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Abstract— High penetration of Advanced Metering 

Infrastructures (AMIs) and communication networks as the 

Internet of Energy (IoE) results in manifold security concerns, 

especially risk of False Data Injection Attacks (FDIAs). By 

fabricating the network data, FDIAs mislead power scheduling 

and routing strategies in IoE-based smart grids, besides 

monetary motivations. The conventional cyber defense systems 

cannot detect well-developed FDIAs, particularly once the 

intruder takes advantage of a Deep Reinforcement Learning 

(DRL)-based attack development framework that analyzes the 

dynamic nature of the smart grids. This paper proposes a DLR-

based intruder as an active attack generator that simulates the 

network environment and subsequently creates unclassified 

FDIAs. The algorithm is initialized by various possible passive 

attacks, which are modeled using statistical methods. Then, a 

multilayer defense framework is developed using Snapshot 

Ensemble Deep Neural Network (SEDNN) and an adoptable 

Deep Auto Encoder (DAE) network to detect known and 

unknown threats, respectively. Performance evaluation besides a 

real-world simulation proves that the proposed framework can 

successfully detect FDIAs. 

Index Terms—False Data Injection Attack, Internet of 

Energy, Deep Q-Learning, Snapshot Ensemble Deep Neural 

Network, Deep Auto Encoder. 

I. INTRODUCTION 

nternet of Energy (IoE) links energy and Information and 

Communication Technology (ICT) to overcome emerging 

challenges, using modern energy management techniques and 

tools [1]. On the one hand, users demand to receive high-

quality, reliable, and environment-friendly services with 

acceptable costs, guaranteeing their security and privacy. On 

the other hand, access to advanced real-time monitoring and 

controlling approaches to integrate renewable resources, 

maximize reliability, and minimize loss is crucial for the 

utilities [2]. 

Developing an IoE-based smart grid requires installing 

numerous sensors, wireless communication tools, smart 

appliances, and data acquisition units. While the open 

architecture of IoE-based networks, originating from two-way 

communication infrastructures and myriad internet-based 

entries, rises vulnerabilities against malicious activities. 

False Data Injection Attack (FDIA) is one of the major and 

most severe threats to the network that endangers the integrity 

of data through bypassing the conventional bad data detection 

mechanisms [3]. The most vulnerable sector against FDIAs is 

Advanced Metering Infrastructures (AMIs) due to their scale, 
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diversity, and complexity besides uninterrupted functionality 

over the communication network [4]. Three main categories of 

attack layouts have been introduced for FDIAs, including 

expert attackers, non-expert attackers, and data-driven attack 

models. An expert attacker is a professional adversary with 

complete knowledge of the nature of the system and the 

network topology, capable of designing an extremely 

complicated attack. However, even a non-expert intruder with 

limited information about the system can create and launch a 

stealth attack. Finally, da-driven attacks target the network by 

applying an Independent Component Analysis (ICA) to 

acknowledge estimated understanding about the system from 

the correlations of the measured data by AMIs deployed on 

the physical system [5]. 

FDIAs are commonly recognized as cyber-attacks on State 

Estimation (SE) in smart grids, and Bad Data Detection 

(BDD) methods are widely employed to detect them based on 

the l_2 norm between the actual and the estimated 

measurements [6]. Despite the fact that most of the FDIA 

detection techniques in the power systems focused on the SE 

in accordance with the line reactance data and cognizance of 

network topology, an attacker is still able to target the system 

by an FDIA in the absence of mentioned bits of knowledge. 

Furthermore, the fragilities of classic FDIA detection 

techniques become gradually prominent by facing extremely 

complicated attacks originating from network advancement 

and utilizing the gigantic quantity of AMIs and 

communication tools, regardless of SE data. 

FDIAs have been enthusiastically investigated in terms of 

attack generation and detection at the same time. In [7], a 

linear attack generation technique with an arbitrary mean has 

been developed without requiring a zero-mean Gaussian 

distribution. The proposed attack generation framework leads 

to an optimal attack approach, addressing a constrained 

quadratic optimization problem by the Lagrange multiplier 

technique. Deng et al. [8] suggested an attack model aiming to 

launch an inexpensive technique since obtaining the system 

state is costly. The proposed procedure has been utilized to 

approximate the system states by employing a small number 

of power flow parameters or injection measurements. Despite 

the designed FDIA model in [9], which assumes that the 

attacker has partial knowledge of some specific measurements 

of the power system, the developed FDIA generation in [10] 

and [11] require a comprehensive understanding of different 

parameters. 

The main shortcoming of the above-mentioned techniques 

is that a well-designed intelligent defense system can easily 

predict the modeled attacks. Besides, once the attack 

generation pattern is revealed,  the frameworks are not capable 

of adapting the recent condition to create new unknown 

Hossein Mohammadi Rouzbahani, Hadis Karimipour, Lei Lei 

Multi-Layer Defense Algorithm Against Deep 

Reinforcement Learning-based Intruders in Smart Grids 

I 

mailto:hossein.mohammadirou@ucalgary.ca
mailto:hkarimi@uoguelph.ca


 2 

attacks. The optimal attack sequences have been generated by 

the suggested method in [12] using a dynamic game between 

the attacker and the network based on Reinforcement Learning 

(RL). Although the proposed method indicated a satisfactory 

performance on IEEE 39-bus systems, the attacker can be 

tricked by a defender, which utilizes a simulated system 

substitute to engage and delay the attacker. Authors [13] and 

[14] proposed RL-based algorithms enabling online learning 

and attacking. The utilized Q-Learning algorithm suffers from 

the lack of scalability and generalization besides the curse of 

dimensionality, which makes the algorithm extremely 

inefficient. 

FDIA related investigations in the literature are not focused 

on the attack generation side, and many studies have been 

conducted on attack detection methods. Using the ex-ante 

admittance perturbation strategy, a hidden moving target 

defense approach has been proposed in [15], which the 

attackers cannot detect. This strategy presumes that the 

transmission line admittance changes at every SE interval. Liu 

et al. [15] presented a subsequent admittance perturbation 

strategy based on the differences between the column space of 

the measurement and attack matrices. Although the 

aforementioned strategies can precisely detect stealthy FDI 

attacks, they still rely on all network states that may not be 

estimated correctly due to meters placement and network 

topology. A joint admittance perturbation and meter protection 

method has been proposed in [16], aiming to increase the 

accuracy of estimated states under stealthy FDI attacks. 

Physical protection of all utilized assets in the network is 

expensive and impractical, especially in large-scale systems 

[17]. In fact, limited network information is always available 

that opens a gate for malicious activities. Authors in [18] show 

that complete real-time knowledge is not approachable for an 

attacker in a real case due to inadequate access to most grid 

facilities. Consequently, most FDIAs occur while network 

topology and transmission-line admittance values are not 

utterly clear to the attacker. 

Recently FDIAs models exploit the transmitted data over 

communication links among nodes and data centers that lead 

to generating highly complex big data. Accordingly, machine 

learning techniques are extensively considered as an attack 

detection solution since conventional methods are not capable 

of feature engineering and finding complex patterns [19]. 

Supervised and semi-supervised learning algorithms based on 

Support Vector Machine (SVM) have been employed in [20] 

to develop an attack detection procedure that has been 

examined on various IEEE test systems. The results show the 

superiority of the proposed methods (to detect both known and 

unknown attacks) over techniques that employ state vector 

estimation. Lee et al. [21] proposed a cyber threat detection 

approach based on the difference between True Positive (TP) 

and False Positive (FP) rates. The outcome demonstrates that a 

combination of event profiling for data preprocessing and 

Deep Neural Network (DNN) algorithms, including 

Convolutional Neural Network (CNN) and Long-Short-Term 

Memory (LSTM), is capable of detecting FDIAs with 6% 

higher accuracy than conventional machine-learning methods. 

Moreover, electricity theft which is a primary concern for 

utilities, has been investigated using different machine 

learning techniques. Although authors in [22] demonstrate the 

superiority of Artificial Neural Network (ANN) over Decision 

Tree (DT) and Random Forest (RF) for detecting electricity 

theft as an FDIA, in [23] and [25], it has been shown that 

CNN-based methods performed a better attack detection rate 

by a considerable difference. 

Neither the studies mentioned above nor other related 

works in the context of FDIA detection in IoE-based smart 

grids present a framework to develop an intelligent intruder 

who designs attacks adapting to the dynamic environment of 

the smart grid. Moreover, a multilayer attack detection 

structure is required to detect passive and active threats 

simultaneously. 

Motivated to address the above-mentioned concerns, the 

main contributions of this paper are summarized as follows. 

1- An intelligent intruder is trained using Deep Q-

Learning (DQL) to target the network, taking advantage of 

online learning by simulating a dummy power system. 

Moreover,  various possible FDIAs are mathematically 

modeled to initialize the attacker algorithm. 

2-  As the first layer of the proposed framework, a 

Snapshot Ensemble Deep Neural Network (SEDNN) 

algorithm is developed employing the Cosine annealing 

technique by taking a snapshot once the model hits a local 

minimum before altering the learning rate. An ensemble of 

developed snapshots enhances the attack detection 

performances while reducing the risk of overfitting and 

computational cost. 

3- A Deep Autoencoder-based network with an adaptable 

reconstruction error threshold is introduced as the active 

cyber defense to detect future unknown attacks based on 

the real-time information of the network. Although FDIAs 

are becoming more complex and intelligent, this active 

cyber defense makes the proposed framework more 

reliable in an unsupervised manner. 

The remainder of this article is organized as follows. 

Section II presents the system model. In Section III, the DRL-

based attack generation framework is introduced, initialized 

by the mathematical modeled possible attacks. Section IV 

presents the structure and algorithms of the proposed attack 

detection framework. The proposed model and framework are 

simulated in section V. Finally, section VI concludes this 

article. 

II. SYSTEM MODEL 

One of the principal characteristics of an IoE-based smart 

grid is to provide real-time control and monitoring of physical 

components anytime and anywhere [25]. As Figure 1 

illustrates, the architecture of the network model consists of  

three main layers, including Micro Area (MA), Neighborhood 

Area (NA), and Wide Area (WA). Several smart meters, 

sensors, data concentrators, and AMI headends are placed into 

MAs over a local bidirectional wireless communication 

network. Then, an aggregator collects consumption data of all 

energy entities and sends the gathered information to the 
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attack detection unit. Lastly, the control entity takes an 

appropriate action based on the status of the detection unit that 

shows whether the system is under attack or not. 

A group of MAs forms a NA, exchanging electrical energy 

based on their contract. A neighborhood data aggregator 

collects overall data of every participated MA. Next, the 

utilized attack detection module examines data correctness and 

declares the attack status to the next unit. The same process 

takes place at the WA level, considering collected information 

from two or many NAs. All the embedded sensors report a 

network parameter according to their assignments. This model 

takes consumed power as the reported measure with a specific 

sampling rate in a MA.  

 
Figure 1.The proposed framework of the IoE-based network 

All the embedded sensors report a network parameter 

according to their assignments. This model takes consumed 

power as the reported measure with a specific sampling rate in 

a MA. The logic is extendable for other parameters and NA 

and WA in the same way. Equation (1) defines the matrix of 

actual power consumption  𝑃𝐴𝑐𝑡 ∈  |ℝ|𝑛×𝑚 , where 𝑛  and 𝑚 

are the number of time slots (e.g., if reading is reported every 

15 minutes, then n=96) and the number of energy components, 

respectively. The vector 𝐶𝑗 = (𝑐1𝑗 , 𝑐2𝑗 , ⋯ , 𝑐𝑛𝑗)𝑇  denotes 

reported daily consumption of appliance 𝑗  in different time 

slots, where 𝑐𝑖𝑗  indicates reported consumed power by sensor 

𝑗 at the specific time slot 𝑖. 

  𝑃𝐴𝑐𝑡(𝑐) = ∑ 𝐶𝑖 = [

𝑐11 ⋯ 𝑐1𝑚

⋮ ⋱ ⋮
𝑐𝑛1 ⋯ 𝑐𝑛𝑚

]
𝑚

𝑖=1
                                 (1) 

Generally, an intruder compromises the integrity of the 

information by injecting a fake data vector 𝛼 ∈ ℝ𝑛×𝑚 . 
Mathematically, conventional FDIAs are formulated as in (2), 

where 𝑃𝐹𝑎𝑙𝑠𝑒 is the falsified matrix [26]. 

𝑃𝐹𝑎𝑙𝑠𝑒(𝑐) = 𝑃𝐴𝑐𝑡(𝑐) + 𝛼                                                                       (2) 

This research takes the capability of node selection in all 

different locations for the attacker into account. Also, the 

intruder can schedule the attack on continuous or many 

discrete time slots. Accordingly, the formulation of FDIAs is 

modified in (3), where 𝑓(𝑐𝑖𝑗) = 𝜓1𝑐𝑖𝑗
𝛽

+ 𝜓2𝑐𝑖𝑗
𝛽−1

+ ⋯ + 𝜓𝑘 

denotes applying function by the attacker on the matrix of 

measurements, also 𝜓, and 𝛽 are constants and 𝑘 ∈ ℝ. 

𝑃𝐹𝑎𝑙𝑠𝑒(𝑐) = [
𝑓11(𝑐11) + 𝛼11 ⋯ 𝑓1𝑚(𝑐1𝑚) + 𝛼1𝑚

⋮ ⋱ ⋮
𝑓𝑛1(𝑐𝑛1) + 𝛼𝑛1 ⋯ 𝑓𝑛𝑚(𝑐𝑛𝑚) + 𝛼𝑛𝑚

]         (3) 

 

III. THE PROPOSED DQL-BASED ATTACK GENERATION 

FRAMEWORK 

This section introduces different parts of the designed 

framework, including sample library (i.e., initial attacks and 

normal samples), adversarial attack generator, simulated 

environment, and actual environment, as indicated in Figure 2.  

 
Figure 2. The framework of the proposed attack generation method 

The entire process of training the attack generator 

algorithm is as follows. 

1) Step 1: Mathematical modeling of possible FDIA 

scenarios 

Five statistically different FDIA scenarios are modelled to 

store in the library as classified attacks. These attack scenarios 

are employed for initializing the training process of the DQL 

algorithm. 

1.1  Node-based attack scenario 

In this scenario, the attacker chooses one or multiple 

components and targets them regardless of time. 

Subsequently, corresponding columns of under attack nodes in 

𝑃𝐴𝑐𝑡(𝑐) are changed. For instance, if the first node is selected 

by the intruder, then the first column of𝑃𝐴𝑐𝑡(𝑐)  is changed 

from (𝑐11, … , 𝑐𝑛1)𝑇  to (𝑓(𝑐11), … , 𝑓(𝑐𝑛1))𝑇 . Equation (4) 

demonstrates alterations of the 𝑗𝑡ℎ array in the first column of 

𝑃𝐴𝑐𝑡(𝑐) after an attack. 

𝑃𝐹𝑎𝑙𝑠𝑒
𝑗1 = 𝜓

𝑖1
𝐶𝑖1

𝛽
+ 𝜓

𝑖2
𝐶𝑖1

𝛽−1
+ ⋯ + 𝜓

𝑖𝑘
+ 𝛼𝑖1                    (4) 
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The varying coefficients are defined based on the Joint 

Probability Distribution Function (JPDF) for each node 

considering time. Consumption and time that are denoted by 𝐶 

and 𝑇 , are the variables and 𝑓𝐶𝑇: ℝ2 → ℝ  is a nonnegative 

function so that the JPDF is defined for any set of ℚ ∈ ℝ2 as 

in (5), where {𝑎, 𝑏} ∈ ℚ. 

𝑃{𝑎 < 𝐶 < 𝑎 + 𝑑𝑎, 𝑏 < 𝑇 < 𝑏 + 𝑑𝑏}

= ∫ ∫ 𝑓𝐶𝑇

𝑎+𝑑𝑎

𝑎

 𝑑𝑎. 𝑑𝑏 ≈ 𝑓(𝑎, 𝑏)𝑑𝑎 𝑑𝑏          (5)

𝑏+𝑑𝑏

𝑏

 

Then, maximum and minimum JPDF for every possible 

pair of C and T are calculated. Finally, varying coefficients 

including 𝜓, 𝛽, and 𝛼 are determined, satisfying the inequality  

in (6). 

𝑀𝑖𝑛 𝑃 ≤ 𝜓𝑖1𝐶𝑖1
𝛽

+ 𝜓𝑖2𝐶𝑖1
𝛽−1

+ ⋯ + 𝜓𝑖𝑘 + 𝛼𝑖1 ≤ 𝑀𝑎𝑥 𝑃      (6) 

1.2 Time-based attack scenario 

The second scenario occurs once all nodes are targeted at 

continuous or multiple discrete time slots. Consequently, the 

first array of the 𝑗𝑡ℎ time slot changes as indicated in (7). 

𝑍1𝑗 = 𝜓1𝑗𝐶1𝑗
𝛽

+ 𝜓2𝑗𝐶2𝑗
𝛽−1

+ ⋯ + 𝜓𝑘𝑗 + 𝛼1𝑗                   (7) 

The coefficients are calculated the same as in the previous 

attack scenario. 

1.3 Joint node-time-based scenario 

This scenario is a combination of node-based and time-

based scenarios, and the attacker considers both objectives 

simultaneously. The coefficients are set to avoid normality test 

failure.  

1.4 Shifting scenario 

In this setup, the attacker only shifts the time of the 

reported consumption, one or multiple time slots. Typically, 

the main aim of this type of attack is bypassing high-priced 

tariffs during peak hours. No dummy vector is injected in the 

consumption matrix and just 𝑃𝐹𝑎𝑙𝑠𝑒
𝑖(𝑗+Δ) = 𝑃𝐴𝑐𝑡

𝑖𝑗 , where Δ 

stands for the number of shifts in the time slot number. 

1.5 Blind attack scenario 

Blind attacks usually arise by amateur attackers intending 

electricity theft. The attacker has no expertise and randomly 

injects fake vectors. Predominantly, most injected values are 

zero to minimize the electricity bill amount. 

2) Step 2: Training the environment simulator 

It is challenging to design an optimal attack strategy in the 

absence of preceding knowledge. The solution is assessing the 

environment by trial and error, while it is crucial to attack and 

learn stealthily. Consequently, a dummy environment is 

developed to avoid revealing during the finding optimal attack 

strategy. 

The process is started with randomly selecting samples 

from the highly imbalanced library with only 9% attack 

examples. A Long Short-Term Memory (LSTM) is designated 

to form the dummy environment, considering the nature of the 

actual environment that samples power consumption of all 

energy components every 15 minutes. Then a DQL algorithm 

is utilized to simulate the actual environment by estimating the 

parameters. The update rule of conventional Q-Learning is 

indicated in (8), where 𝑄(𝑠, 𝑎) represents the value of action 

𝑎𝑡  in state 𝑠𝑡 , 𝑠′  is the next state by the probability of 

transferring from state 𝑠  with action 𝑎 , 𝛾  is discount factor, 

and 𝑟 denotes the reward 

𝑄𝑡+1(𝑠, 𝑎) ⃪𝑄𝑡(𝑠, 𝑎) + 𝛼. (𝑟 + 𝛾 max
𝑎′

𝑄(𝑠′, 𝑎′) − 𝑄𝑡(𝑠, 𝑎))    (8) 

 Since the process is extraordinarily slow and costly due to 

the required memory and time, Deep Neural Network (DNN) 

takes the crucial role as a function approximator in DQL, 

where the inputs are the states. The Q-values are calculated as 

the outputs, focusing on minimizing the loss function as in (9), 

where 𝜇 is the experience buffer containing, and 𝜃 represents 

the parameters of the policy. 

𝐿(𝜃𝑡) = Ε𝜇 [(𝑄(𝑠, 𝑎; 𝜃𝑡) − 𝑟𝑡+1 − 𝛾 max
𝑎

𝑄(𝑠′, 𝑎; 𝜃𝑡))
2

]           (9) 

The selected sample is input into the simulated 

environment as the agent, while the max
𝑎′

𝑄(𝑠′, 𝑎′) is predicted 

as the output. Then, the RL-environment (i.e., the actual 

environment, in this stage) receives the current state and the 

corresponding action to generate the reward. This process 

continues to minimize the loss function while predicting the 

parameters, constraints, and network topology of the simulated 

environment. 

3) Step 3: Generating innovative FDIAs  

After eliminating the risk of revealing, the second DQL-

algorithm acts as an attack generator. Accordingly, the reward 

function is modified in this stage to distinguish the newly 

created attack from the previously modeled ones. Furthermore, 

since the attack generation section freely targets different 

sections of the dummy environment on various time slots, the 

attacker information is not limited to the local information or 

specific time slots. Also, there is no restriction in the 

cooperation and communication with the dummy 

environment, and providing feedback allows the attacker to 

define the optimal policy and improve it constantly.  

The process is briefed in Algorithm 1, where 𝑃𝑟𝑚𝑖𝑠 denotes 

the probability of mis-scored, 𝐷  is reply buffer, and 𝛼𝑙𝑟 

indicates the learning rate. 

Algorithm 1: Attack generation algorithm process 

Input 𝐷 to capacity 𝐶𝑟𝑒𝑝, minibatch 𝑘𝑟𝑒𝑝, 𝛼𝑙𝑟 
Initialize the parameter of the dummy environment  
Inputs 𝑆, 𝐴, 𝛾, 𝑛, 𝜖 
for episode = 1, M do 
      randomly generate a sample of sates 

      initialize sequences 𝑆1
𝑖 

      store transition in 𝐷 at each episode 
      get the classification result from the dummy environment 
      compare the classification labels 𝑙 
      if  𝑙: 𝑇𝑟𝑢𝑒: 
          set 𝑟𝑒𝑤𝑎𝑟𝑑 = 2 
      else: 
          set 𝑟𝑒𝑤𝑎𝑟𝑑 = 0 
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          return reward 
      Compare 𝑃𝑟𝑚𝑖𝑠 
      if  𝑃𝑟𝑚𝑖𝑠

𝑡+1 > 𝑃𝑟𝑚𝑖𝑠
𝑡: 

          set 𝑟𝑒𝑤𝑎𝑟𝑑 = −1 
      else: 
          set 𝑟𝑒𝑤𝑎𝑟𝑑 = 3 
          return reward 
      set 𝑦𝑗, then calculate the error 

      perform gradient descent  
end 

IV. THE PROPOSED MULTILAYER ATTACK DETECTION 

FRAMEWORK 

Mathematical modeling of different attack scenarios 

illustrated that a professional intruder could design a series of 

attacks that can pass conventional FDIA detection 

frameworks. Moreover, a comprehensive attack detection is 

required to detect overlooked threats since the network 

environment is exceptionally dynamic, and adversaries are 

capable of planning progressively complex and intelligent 

attacks. 

This paper proposed a multilayer attack detection 

framework that combines supervised and unsupervised 

learning algorithms. As figure 3 shows, real-time reported 

information is analyzed by a SEDNN attack detection 

algorithm to find any malicious activities using the predefined 

and classified attack models in a library. Then, normal data is 

inserted into a Deep Auto Encoder (DAE) based unsupervised 

classifier to discover any possible abnormality. The developed 

DAE network takes advantage of an adaptable reconstruction 

error threshold. After detecting an attack, the library is 

updated to reduce detection time and cost in the future. 

 
Figure 3. A schematic of the proposed attack detection algorithm 

1) The proposed Snapshot Ensemble Deep Neural Network 

(SEDNN) algorithm to detect passive attacks  

Ensemble learning expresses the method of training and 

combining multiple machine learning algorithms aiming to 

enhance predictive performance. Ensemble architecture of 

neural networks is more precise and robust than a single 

model due to the abilities stemming from this method, 

including overfitting avoidance, concept drifting, and 

dimensionality reduction.  

The main disadvantage of the ensemble method is that 

training multiple DNN models is a costly process due to the 

extensive computational burden. Also, the best model among 

all trained models usually beats the ensemble method. 

Consequently, a snapshot ensemble that develops multiple 

models from a single training process is introduced as the 

solution. This technique combines different models' 

predictions while saving models during the training phase and 

employing them to create an ensemble setup [27]. 

Furthermore, the learning rate used during the training stage is 

aggressively altered using the Cosine annealing technique 

defining the initial learning rate and the number of training 

epochs to avoid similarity among models. In DNNs’ training 

process, the learning rate is generally decreased after several 

epochs, resulting in validation loss reduction. Hence, the risk 

of overfitting is remarkably increased, which needs to be 

addressed. 

The Cosine annealing method fluctuates the learning rate 

from a maximum to approximately zero, letting the algorithm 

converge to a different solution. Equation (10) formulates the 

learning rate 𝛼 in the Cosine annealing procedure, where 𝛼0 

denotes initial learning rate; 𝑡 is the iteration number, 𝑇 stans 

for the total iteration number, and  𝑀 denotes the number of 

cycles [28]. 

𝛼(𝑛) =
𝛼0

2
(cos (𝜋 × [

𝑇

𝑀
]

−1

× 𝑚𝑜𝑑 (𝑡, [
𝑇

𝑀
]) + 1)           (10) 

Once the model hits a local minimum considering the 

validation loss, a snapshot of the model is taken, and the 

parameters are saved. Then, the learning rate is increased, as 

mentioned above, to start the training cycle of the second 

snapshot. An ensemble model can be developed after training 

𝑁 models while the number of snapshots is defined based on 

the total training time of all models. Equation (11) defines the 

process of selecting 𝑁 (i.e., the number of snapshots), where 

𝑇𝑖
𝑆𝑛𝑎𝑝𝑠ℎ𝑜𝑡

, and 𝑇𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑
𝐷𝑁𝑁  define the training time of snapshot 

number 𝑖  and the training time of a standard DNN, 

respectively. 

𝑇𝑁
𝑆𝑛𝑎𝑝𝑠ℎ𝑜𝑡

= 𝑇𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑
𝐷𝑁𝑁 − ∑ 𝑇𝑖

𝑆𝑛𝑎𝑝𝑠ℎ𝑜𝑡𝑁−1
𝑖=0                        (11) 

2) Developing a Deep Auto Encoder (DAE) network to 

detect active attacks 

Even though the previous layer is trained with numerous 

attack samples created by the DQL-based attack generator, 

there might still be unknown attacks that are capable of 

passing the passive attack detection layer. Accordingly, a 

threat hunting layer is required to enhance the detection rate. 

Furthermore, since the algorithm needs to detect unknown 

attacks, the model must be developed by unsupervised 

techniques.  

Deep autoencoders are feed-forward multilayer neural 

networks consisting of an input layer, one or multiple hidden 

layers, and an output layer, aiming to learn data 

reconstructions. As a data-compression model, DAE maps the 

original data into a reduced dimension representation and 

rebuild the data from compressed information via a pair of 

encoder and decoder. In addition, the ability to discover 

correlations among data features makes DAEs capable of 

detecting FDIAs in an unsupervised manner. 

Equation (12) shows how the encoder maps the original 𝑑 
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dimensional vector (𝑥1, 𝑥2, … , 𝑥𝑛)𝑇 to 𝜆 number of neurons in 

the hidden layer ℎ, reducing the dimension (𝜆 < 𝑛), where ℎ𝑖 

is the activation of the 𝑖𝑡ℎ  neuron; 𝑊  denotes the encoder 

weight matrix, 𝑏  and 𝜎  stand for input bias vector and 

nonlinear transformation function, respectively [29]. 

ℎ𝑖 = 𝜎 (∑(𝑊𝑖𝑘 × 𝑥𝑘)

𝑛

𝑘=1

+ 𝑏𝑖)                                                  (12) 

The decoder in (13) reconstructs back the hidden layer to 

the original space. 

 𝑦𝑖 = 𝜎 (∑(𝑊𝑖𝑘 × ℎ𝑘)

𝑛

𝑘=1

+ 𝑏𝑖)                                                 (13) 

The critical point in this model is minimizing 

reconstruction error, which is given in (14). 

𝑒𝑟𝑟𝑜𝑟 = 𝑎𝑟𝑔𝑚𝑖𝑛
1

𝑛
∑ ∑ (𝑥𝑖 − 𝑦𝑖)2𝑑

𝑘=1
𝑛
𝑖=1                                (14)   

A flat reconstruction error threshold may result in a 

vulnerable detection structure or even false alarms due to the 

dynamic nature of the attacks created by the DQL-based attack 

generator. The procedure of developing the adaptable DAE 

layer is demonstrated in Figure 4.  

 
Figure 4. Schematic of DAE network 

After training each training stage, the residuals 𝑟𝑘 =
|𝑥𝑘 − 𝑦𝑘|  are calculated to estimate the probability 

distribution of the outputs and the residuals, using the Radial 

Basis Function (RBF) kernel. Then, the marginal distribution 

𝑀(𝑟, 𝑦𝑖)  is determined as shown in (15), where 𝑃(𝑦, 𝑟) 

denotes the joint probability distribution. 

𝑃(𝑦𝑖 , 𝑟) = 𝑀(𝑟, 𝑦 = 𝑦𝑖) × ∫ 𝑃(𝑦𝑖 , 𝑟). 𝑑𝑟
+∞

−∞
                        (15) 

Next, a critical point is estimated for each 𝑦𝑖  considering 

the upper and lower levels of 𝑦, where 𝑦𝑢𝑝𝑒𝑟 = 1.15 × 𝑦 and 

𝑦𝑙𝑜𝑤𝑒𝑟 = 0.85 × 𝑦 . The process is done after defining a 

critical function and making it constant between the defined 

upper and lower levels. 

The proposed multilayer FDIA detection framework is 

summarized in Figure 5. 

 

Figure 5. The procedure of the proposed attack detection layer 

V.RESULTS AND EVALUATIONS 

This section first investigates the quality of the generated 

attacks by the DQL-based attack generation, indicating that 

the modeled attack scenarios can pass the presented 

algorithms in the literature. Then, the performance of both the 

active and passive layers is evaluated. All experiments are 

performed on a subset of the Pecan Street dataset, which is 

available in the Non-Intrusive Load Monitoring Toolkit 

(NILMTK) format [30]. Finally, a simulation examination 

demonstrates the feasibility, necessity, and practical outcome 

of the proposed FDIA detection algorithms. 

1) Qualification of the developed attack generator 

Three proposed FDIA detection frameworks published in 

top-tier journals during the last three years are selected to 

show their performances against the proposed attack generator 

framework. Artificial Neural Network (ANN), Decision Tree 

(DT), and Random Forest (RF) have been employed in [22] to 

determine attacks and anomalies in IoT sensors. Additionally, 

two different CNN-based mechanisms have been developed in 

[31] and [24], focusing on FDIAs. After some minor 

justifications to make the codes compatible with the dataset 

based on the proposed attack scenarios, the simulations show 
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that the generated attacks can pass the detection systems. 

Table 1 demonstrates that the preceding defense frameworks 

cannot detect the proposed attack models with a reasonable 

performance. Since the dataset is highly imbalanced, the 

accuracy does not reflect the performance of the algorithm. 

Accordingly, three important metrics (i.e., Recall, Precision, 

and F-1 score), which are not affected by the asymmetry of the 

dataset, are reported to illustrate the preciseness of the model. 

Recall is the number of correctly positive detected attacks 

(TP) divided by the sum of TP and the number of samples that 

falsely labeled as normal (FN). Precision is the ratio of TP and 

the sum of TP and False Positive (FP). Finally, the f-1 score is 

formulated in (16) as, 

𝑓1 − 𝑠𝑐𝑜𝑟𝑒 =
2 × 𝑅𝑒𝑐𝑎𝑙𝑙 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
                                (16) 

Consequently, a new attack detection is required to detect 

all possible attack scenarios besides hunting unknown threats. 

TABLE 1 

PERFORMANCE OF THE RECENTLY DEVELOPED FDIA DETECTION 

FRAMEWORKS AGAINST THE PROPOSED ATTACK SCENARIOS 

Model f1-score Precision Recall 

Combined CNN [31] 0.4942 0.4548 0.5412 

Wide and Deep CNN [24] 0.5186 0.5119 0.5255 

SVM [24] 0.3004 0.2945 0.3066 

ANN [22] 0.4627 0.4704 0.4554 

DT [22] 0.2924 0.2852 0.2998 

RF [22] 0.3248 0.3214 0.3284 

2) Performance of the first layer: SEDNN 

An ensemble of ten single models is developed using the 

Cosine annealing technique. The proposed SEDNN is 

developed using 60%, 15%, and 25% of data for training, 

validation, and test, respectively. Three hidden layers are 

defined for each model where the number of epochs is 120, 

and Cosine annealing learning rate cycling is 5. The batch size 

and learning rate are set at 256 and 0.01, respectively. This 

model uses the ReLU activation function while the drop-out 

rate is 0.3. Also, an SGD optimizer with a momentum of 0.90 

is used in the model. Although the final attack detection 

accuracy of the first layer of the proposed framework is 

96.9%, since the dataset is highly imbalanced with just 9% 

attack samples, f1-score, Precision, and Recall are reported to 

clarify the algorithm's performance. 

TABLE 2 

COMPARISON PERFORMANCE OF DIFFERENT METHODS 

Model f1-score Precision  Recall 

The proposed SEDNN 0.9566 0.9631 0.9502 

CNN-LSTM [23] 0.8967 0.9044 0.8892 

WDCNN [24] 0.8953 0.9001 0.8906 

EDNN [23] 0.91879 0.9372 0.9011 

RF  [23] 0.7339 0.7424 0.7256 

Table 2 summarizes the results and compares the 

performance of the developed SEDNN and other techniques, 

including CNN_LSTM, random bagging Ensemble of DNN 

(EDNN), Wide Deep CNN (WDCNN), and RF. Additionally, 

the superiority proposed algorithm in terms of f1-score, 

Precision, and Recall is investigated, making a comparison 

with works in [23] and [24]. 

3) Performance of the second layer: DAE 

The normal data that pass through the first layer is then 

injected into the second layer, aiming to detect any unknown 

threat. In this stage, the data splitting procedure assigns 65% 

and 15% of the entire dataset to training and validation stages, 

while 20% of data is remained to test the developed model. 

Four hidden layers are embedded while the number of neurons 

is reduced layer by layer based on the comparison factor. 

Drop-out is also utilized at the rate of 0.15, mitigating the risk 

of overfitting and improving generalization error. An Adam 

optimizer is utilized to compile the DAE, and the learning rate 

and batch size are set at 0.001 and 512, respectively. The 

algorithm calculates validation errors for the first training 

round to define a threshold. The threshold is set as shown in 

(17), where IQR stands for interquartile range. The model 

sends an attack signal once the test error exceeds the 

reconstruction error threshold. Then, the threshold is adjusted 

as mentioned in the previous section. 

𝜏 = 𝑀𝑒𝑑𝑖𝑎𝑛 +
3 × 𝐼𝑄𝑅

2
                                                            (17) 

The threat hunting layer is trained 500 epochs while the 

validation test is monitored to avoid overfitting. Figure 6 

shows the reconstruction error of 475,450 observations. The 

least FP rate obtains when 𝜏 is 0.815 × 10−3. The same setup 

is then trained to utilize the adoptable reconstruction error.  

Later, the model is tested by launching the total number of 

43,480 FDIAs at diverse time slots during midnight, morning 

off-peak hours, midday and afternoon peak hours, and mid-

load hours, with various false data injection magnitudes. The 

FP rate is a critical metric of attack detection in smart grids 

due to the severe economic and forensic consequences of a 

mistaken alarm. The FP rate of the proposed threat hunting 

layer is 0.097, along with the model accuracy of 98.82%, 

indicating outstanding performance. 

 
Figure 6. Reconstruction error distribution 
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Finally, table 3 makes a performance comparison among 

the second layer of the proposed method, with a flexible Bayes 

Classifier [32], and two well-known anomaly detection 

algorithms, including One-Class Support Vector Machine 

(OCSVM) and Isolation Forest (IF). 

TABLE 3 

PERFORMANCE COMPARISON AMONG ABOVE-MENTIONED METHODS 

Model Accuracy FP rate (%) 

The proposed DAE (Adoptable) 0.9882 0.97 

The proposed DAE (Fixed) 0.9433 1.45 

Flexible Bayes classifier Not reported 1.92 

OCSVM 0.8249 9.21 

IF 0.7516 13.44 

4) Network Parameters 

In this section, a real-world network simulation is 

investigated to indicate the network's performance that 

operates with the developed frameworks. 

The communication network and smart grid structure are 

modeled using ns-3 and GridLAB-D, respectively, while the 

Framework for Network Co-Simulation (FNCS) operates as an 

integrator between both simulators. Furthermore, various 

necessary communication and grid configurations are outlined 

and appended into a preprocessing module. 

All created attack scenarios are scheduled and stored in a 

library specifying their target. As the heart of the simulator, a 

model engine manages and executes all the processes. 

Moreover, after developing the simulator, the proposed attack 

detection framework is embedded into the model engine to 

discover its performance in a real-world environment. 

Figure 7 shows the architecture of the simulator and 

simulation parameters. Furthermore, two neighborhoods are 

created as a NA, ensuring the scalability of the system. The 

first neighborhood contains 7 MA, and the rest of 5 belongs to 

the second one. 

 
Figure 7. The structure of the GridAttackSim simulator 

Two identical network topologies are also created using the 

developed algorithms in [23] and [24] as the pair model to 

compare network performances, including throughput and 

delay. Network throughput is a metric that indicates the 

amount of successfully transmitted data between transceivers 

in a timespan. Additionally, the average time of receiving 

entire information at the end node is network delay. 

As Table 4 demonstrates, since the proposed method 

employs a DQL-based attack generation engine, most of the 

possible FDIAs have been classified as the detection 

framework at the training stage, resulting in better network 

performance. 

TABLE 4 

NETWORK PARAMETERS IMPROVEMENT WITH DIFFERENT ALGORITHMS 

Method 
Data rate 

(pkts/sec) 

Throughput 

(kbps) 

Delay 

(ms) 

The proposed Model 

2 252 126 

6 271 164 

9 364 197 

CNN-LSTM [23] 

2 185 258 

6 231 308 

9 262 361 

WDCNN [24] 

2 192 212 

6 219 278 

9 269 349 

 

Hitherto, we indicate that the model performs properly 

from attack detection and network performances points of 

view. However, under the same attack scenarios, without an 

intelligent FDIA protection system, the system was targeted 

over 24 hours, resulting in average reducing the electricity bill 

for the attacker to 43%, which is not noticeable by the 

conventional inspections. Consequently, the net profit of the 

power supplier dropped 86%. The absence of the proposed 

framework results in chaos in power scheduling and routing, 

especially in the neighborhood area, affecting peer-to-peer 

electricity trading among the end-users. 

VI. CONCLUSION 

In this paper, a DQL-based FDIA generator has been 

developed using various possible attack scenarios that were 

mathematically modeled. Moreover, a two-layer attack 

detection framework was developed to identify both known 

and unknown attacks. The first layer used a SEDNN that 

presented better performance than other machine learning-

based techniques, including EDNN, DNN, and RF, where the 

accuracy and f1-score of the model were 98.02% and 95.99%, 

respectively. 

Threat hunting responsibility was assigned to the second 

layer using a DAE model that indicated an outstanding result 

where the FP rate was remarkably low by 2.9%. Also, 

compared to two other anomaly detection techniques, 

including OCSVM and IF, the designed model performed 

better by accuracy and f-1score of 98.81% and 95.66%, 

respectively. 

  Ultimately, the proposed attack modeling and detection 

framework were simulated using a combination of ns-3, 

FNCS, and GridLAB-D simulators. Additionally, the same 

setup was modeled based on two different developed 

algorithms to make a comparison between the performances. 

The result showed the superiority of the proposed framework 

in terms of network throughput and end-to-end delay. 
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