, for
instance, a dimension of size 1024 for the DocXClassifier-B
variant as shown in Table. 1. If not down-scaled to a fixed
dimension, the attention pooling mechanism can result in
considerably high number of parameters, especially in case of
larger variants. Therefore, to keep the number of parameters
low, we kept a fixed embedding dimension of d = 768 for
both the CLS vector and the final feature maps on which the
attention pooling is applied.

The complete model configuration with these modifica-
tions is shown in Fig. 2, which we refer to as DocX-
Classifier. The implementation details of the model can be
found at https://github.com/saifullah3396/docxclassifier.git.
We define three different variants of the model namely,
DocXClassifier-B, DocXClassifier-L, and DocXClassifier-
XL, similar to the original ConvNeXt [40] model with differ-
ent configurations of number of blocks and stages as shown
in Table 1.

B. DATA PRE-PROCESSING

Basic pre-processing steps in our approach include convert-
ing grayscale images to RGB color space, downscaling the
images to a fixed input resolutions of size 224×224 or 384×
384 as required, and normalizing the images by subtracting
the ImageNet mean (0.485, 0.456, 0.406) and dividing by the
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FIGURE 3. Few sample document images generated by applying the data
augmentation techniques: RandomErasing [33], CutMix [41], and Mixup [32],
respectively. As shown, RandomErasing [33] removes patches from images by
replacing them with per-pixel random normal. CutMix [41] spatially merges
samples of different classes. Whereas, Mixup [32] merges samples from
different classes by overlaying them over each other.

ImageNet standard deviation (0.229, 0.224, 0.225), as done
in previous works [1], [47].

C. DATA AUGMENTATIONS AND GENERALIZATION
STRATEGIES

Besides basic pre-processing steps, we explored more ad-
vanced data augmentation strategies in this work to im-
prove model generalization and robustness. In many previous
works on document image classification [1], [36], [39], we
have encountered the common belief that data augmentation
techniques developed for natural images cannot be directly
applied to document images due to the fundamental differ-
ences between these two image types. As a result, these
works have typically applied only minor augmentations to
document images, such as simple shear transformations [1],
[39]. In this work, we demonstrate that employing more
aggressive data augmentation techniques can significantly
enhance both the performance and robustness of document
classification models. Multiple data augmentation techniques
were used in combination for this purpose, as outlined below:

VOLUME 4, 2016 5

https://github.com/saifullah3396/docxclassifier.git


Saifullah et al.: DocXClassifier:Towards a Robust and Interpretable Deep Neural Network for Document Image Classification

• RandAugment [31]: We apply the RandAugment [31]
1 approach for document images, which randomly ap-
plies various data augmentations such as changing im-
age color, brightness, contrast, sharpness and applying
transformations such as translation, rotation, shear.

• RandomErasing [33]: We apply RandomErasing [33]
which is used to substitute random patches of images
with per-pixel random normal distribution with a prob-
ability of 0.25.

• CutMix [41] and Mixup [32]: We apply CutMix [41]
and Mixup [32] techniques over image batches each
with a 50% probability. Cutmix [41] generates a new
document sample by spatially merging two samples of
different classes whereas Mixup [32] merges them by
overlaying the two images on top of each other. Both of
the techniques also generate soft labels for target classes
based on their visibility in the augmented sample.

A few sample outputs of different augmentation strategies ap-
plied on document images are shown in Fig. 3. In addition to
data augmentation strategies, we also employ multiple model
regularization techniques that have not been previously ex-
plored in this context. In this work, we apply Stochastic
Depth dropout [70] to randomly drop layers of the network
for improved generalization, use Label Smoothing [42] to
prevent overfitting on the target labels, and utilize Exponen-
tial Moving Average (EMA) [40] during model training, all
of which result in significant performance improvements in
our experiments.

IV. EXPERIMENTS AND RESULTS
A. DATASETS
To evaluate the performance of our proposed approach on
document image classification task, we selected two popular
document datasets: RVL-CDIP [17] and Tobacco3482. RVL-
CDIP [17] is a large-scale document dataset that has been
widely used as a benchmark for document image classifica-
tion in a number of previous works [1], [17], [36], [55]. The
dataset consists of 400K labeled document images with 16
class labels and has training, testing, and validation splits of
320K, 40K, and 40K in size, respectively. Tobacco3482, on
the other hand, is a smaller dataset with only 3482 labeled
document images and 10 document categories, but is still
widely popular for the task of document image classification.
There is no predefined partitioning for this dataset. Therefore,
we prepared the training set by randomly selecting 80% of
the samples per class label, resulting in a training and test
set of size 2782 and 700, respectively. Since both datasets
are subsets of a much larger dataset, there is some overlap
between them. Therefore, for all our experiments, we re-
moved the overlapping images from the training set of RVL-
CDIP [17], reducing the size of the training set to 319,756.

For robustness evaluation, we use the two docu-
ment robustness benchmark datasets, RVL-CDIP-D and
Tobacco3482-D [11], as discussed in Sec. II. The datasets

1https://github.com/rwightman/pytorch-image-models

were generated by applying 21 different types of data dis-
tortions to the RVL-CDIP and Tobacco3482 test sets, respec-
tively. The distortions are broadly categorized into 5 different
classes: Noise, Digital Corruptions, Blur, Geometric Distor-
tions, and Document-Specific Distortions, each applied to
the test set with 5 different severity levels. Overall, the two
datasets, RVL-CDIP-D and Tobacco3482-D, contain approx-
imately 4.2M and 73K evaluation samples, respectively.

B. TRAINING DETAILS
In this section, we provide the details about the training
strategies used in each of our experiments.

Training on RVL-CDIP. Since transfer learning has al-
ready proven to be successful in the field of document im-
age classification [36], instead of training the models from
scratch, we initialized them with the ImageNet-22k [48]
pre-trained weights and then fine-tuned them on the RVL-
CDIP [17] dataset. All models were trained on 4-8 A100
GPUs with DistributedDataParallel (DDP) using the AdamW
optimizer and a cosine decay learning rate strategy with no
warm-up period. We chose a base learning rate of 8e-4,
corresponding to a batch size of 64, and scaled it linearly
with different configurations of batch size, varying between
64, 128, and 256. Since the weights of the attention-based
pooling stage were initialized from scratch, we found it
difficult to train the models DocXClassifier models end-
to-end, and therefore we trained them in two steps. First,
we fine-tuned the base ConvNeXt models for 30 epochs
to achieve the desired classification performance. Then, we
froze the weights of the base model, used them to initialize
our DocXClassifier variants, and trained only the attention-
based pooling stage along with the classifier.

Training on Tobacco3482. On the Tobacco3482 dataset,
we trained the models with two different configurations:
with RVL-CDIP [17] pre-training and with ImageNet pre-
training. In the first configuration, we simply selected the
DocXClassifier models that performed best on the RVL-
CDIP [17] dataset and further fine-tuned them on the To-
bacco3482 dataset. In this case, we used the same training
hyperparameters as above, except that we did not apply EMA
in this case as it did not seem to yield any improvements. In
the second configuration, we followed the same approach as
RVL-CDIP [17], initializing the models with the pre-trained
weights from ImageNet-22k [48] and then fine-tuning them
directly on the Tobacco3482 dataset in a two-step process.
The hyper-parameters used in this configuration were the
same as those used in RVL-CDIP [17] training, except for
the learning rate and the number of epochs which were set to
5e-5 and 90, respectively.

C. PERFORMANCE EVALUATION
Results on RVL-CDIP. Table 2 shows a comparison of the
top-1 classification accuracy achieved on the RVL-CDIP [17]
and Tobacco-3482 datasets by our approach, previous image-
based baseline solutions, and several multimodal approaches
that use either text, layout, or both in addition to image
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TABLE 2. A comparison of the top-1 classification accuracy of different approaches on the RVL-CDIP [17] and Tobacco3482 datasets.

Modality Model Inference
Time [ms] # of Parameters Domain-specific

pre-training RVL-CDIP Tobacco3482
(RVL-CDIP pre-training)

Tobacco3482
(ImageNet pre-training)

Image

Holistic CNN (Harley et al., 2015 [17]) - - 89.80% - -
AlexNet (Afzal et al., 2017 [36]) 1.1 57M 88.60% 90.04% 75.73%
GoogleNet (Afzal et al., 2017 [36]) 1.2 5.6M 89.02% 88.40% 72.98%
ResNet-50 (Afzal et al., 2017 [36]) 1.1 23.5M 90.40% 91.13% 67.93%
VGG-16 (Afzal et al., 2017 [36]) 1.3 134M 90.97% 91.01% 77.52%
Stacked CNN Single (Das et al., 2018 [71]) - - 91.11% - -
Stacked CNN Ensemble (Das et al., 2018 [71]) - - 92.21% - -
EfficientNet (Ferrando et al., 2020 [1]) 2.3 17.6M 92.31% 94.04% 85.99%
DocXClassifier-B/384 (Ours) 6.53 95.4M 94.00% 95.29% 87.43%
DocXClassifier-L/384 (Ours) 10.0 204M 94.15% 95.57% 88.43%
DocXClassifier-XL/384 (Ours) 16.1 356M 94.17% 95.43% 90.14%

Multimodal

MobileNetV2+Text (Audebert et al., 2019 [2]) - - 90.60% - 87.80%
EfficientNet + BERT (Ferrando et al., 2020 [1]) - 127.6M - 94.90% 89.47%
LadderNet (Sarkhel et al., 2019 [72]) - - 92.77% 82.78% -
Multimodal Ensemble (Dauphinee et al., 2019 [73]) - - 93.07% - -
Multimodal GCN (Xiong et al., 2021 [54]) - 49M 93.45% - -
LayoutLMBASE (Xu et al., 2020 [55]) - 160M 3 94.42% - -
TILTLARGE (Powalski et al., 2021 [4]) - 780M 3 95.52% - -
EfficientNet+BERT (Kanchi et al., 2022 [38]) - 197M 95.48% 95.7% 90.3%
LayoutLMv2LARGE (Xu et al., 2021 [3]) - 426M 3 95.64% - -
NasNetLarge+BERTBASE (Bakkali et al., 2020 [74]) - 197M 97.05% - -

(a) RVL-CDIP (b) Tobacco3482

FIGURE 4. The confusion matrices for the DocXClassifier-XL model (with RVL-CDIP [17] pre-training in the case of Tobacco3482) are shown for the two datasets
RVL-CDIP [17] and Tobacco3482.

data for classification. As can be seen from the table, our
best performing model DocXClassifier-XL achieved 94.17%
accuracy on the RVL-CDIP [17] dataset, outperforming all
previous image-based methods by a significant margin of
+1.86%. It is interesting to note that even our lightest vari-
ant DocXClassifier-B achieved a comparable accuracy of
94.00%, and performed significantly better than all existing
image-based models as well as some of the more sophis-
ticated multimodal approaches [54], [72], [73], thus repre-
senting a good trade-off between accuracy and computational
cost.

We also present the confusion matrices of our proposed
DocXClassifier-XL model on the two datasets in Fig. 4. As
evident from Fig. 4a, majority of the classes were classified
correctly to a large extent, but some of the classes were

quite strongly confused with the others. For example, the
two classes Presentation and Scientific Report showed an
overlap of 3-4%. This finding is similar to that reported
by Kanchi et al. (2022) [38, Fig. 9] on their multimodal
approach. In contrast to their results, however, our approach
performed better in distinguishing between Scientific Report
and Scientific Publication classes. Overall, our approach fell
short of their multimodal approach mainly on the Form,
Questionnaire, and Scientific Report classes, suggesting that
these three classes must benefit strongly from textual features
of the documents.

Results on Tobacco3482. On the Tobacco3482 dataset,
we observed a similar behavior to RVL-CDIP [17], where
the DocXClassifier-L with RVL-CDIP [17] pre-training im-
proved the classification accuracy by more than 1.53% over
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TABLE 3. Ablation study of different training and data augmentation
strategies.

Model Accuracy
(RVL-CDIP) # of Parameters

ConvNeXt-B/224 (AugBasic) 92.10% 87.6M
ConvNeXt-B/224 (AugBasic + Augcutmixup) 92.63% 87.6M
ConvNeXt-B-384 (AugBasic) 93.13% 87.6M
ConvNeXt-B/384 (AugBasic + Augcutmixup) 93.60% 87.6M
ConvNeXt-B/384 (AugRandAug+Erase) 93.21% 87.6M
ConvNeXt-B/384 (AugRandAug+Erase + Augcutmixup) 93.74% 87.6M
ConvNeXt-L/384 (AugRandAug+Erase + Augcutmixup) 93.75% 196M
ConvNeXt-XL-384 (AugRandAug+Erase + Augcutmixup) 93.81% 348M
ConvNeXt-B/384 (AugRandAug+Erase + Augcutmixup + EMA) 94.04% 87.6M
ConvNeXt-L/384 (AugRandAug+Erase + Augcutmixup + EMA) 94.15% 196M
ConvNeXt-XL/384 (AugRandAug+Erase + Augcutmixup + EMA) 94.17% 348M
DocXClassifier-B/384 (AugRandAug+Erase + Augcutmixup + EMA) 94.00% 95.4M
DocXClassifier-L/384 (AugRandAug+Erase + Augcutmixup + EMA) 94.15% 204M
DocXClassifier-XL/384 (AugRandAug+Erase + Augcutmixup + EMA) 94.17% 356M

the previous state-of-the-art approach for image-based clas-
sification whereas our lightest model DocXClassifier-B pre-
sented a 1.25% increase. Additionally, all of our proposed
models even performed better than the two-stream combi-
nation of EfficientNet and BERT proposed by Ferrando et
al. (2020) [1]. With only ImageNet pre-training, we achieved
an accuracy of 90.14% on the Tobacco3482 dataset, which
is not only the highest reported image-based classification
accuracy, but also comparable to the recently presented mul-
timodal approach [38] based on the combination of Efficient-
Net and Hierarchical Attention Networks, which achieved an
accuracy of 90.3%.

We also present the confusion matrix for DocXClassifier-
XL with RVL-CDIP [17] pre-training on the Tobacco3482
dataset, as shown in Fig. 4b. Similar to the case of RVL-
CDIP, the majority of the classes showed a good behavior but
only few classes were highly misclassified. For instance, the
Scientific class was mainly confused with the Report class,
which can be explained by the fact that these classes typically
exhibit similar visual semantics. These findings are again
very similar to the results of Kanchi et al. (2022) [38, Fig. 10]
who found a large overlap between the Scientific and Report
classes. On the other hand, our approach performed better
on the ADVE class than their multimodal approach. This
suggests that our visual representations are much richer than
the EfficientNet network, since the classification of ADVE
class in general depends largely on visual content.

Runtime Evaluation. In this section, we assess the run-
time performance of our proposed models. It is common
for document classification models to be used in fast-paced
real-time scenarios, and therefore the runtime performance of
these models is an important consideration. We evaluated the
runtime performance of our models in terms of throughput on
a single A100 GPU with a batch size of 256. The results are
shown in the Table. 2. As can be seen, the average inference
time per image for the DocXClassifier-B, DocXClassifier-
L, and DocXClassifier-XL models was 6.5 ms, 10 ms, and
16 ms, respectively. In contrast, the throughput for each
model was 153 frames/s, 100 frames/s, and 62 frames/s,
respectively. It can be observed that the inference times of our
proposed models are slightly higher compared to previous
models such as ResNet-50, VGG-16, and EfficientNet-B4.

However, we consider this to be a minor trade-off for the
improved performance and real-time interpretability maps.
Overall, we can conclude that the proposed models are
highly suitable for real-time applications. Note that we did
not find any difference in throughput performance between
the DocXClassifier models and the corresponding ConvNext
models. This makes sense since the number of parameters
added by the attention-based pooling layer in the DocXclas-
sifier models was relatively insignificant compared to the
actual sizes of the models.

D. ABLATION STUDY
In this section, we present the results of our ablation study,
in which we experimented with different sets of configura-
tions to analyze the effects of data augmentation and pre-
processing techniques on model performance. The results of
the study are summarized in the Table 3. Looking for the best
strategy for data augmentation, and training, we started with
the base ConvNeXt-B network, a standard input resolution
of 224x224, and a simple pre-processing scheme, referred to
as AugBasic, which involved only downscaling the images to
the network resolution, converting the images from grayscale
to RGB, and then applying ImageNet normalization. Such a
pre-processing scheme has been widely used in the past [17],
[47] and therefore provides a good comparison.

As can be seen in the table, despite all the architectural
improvements, the ConvNeXt model did not perform particu-
larly well with this scheme, achieving only 92.10% accuracy
which is comparable to the previous works [71]. Adding
CutMix [41] and Mixup [32] data during training, denoted
by Augcutmixup, resulted in a significant increase in network
performance from 92.10% to 92.63%. Next, we changed
the resolution of the network from 224x224 to 384x384
as previously done [1] and trained the network both with
and without Augcutmixup. It is evident that increasing the
resolution had a very significant impact on performance. The
accuracy increased from 92.10% to 93.13% with Augbasic and
from 92.63% to 93.60% with Augcutmixup. Then, we replaced
the AugBasic augmentation with a combination of RandAug-
ment [31] and RandomErasing [33], which we refer to as
AugRandAug+Erase. With this replacement, we again trained
the network with and without Augcutmixup and report the
accuracy. As shown, using AugRandAug+Erase slightly improved
the performance of the network, from 93.13% to 93.21%
and from 93.60% to 93.74% with and without Augcutmixup
during training, respectively. Additionally, we trained the
ConvNeXt-L and ConvNeXt-XL networks with this final
configuration and report their accuracy. It can be observed
that ConvNeXt-L showed no significant improvement over
ConvNeXt-B, possibly due to overfitting.

As mentioned in Sec. IV-B, we additionally computed
the accuracy with and without EMA for all three variants.
As shown, models with EMA performed significantly better
with accuracies of 94.04%, 94.15% and 94.17% than the
base models with accuracies of 93.74%, 93.75% and 93.81%
respectively. Finally, we replaced the global average pooling
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TABLE 4. Clean accuracy, clean error, mCE, and the corruption error (CE) values across different distortion types for each model are listed. AlexNet
(Unnormalized) shows the actual magnitude of the errors caused by the distortions.

Noise (% CE) Digital (% CE)

Model Accclean (%) Eclean (%) mCE (%) Rel. mCE (%) Rel. mCE1% (%) Gaussian (%) Shot (%) Fibrous (%) Multiscale (%) Brightness (%) Contrast (%) Pixelate (%) JPEG (%)

R T R T R T R T R T R T R T R T R T R T R T R T R T

AlexNet (Unnormalized) 87.9 88.7 12.1 11.3 21.7 22.0 - - - - 16 12 16 12 29 27 45 45 19 18 37 45 12 11 12 12

AlexNet [36] 87.9 88.7 12.1 11.3 100.0 100.0 100.0 100.0 100.0 100.0 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
VGG-16 [36] 91.0 93.7 9.0 6.3 65.3 49.0 43.6 37.1 39.8 31.0 59 55 59 58 54 45 55 43 61 42 59 30 73 56 74 54
GoogleNet [36] 90.5 90.9 9.5 9.1 85.1 96.0 100.5 329.8 88.2 160.2 88 127 88 127 131 167 122 135 65 77 73 78 80 98 83 103
ResNet-50 [36] 90.4 92.0 9.6 8.0 93.9 105.0 121.2 467.4 107.8 225.4 99 140 99 138 179 268 161 187 63 75 104 107 81 94 87 103
EfficientNet-B1 [1] 92.7 94.4 7.3 5.6 63.9 63.0 70.5 162.8 61.9 87.6 56 64 56 62 95 156 102 131 44 38 37 38 61 59 63 58
EfficientNet-B4 [1] 92.6 93.7 7.4 6.3 56.4 51.5 54.8 47.8 44.6 32.5 54 56 54 58 62 76 64 90 45 38 32 30 63 56 63 60
ViT-B/16 [11] 87.1 89.3 12.9 10.7 101.5 104.3 112.7 323.7 92.5 132.4 106 106 108 105 101 137 90 95 88 86 63 64 108 118 109 114
ViT-L/32 [11] 85.9 86.9 14.1 13.1 105.4 99.6 98.0 78.6 79.1 51.9 105 117 105 110 116 114 126 118 99 88 73 56 115 114 117 123
DocXClassifier-B (Ours) 94.0 95.3 6.0 4.7 41.2 29.3 24.1 8.1 20.8 6.8 37 41 37 42 24 24 17 12 48 28 84 14 50 37 51 35
DocXClassifier-L (Ours) 94.2 95.6 5.9 4.4 40.3 27.2 25.4 2.6 21.2 2.6 37 35 36 35 24 21 19 11 48 25 78 11 49 36 49 37
DocXClassifier-XL (Ours) 94.2 95.4 5.9 4.6 41.7 34.0 27.9 87.9 23.9 37.9 37 44 37 44 24 23 20 13 53 31 95 13 48 46 49 47

Blur (% CE) Geometric Distortions (% CE) Documents Specific Distortions (% CE)

Model Defocus (%) Motion (%) Zoom (%) Binary (%) Gaussian(%) Noisy Binary(%) Affine (%) Scale (%) Elastic (%) Surf Dist. (%) Rand Dist. (%) Blotches (%) Threshold (%)

R T R T R T R T R T R T R T R T R T R T R T R T R T
AlexNet (Unnormalized) 17 23 24 34 21 26 15 11 15 18 29 15 25 23 25 22 16 17 12 11 12 12 23 21 15 11

AlexNet [36] 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
VGG-16 [36] 57 31 44 23 53 35 75 59 63 37 65 53 84 72 80 64 69 50 74 61 74 55 60 44 77 63
GoogleNet [36] 88 98 84 90 95 93 91 74 86 98 79 76 74 68 76 78 76 93 80 99 80 93 60 55 87 90
ResNet-50 [36] 93 94 83 85 106 112 94 70 89 94 82 79 76 69 77 72 81 85 80 91 81 93 67 57 90 89
EfficientNet-B1 [1] 64 50 98 79 91 70 74 55 63 50 50 57 51 49 58 51 56 49 60 59 61 53 39 38 62 56
EfficientNet-B4 [1] 54 42 56 41 70 48 72 56 56 40 50 52 50 44 58 46 56 44 61 58 62 54 40 33 61 61
ViT-B/16 [11] 102 107 79 81 103 97 126 100 102 106 100 93 104 102 103 99 115 120 115 119 109 178 85 61 117 105
ViT-L/32 [11] 96 85 71 63 84 71 123 105 102 95 82 90 111 101 108 96 124 116 129 122 117 120 92 68 117 121
DocXClassifier-B (Ours) 41 21 37 18 42 23 50 44 44 23 23 34 29 23 36 27 40 28 49 42 50 36 31 21 44 41
DocXClassifier-L (Ours) 43 18 35 16 41 23 48 38 44 23 22 29 28 23 35 28 39 26 48 38 49 36 29 23 43 38
DocXClassifier-XL (Ours) 42 24 37 20 43 31 49 51 43 30 22 36 28 27 34 29 39 34 48 49 49 45 38 27 42 51

R: RVL-CDIP-D, T: Tobacco3482-D

and linear classification head of the original ConvNeXt mod-
els with the proposed attention-based pooling to construct
the DocXClassifier models and re-trained them as described
in Sec. IV-B. As can be seen from Table 3, on RVL-CDIP,
we did not notice any change in accuracy when we switched
the models from ConvNeXt to DocXClassifier. However,
we did notice a slight improvement in performance on the
Tobacco3482 dataset during our experiments. In addition to
performance, it can also be seen that adding the attention-
based pooling mechanism to the models only adds about
∼8M parameters to the model, which is insignificant com-
pared to the overall size of the models.

E. EVALUATION OF MODEL ROBUSTNESS
In this section, we present a quantitative evaluation of the
robustness of our proposed DocXClassifier models using the
two benchmark datasets, RVL-CDIP-D and Tobacco3482-
D [11], as discussed in Sec. IV-A. We use two stan-
dard robustness evaluation metrics, Mean Corruption Er-
ror (mCE) [10] and relative Mean Corruption Error (Rel.
mCE) [10] to evaluate the robustness of the models and use
AlexNet [75] as a baseline for computing these metrics as
previously done in [11]. The mCE metric captures the overall
decrease in model performance with the introduction of data
corruptions, whereas Rel. mCE describes the decrease in
model performance relative to its performance on the clean
dataset. Both metrics are useful for assessing the robustness
of the model against novel data distortions. For more details
regarding these metrics, see Appendix A. In addition to
Rel. mCE, we also propose an additional metric called Rel.
mCE1%, in which we set the minimum possible baseline
error to 1%. Since Rel. mCE is computed by dividing the
relative CE of the model over the relative CE of the baseline,
for some distortions where the baseline relative CE reaches
close to zero (or even zero), Rel. mCE can produce highly

exaggerated results that may not accurately represent the
model’s robustness. By setting a minimum baseline error of
1%, we ensure that division is not performed with extremely
small numbers, resulting in more stable and interpretable
values for the metric.

The results of this evaluation are presented in Table 4,
where we list the errors on the clean datasets, the corruption
error (CE) introduced by each individual distortion type,
and finally, the mCE and Rel. mCEs across all distortion
types. For the baseline AlexNet model, we also present the
actual error rates introduced by each distortion type under
AlexNet (Unnormalized) case, relative to which the CEs of
all other models are computed. As evident from the table, our
proposed DocXClassifier models significantly outperformed
existing approaches in terms of robustness on both the RVL-
CDIP-D and Tobacco3482-D datasets, achieving mCE values
as low as ∼40% on the RVL-CDIP-D datasets and ∼22%
on the Tobacco3482-D dataset, respectively. It is also evident
from the table that our proposed models consistently demon-
strated significantly superior robustness compared to other
models across the majority (18 out of 21) of distortion types.
Interestingly, however, we noticed the our proposed models
were significantly affected by increasing image contrast on
the RVL-CDIP-D dataset.

It can be further observed from the table that our pro-
posed models also demonstrated significantly high relative
robustness, achieving Rel. mCE and Rel. mCE1% values
as low as 24.1% and 20.8%, respectively, on the RVL-
CDIP-D dataset. On Tobacco3482-D, both DocXClassifier-
B and DocXClassifier-L models again demonstrated supe-
rior relative robustness, achieving Rel. mCE values as low
as 8.1% and 2.6%, respectively. In contrast, however, the
DocXClassifier-XL model performed considerably worse on
this dataset. A possible explanation for this discrepancy could
be model overfitting on the small-scale Tobacco3482 dataset

VOLUME 4, 2016 9



Saifullah et al.: DocXClassifier:Towards a Robust and Interpretable Deep Neural Network for Document Image Classification

Letter Form Email Handwritten

Advertisement Scientific Report Scientific Publication Specification

File Folder News Article Budget Invoice

Presentation Questionnaire Resume Memorandum

FIGURE 5. Attention maps generated using the DocXClassifier-B model for a few randomly selected samples from the RVL-CDIP dataset. The feature importance
intensity ranges from from blue (low) to red (high).

due to its large number of parameters. However, it is also
worth mentioning that on the Tobacco3482-D dataset, we
also observed significant differences in Rel. mCE and Rel.
mCE1%, primarily due to the extremely low relative baseline
error rates. By examining the Rel. mCE1% values in this
case, it can be observed that overall, DocXclassifier-XL
showed robustness on a similar scale to EfficientNet-B4 and
VGG-16 models while demonstrating significantly superior
performance on the clean dataset.

F. EVALUATION OF MODEL INTERPRETABILITY

In this section, we present a qualitative analysis of the
interpretability of the proposed DocXClassifier models. As
explained in Sec. III, we utilized an attention-based mecha-
nism to perform a weighted aggregation of the image feature
vectors, the result of which is then fed into a feed-forward
network for classification. This weighted aggregation results
in attention weights for each predicted output, which directly

represent the importance the model assigns to each of the
feature vectors (and thus regions or patches) of the image. We
use these attention weights to generate the attention map for a
predicted image and upsample it to the base image resolution
for visualization.

The attention maps for a few randomly selected sam-
ples from the RVL-CDIP dataset, generated using the
DocXClassifier-B variant, are visualized in Fig. 5. Here, we
only visualize the positively predicted samples for each of
the 16 classes. It can be observed that the model had learned
to focus on specific regions of the image for each class. For
instance, for the Email, Letter, and Memorandum classes, the
network had learned to focus on the document header with
author, recipients, and subject information. For other classes,
the network focused on class-specific information, such as
the resume title, qualifications and experience of the subject
in the Resume class or items lists in the Specification class.
One interesting observation was that, in several instances,
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FIGURE 6. Attention maps generated using the DocXClassifier-B model for a selection of misclassified samples. Top row shows samples for which the ground-truth
(GT) is mislabeled but the model predicts the correct class. Bottom row shows samples where the ground-truth (GT) is correctly assigned but the model fails to

predict the correct class.

the model assigned significant importance to identification
numbers, particularly within classes like Letter, Memoran-
dum, Presentation, and Budget. This raises the question of
whether these numbers hold some class-specific information
within them; however, we will leave this investigation to
future work.

We further analyze attention maps for samples where the
network made false predictions. A notable observation in
this scenario was that for many samples, the model actually
made the correct predictions, but the ground-truth was falsely
annotated. A few samples of this type are visualized in Fig. 6.
In the top row, we display attention maps for instances where
incorrect ground-truth labels were assigned in the dataset,
yet the network correctly predicted the class. For instance,
it can be observed from the top row that the model correctly
predicted the Email, Form, Memorandum, and Specification
classes for these samples, while their ground-truth labels
were incorrectly assigned. By utilizing the attention maps, we
can also analyze which regions were considered important
by the model while making these predictions. The bottom
row illustrates attention maps for samples with correctly
assigned ground-truth labels on which the model failed to
predict the correct class. It can be observed that the model
failed to correctly predict the classes for samples that were
difficult to distinguish between multiple types. For instance,
both the 2nd and 3rd samples in the bottom row bear a
strong resemblance to the advertisement samples in the RVL-
CDIP dataset, as predicted by the model. However, they
are categorized into different classes. Notably, the model
appears to focus on specific advertisement-related imagery
for making these predictions.

Finally, we conduct a qualitative comparison of our ap-

proach with existing feature-attribution-based methods. We
compare our approach with five different state-of-the-art
feature attribution-based approaches: Saliency [76], Inte-
gratedGradients [57], DeepLIFT [58], LIME [20], Ker-
nelSHAP [22], and Occlusion [77]. For all these approaches,
we use the implementations provided in the Captum li-
brary 2 and utilize standard settings to generate the fea-
ture importance maps. In addition, since DocXClassifier is
designed as an enhancement to the base ConvNeXt model
to introduce interpretability, we apply the feature-attribution
techniques to the base ConvNeXt-based classifier to assess
the performance of the upgrade in comparison. Note that
both classifiers in this case use the same frozen weights
of the base ConvNeXt feature backbone as explained in
Section. IV-B, and perform equally well on the dataset.
The results are present in Fig. 7 where we visualize the
attribution maps generated using all the different approaches
for four randomly selected samples from the RVL-CDIP
dataset. A few interesting conclusions can be drawn from the
results. First, it can be directly observed that our approach
proved to be considerably more visually interpretable than
most of the approaches. Interestingly, the importance maps
generated by DocXClassifier model were slightly similar to
those generated by the LIME [20] and KernelSHAP [22]
approaches. However, both LIME [20] and KernelSHAP [22]
were difficult to interpret due to the region segmentation.
In comparison, our approach produced smoother importance
maps over the different image regions. The gradient-based
approaches, on the other hand, surprisingly failed to produce
any reasonable results on this model resulting in noisy at-

2https://github.com/pytorch/captum
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FIGURE 7. Comparison of the feature importance maps generated by DocXClassifier-B with existing feature-attribution-based XAI methods. We generate the
feature attribution maps for existing techniques by applying these methods directly to the base ConvNeXt-B model.

tribution maps with little to no importance assigned to any
region of the images. Similarly, while Occlusion [77] did
assign importance to different image regions, its results were
also difficult to interpret. Overall, we can conclude that our
approach is well-suited for generating human-interpretable
attribution maps, eliminating the need to resort to post-hoc
interpretability approaches to generate the explanations.

V. CONCLUSION

Model interpretability and model robustness are two main
challenges when it comes to safe and efficient deployment of
deep neural networks in real-world scenarios. In this work,
we addressed these challenges in the context of document
image classification and introduced DocXClassifier, an inher-
ently interpretable deep convolutional neural network which
holds the capability to efficiently generate feature importance
maps at test time. Furthermore, in order to enhance model
robustness to out-of-distribution data, we presented a training
strategy that incorporates advanced data augmentation strate-
gies and training techniques which have been previously left
unexplored in this domain. Through extensive evaluation, we
demonstrated that our proposed training strategy significantly
improves both performance and robustness, outperforming
all existing image-based document classification approaches
in both aspects while remaining runtime-efficient. Further-
more, we evaluated the interpretability of our approach in
comparison to existing explainability methods and demon-
strated its superiority in generating human-interpretable fea-

ture attribution maps. By tackling both robustness and in-
terpretability challenges simultaneously, our work presents
a significant step towards secure and robust deployment of
deep neural networks for document image classification.
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APPENDIX A ROBUSTNESS EVALUATION METRICS
The metrics Mean Corruption Error (mCE) [10] and relative
Mean Corruption Error (Rel. mCE) [10] were both proposed
by Hendrycks et al. (2019) [10] to evaluate the robustness of
deep neural networks on distorted datasets. The robustness is
generally computed relative to a baseline model, which we
choose to be the AlexNet [75] model in this work, similar to
what has been previosuly done by Saifullah et al. (2022) [11].

Mean Corruption Error (mCE). Let Ef
s,d be the error

rate of a trained classifier f on data corrupted by distortion
type d with severity s, then the mean corruption error mCE
of classifier f is defined as the total classification error of f
with respect to the baseline classifier on the distorted dataset
and can be calculated as follows:

mCEf =
1

nd

nd∑
d=1

[
(

ns,d∑
s=1

Ef
s,d)/(

ns,d∑
s=1

Ef ′

s,d)

]
(2)

Where f ′ represents the baseline classifier used to normalize
the distortion errors, nd denotes the total number of distortion
types applied to the data, and ns,d denotes the number of
severity levels defined for each distortion.

Relative Mean Corruption Error (Rel. mCE). The sec-
ond evaluation metric, namely relative mCE, computes the
relative decline in the performance of a given classifier f with
respect to its performance on the clean dataset and can be
obtained by the following equation:

Rel. mCEf =

1

nd

nd∑
d=1

[
(

ns,d∑
s=1

Ef
s,d − Ef

clean)/(

ns,d∑
s=1

Ef ′

s,d − Ef ′

clean)

]
(3)
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