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CubeSats, the nanosatellites with a wet mass up to 10kg,
accompanied by the cost decrease of accessing the space, am-
plified the rapid development of the Earth Observation industry.
Acquired image data serve as an essential source of information
in various disciplines like environmental protection, geosciences,
or the military. As the quantity of remote sensing data grows,
the bandwidth resources for the data transmission (downlink) are
exhausted. Therefore, new techniques that reduce the downlink
utilization of the satellites must be investigated and developed.
For that reason, we are presenting CloudSatNet-1: an FPGA-
based hardware-accelerated quantized convolutional neural net-
work (CNN) for satellite on-board cloud coverage classification.
We aim to explore the effects of the quantization process
on the proposed CNN architecture. Additionally, the performance
of cloud coverage classification by biomes diversity is investigated,
and the hardware architecture design space is explored to
identify the optimal FPGA resource utilization. Results of this
study showed that the weights and activations quantization
adds a minor effect on the model performance. Nevertheless,
the memory footprint reduction allows the model deployment
on low-cost FPGA Xilinx Zynq-7020. Using the RGB bands
only, up to 90 % of accuracy was achieved, and when omitting
the tiles with snow and ice, the performance increased up to
94.4 % of accuracy with a low false-positive rate of 2.23 % for
the 4-bit width model. With the maximum parallelization settings,
the hardware accelerator achieved 15 FPS with 2.5 W of average
power consumption (0.2 W increase over the idle state).

Index Terms—CNN; FPGA; hardware accelerators; image
processing; on-board processing; quantization;

I. INTRODUCTION

VER the last decade, the Earth Observation (EO) in-

dustry has experienced a dramatic decrease in the cost
of accessing space [1]. With the introduction of nanosatel-
lites (a small satellite with a wet mass between 1 to 10kg),
known as CubeSats [2], the rapid development of remote
sensing technologies was amplified [3]. As of 2021, more than
1500 CubeSats have been launched [4], and according to [5],
it will increase up to a thousand satellites per year till 2028.
Naturally, as the number of satellites grows, satellite imagery
becomes readily available. Harvested data plays a signifi-
cant role in various disciplines like environmental protection,
agriculture engineering, land or mineral resource exploration,
geosciences, or military reconnaissance [6], [7]. In line with
the amount of remote sensing data acquired, the bandwidth
resources for the data transmission inclines to be overloaded.
Therefore, new techniques for efficient bandwidth resources
management must be investigated and developed.

Several studies estimate that approximately 67 % of
the Earth’s surface is covered with clouds [6], [8], [9]. Con-
sequently, most of the remote sensing imageries (RSI) will be
contaminated by them, which devalues the quality of RSI and
negatively affects the post-processing [6]. Cloudy conditions
impair satellite sensor capabilities to obtain the clear views
of the Earth’s surface, and hence the quick and accurate
detection of the cloudy images is necessary [6], [10], [11].
In general, the current methods for cloud coverage estimation
or classification are mainly categorized to traditional and intel-
ligent approaches [12]. Traditional ones consist of threshold-
based (fixed or adaptive), time differentiation, and statistical
methods. The threshold-based approaches rely on a visible
reflection and infrared temperature of the clouds, therefore its
performance weakens on low-contrasted (cloud vs. surface)
images [13]-[15]. Time differentiation methods effectively
identify the changing pixel values as clouds in multi-temporal
images, however, they do not consider changes in the top of
atmosphere reflectance affected by floods [12], [16]. Statistical
methods combine spectral and spatial features extracted from
RSIs with classical machine learning algorithms (support vec-
tor machine, decision tree), but they lack to obtain the desired
results [17], [18]. To sum up, traditional methods provide some
capabilities of cloud detection, though, they are susceptible to
the backgrounds, are non-universal and subjective [12].

A more efficient approach to cloudy images detection com-
prises convolutional neural networks (CNNs), simple linear
iterative clustering, or semantic segmentation algorithms [12].
Especially attractive are CNNs, which provide state-of-the-art
results for many different tasks, including image classification,
segmentation, and object detection. This success is often
achieved thanks to models with a huge number of parameters
which means large size and limited ability for the deploy-
ment on resource-constrained hardware. In recent years, there
has been a tendency to deploy these models in line with
the edge computing paradigm on resource-constrained hard-
ware [12], [19]-[21]. Various hardware accelerators are avail-
able on the market ranging from microcontrollers for smaller
models to boards equipped with GPU, visual processing
unit (VPU), or field-programmable gate array (FPGA). FPGA
in particular provides interesting capabilities in terms of cost,
flexibility, performance, and power consumption. A possible
disadvantage is a longer time to market in comparison to GPU
or VPU solutions. Nevertheless, this gap is being closed by
recent advancements in the hardware deployment of machine
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learning models [22], [23] created in well-known machine
learning frameworks like Pytorch or Tensorflow. Considering
the payload limitations of the CubeSats, the optimal solution
of the CubeSat’s cloud detection system is a system estimating
RSI cloud coverage running directly on board. To reduce
the costs and development time of such real-time detection
systems, Commercial-Off-The-Shelf (COTS) components pro-
vide a favorable deployment option [24]. The crucial criterion
for an onboard detection system is its power consumption,
whereas the usual limit is below 5 W and the ratio of the falsely
discarded images below 2 % [12], [19], [20].

In line with the above mentioned, Zhang etal. [25] intro-
duced a lightweight CNN for cloud detection based on U-
Net using red, green, blue, and infrared waveband images
from the Landsat-8 dataset. Applying the LeGall-5/3 wavelet
transform (4 levels) for dataset compression and processing
time acceleration, the authors reported 94.3 % of overall accu-
racy running on an ARM-based platform. Similarly, in [26],
the authors applied depthwise separable convolutions to com-
press the model of U-Net and accelerate the inference speed.
The Study reported the best accuracy of 90.54 % verified
on Landsat 8 remote sensing images. Another utilization of
a lightweight MobU-Net trained on Landsat 8 dataset and
using JPEG compression strategy was performed by [27].
The achieved overall accuracy was around 93.1 % for a model
deployed on ARMY processor on Zyng-7020 board. Maskey
etal. [3] proposed an ultralight CNN designed for on-orbit
binary image classification called CubeSatNet. The model was
trained on BIRDS3 satellite images and deployed on ARM
Cortex M7 MCU. An accuracy of 90 % was achieved when
classifying images as “bad” for cloudy, sunburnt, facing space,
or saturated images and “good” in all other cases. A promis-
ing method for cloud detection using RS-Net and RGB
bands exclusively was published by [28]. For model training,
the Sentinel-2 dataset was used, and 76 % of accuracy was
reported by the model deployed on an ARM-based platform.
Another possibility is to use the Forwards Looking Imager
instrument, which provides analysis of the upcoming environ-
ment of the satellite. Tnot found, testing various lightweight
CNNss deployed on the Zyng-7020 board using FPGA. The au-
thors reported high accuracy of 98 %, however, 100 images
only were used for testing. To sum up, lightweight CNNs
provide a competitive on-board cloud detection performance
in comparison to the state-of-the-art deep convolutional neural
networks, like CDNetV1 [6] or CDNetV2 [10]. CDNetV1 is
a neural network for cloud mask extraction from ZY-3 satellite
thumbnails with the accuracy of 96.47 % [6]. Its extended
version, CDNetV2, focuses on adaptively fusing multi-scale
feature maps and remedying high-level semantic information
diluted at decoder layers to improve cloud detection accuracy
with cloud-snow coexistence. The authors confirmed the ro-
bustness of the proposed method using validation on several
other datasets like Landsat-8 or GF-1.

To the best of our knowledge, the CloudScout cloud de-
tection method proposed by Giuffrida etal. [29] and later
extended by Rapuano et al. [20] is the most related work to this
study. The method was developed in the frame of the Phisat-1
ESA mission, which exploits a hyperspectral camera to distin-

guish between the clear and cloud-covered images. To reduce
the bandwidth, the mission has set a criterion that only images
that present less than 70 % of the cloudiness are transmitted
to the ground. CloudScout was trained using Sentinel-2 hy-
perspectral data and achieved the 92 % of accuracy, 1% of
false positives with the power consumption of 1.8 W deployed
on re-configurable Myriad-2 VPU by Movidius Intel [29].
Nevertheless, the authors identified multiple drawbacks due
to the Myriad-2 design, which is not specifically suitable for
the space environment (not based on a radiation-tolerant tech-
nology) [20]. Therefore, the authors extended their work and
proposed an FPGA-based hardware accelerator for CloudScout
CNN. The authors compared the Myriad-2 VPU with two
FPGA boards: Zynq Ultrascale+ ZCU106 development board
and Xilinx Kintex Ultrascale XQRKUOQO60 radiation-hardened
board. Results obtained by Zynq Ultrascale+ ZCU106 show
that the FPGA-based solution reduced the inference time by
2.4 times (141.68ms) but at the cost of 1.8 times greater
power consumption (3.4 W) [20]. Inference time estimated for
the Xilinx Kintex Ultrascale XQRKUO060 board was 1.3 times
faster (264.7ms) in comparison with the Myriad-2 device,
however, the power consumption was not reported.

Regarding the presented achievements of the related works
and trends in the CubeSats development, we may expect
a new era of smart nanosatellites equipped with reconfigurable,
programmable hardware accelerators with an on-demand edge
computing paradigm at payload level [3], [12], [19], [20],
[25]-[27], [29], [30]. A usual aspect of the presented studies
is the employment of multispectral or hyperspectral RSI for
the cloud detection system. Generally, the bands’ composition
of multi/hyperspectral RSI differs for individual missions, yet
all are equipped with an RGB camera. Therefore, a cloud
detection system built on RGB bands only may provide
better portability for various missions independent of its
multi/hyperspectral bands. In addition, the RGB cameras are
several times cheaper and more convenient for short-term
CubeSats missions. To the best of our knowledge, we identified
only three studies [20], [21], [30] that performed deployment
and evaluation of the CNN-based cloud detection method
on an FPGA-based platform. Hence, in the scope of this
study, we would like to present CloudSatNet-1: an FPGA-
based hardware-accelerated quantized CNN for satellite on-
board cloud coverage classification. More specifically, we aim
to:

« explore effects of quantization introduced to the proposed
CNN architecture for cloud coverage classification,

« investigate and optimize the performance of cloud cov-
erage classification by biomes diversity and its false-
positive identifications,

o explore hardware architecture design space to identify
optimal FPGA resource utilization.

The rest of the paper is organized as follows. Section II
describes the used dataset and its preprocessing. Methodology
is described in Section III. In Section IV the results are
summarized. The discussion can be found in Section V and
the conclusions are drawn in Section VI.
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II. DATASET
A. Data

For the purpose of this study, the Landsat 8 Cloud Cover
Assessment Validation data (L8-D) [31] was used. The L8-D
offer a balanced cloud distribution and diverse sets of land
and water cover, which makes it a suitable source of data for
the proposed CNN-based classification model. The L8-D was
acquired by the Landsat 8 Operational Land Imager (OLI) and
Thermal Infrared Sensor (TIRS) [32]. Furthermore, data are
orthorectified and corrected for terrain relief using Level-1T
processing [33].

The L8-D consists of 96 scenes divided into 8 biomes.
The scene size is 185 km by 180 km, and each scene contains
11 multispectral bands with a resolution of 30 meters per
pixel (except bands 8, 10, and 11, which are not used in this
work). Manually annotated cloud coverage is stored as a cloud
validation mask. The cloud validation mask is an image
whose pixel values contain information about the level (or
class) of cloudiness, interpreted using the following Table I.
The example of the scene image (natural color composition)
from the L8-D dataset can be found in Figure la, with its
respective cloud mask in Figure 1b.

TABLE I: Interpretation of L8-D cloud mask pixel values [31].

Value Interpretation
0 Fill
64 Cloud Shadow
128 Clear
192 Thin Cloud
255 Cloud

(b) Cloud validation mask

(a) Image patch

Fig. 1: L8-D image patch example (left) reconstructed from
bands B4, B3, and B2 with its associated multi-class cloud
mask (right) [31].

Two cloud mask classes (thin cloud, cloud) are categorized
as cloud pixels. From these pixels, the Cloud Cover Assess-
ment (CCA) is computed as a ratio of cloud pixels to all pixels
with values expressed in percentage [31]. The average CCA
value for one scene is 48.35%. The distribution of the CCA
values of L8-D scenes is shown in Figure 2. Scenes are cate-
gorized by their area of capture into biome classes by the In-
ternational Geosphere-Biosphere Programme [34] into 8 fol-
lowing biomes: Barren (BA), Forest (FO), Grass/Crops (GC),
Shrubland (SH), Snow/Ice (SI), Urban (UR), Water (WA),
Wetlands (WE). They are distinguishable from each other by
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Fig. 2: Distribution of the L8-D scenes CCA values [31].

their visual properties, and they have various intensities of
cloud to terrain contrast, which leads to different challenges
for the cloud detection system working with RGB data. For
example, the biomes with sharp cloud to terrain contrast, like
Grass/Crops, have a large value of the derivative at the tran-
sition between terrain and cloud. Other biomes like Snow/Ice
have a terrain with cloud-like features, which may lead to
a large number of false positives in classifier predictions as
their terrain blends with clouds. Examples of image patches
for each biome of L.8-D are shown in Figure 3.

B. Data Preprocessing

The image patch for each scene is a natural color composite
from the combination of bands B4 (red), B3 (green), and B2
(blue). Values in patch images are re-scaled from the range 0-
65535 to 0-255 using a MinMax normalization. Patch images
in L8-D are georeferenced. The orbit path of the Landsat-8
does not go straight from south to north. The scene acquisition
follows the orbit path of the satellite. Therefore the image
appears to be rotated or tilted, like in Figure 4a. Redundant
georefencing information can be neglected, when detecting
clouds from satellite images. Next, the black (no-data) parts
of the image need to be removed. The removing of the black
parts consists of two steps. First, the image is rotated, so
the actual image data are parallel to the whole scene image, as
shown in Figure 4b. The rotation is using a nearest-neighbor
interpolation method. Then, the image is cropped to lower
resolution (from approx. 8000x8000 to approx. 6400x6400),
so only image data are preserved, as illustrated in Figure 4c.

Image patch (with dimensions approx. 6400x6400x3) is
cropped to 512x512x3 tiles, according the white lines in
Figure 4c, omitting tiles at the edge that do not have full
resolution. Each patch has a slightly different resolution after
cropping, which causes a different number of generated tiles
per patch (approx. 140). From 8 biomes each containing 12
scenes there are in total 13525 tiles. The original CCA values
for the scene from Figure 2 do not apply to individual tiles.
Generated tiles usually cover cloudy or cloud free areas. This
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(b) Forest

(c) Grass/Crops

(d) Shrubland

(e) Snow/Ice

oatdade

(h) Wetlands

(g) Water

Fig. 3: Image patches examples for each biome in L8-D [31].

generates a less tiles with balanced cloud coverage (or CCA
value) in the final dataset (trade off for creating many tiles
from fewer image patches). Tiles with CCA > 70% are
categorized as cloud and the rest is categorized as non cloud
tiles. Each of the 13525 tiles has assigned a corresponding
binary cloud coverage label. To preserve the evenly distributed
cloud coverage in the train, validation and test dataset, the tiles
from a single image patch are divided into 5 CCA buckets:
0 — 20%, 20 — 40%, 40 — 60%, 60 — 80%, 80 — 100%.
The distribution of the tiles and its CCA values per biome
for the full L8-D dataset is visualised in Figure 5. The tiles
from each patch CCA bucket are divided to train, validation
and test dataset in the ratio 2:1:7, with the coherent variation

of the biomes and their CCA values, as visualised in Figure 6.
In this study, the reliability of the results and the model
portability are prominent. Therefore, the testing dataset is
dominant in comparison to the training or validation dataset.
Moreover, more than 2700 tiles are considered a satisfactory
quantity for the model training. Since the variation of the train,
validation, and the test dataset is coherent, suppression or
advantage of any of the biomes or the CCA bucket during
the model training is not expected.

III. METHODOLOGY

The procedure is divided into three stages. First the baseline
model of CNN with floating point parameters is trained. Then
the weights and activations of the model are quantized and
the model is re-trained. The last step is the deployment of
the model on FPGA to achieve high throughput and low power
consumption suitable for on-board data processing on satellite.
To be able to deploy a CNN on the edge there are many
techniques how to reduce the model memory footprint such
as prunning or quantization. In this work the focus of interest
is on quantization which replaces floating point operations
and weight tensors with lower bit widths what is especially
useful for FPGA where arbitrary precision data types can be
implemented.

A. Quantized CNN

Quantization in neural networks is a technique used for opti-
mization which proved to produce great success in the recent
years [35]. Its main focus is on reducing memory footprint
and computation time by replacing floating point compute
operations and storing of tensor weights with lower bit widths.
This is especially useful for resource-constrained applications.
There are two ways how to introduce quantization to a neural
network. The first one is to train the neural network with
quantized parameters and the second one is a quantization of
parameters after the model is trained with floating point pre-
cision. In the former case the process is called Quantization-
aware training (QAT), in the latter it is referred to as Post-
Training Quantization (PTQ). PTQ may disturb the model
parameters and change the point to which it converged during
the training with floating point precision. For this reason QAT
is used for the experiments conducted in this study and training
with quantized model parameters is performed. For more
comprehensive review about the current state of quantization
in neural networks refer to the recent survey [35].

The network was implemented using the Brevitas frame-
work. Brevitas is a PyTorch library used for QAT of neural net-
works [36]. At the time of writing the PyTorch library supports
the quantization as well but allowing just reduction from 32-
bit floating point to 8-bit integer [37]. Brevitas in comparison
allows to reduce weight and activation bit widths to as low as
1-bit which enables to create Binary neural networks (BNN)
[38]. Another reason why the Brevitas library is used is that
a model trained using Brevitas can be exported and used by
the FINN framework for dataflow architecture acceleration
(DFA) on Xilinx FPGAs [23]. FINN framework is a compiler
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Fig. 4: L8-D scene during different preprocessing steps [31].
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Fig. 5: Distribution of the tiles and its CCA values per biome for the full L8-D dataset. Tiles with CCA > 70 % are categorized
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Fig. 6: Distribution of the tiles and its CCA values per biome for the training, validation and testing dataset.

for feed forward DFA for deep neural networks (DNN) infer- (PE), and SIMD (Single instruction multiple data) lanes. Using
ence. When DFA is used, every layer of DNN is mapped to these parameters it is possible to control the throughput of
its own set of dedicated compute and memory resources [39] the network with respect to resource utilization of the FPGA.
which mimics the topology of DNN. In FINN the performance
and resource usage can be controlled with a concept called
Folding. FINN uses what is called Matrix-Vector Threshold
Units (MVTU) for convolutional and fully connected layers.
There are three parameters that can be set: Matrix-Vector
Matrix-Multiple Vector (MMYV) length, Processing Elements

B. CloudSatNet-1 architecture

The proposed network architecture consists of 10 convo-
lutional layers and 2 fully connected layers, their specific
parameters are visualized in Figure 7. Each layer except
the last layer uses the ReLU activation function and has
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Fig. 7: CloudSatNet-1 architecture

no bias. The network starts with initial convolutional layer
which processes 512x512x3 uint8 input and continues with
3 sequences of 3 layers each. The input size was chosen to
allow direct comparison with CloudScout architecture [29].
Each sequence middle layer has lower number of filters to im-
plement bottleneck for better generalization properties. After
each sequence and initial layer there is batch normalization
and max pooling with kernel size 4, this leads to effective
reduction of feature dimensions. Last fully connected layer
outputs unnormalized probability for each class where the first
class represents cloud presence below 70% CCA in the image
and the second class signals presence of clouds above this
threshold.

1) Loss function

The loss function used for training of the model was
a modified binary cross entropy loss with increased penalty
for false positives (FP) errors shown in Equation 1. Penalty
for FP errors is multiplied by a parameter o which is inspired
by the approach reported in [29] where the authors showed
decrease in number of FP errors while keeping accuracy
on acceptable value when parameter o was set to 2.

N

1
— 57 2 virlog(@i) +a (1=y:)-log(1—ga), (1)
i=1

F(y,9)

where y is the ground-truth label, ¢ is the predicted output
of the network and « is a hyper-parameter to increase penalty
for FP errors.

2) Quantization process

First, the model with floating point precision is trained
as a baseline. After sufficient accuracy has been achieved
weight and activation bit widths are progressively reduced and
the change in accuracy is observed. To fit the model on FPGA
and achieve high throughput with acceptable accuracy and
low power consumption, in this paper the focus of interest
are bit widths of hidden layers lower or equal than 4. In all
experiments same bit widths are used for weights and activa-
tions. The first and last layer of neural network can be more
sensitive to quantization [40]-[42], so they were quantized to

8 bits. Last fully connected layer has also a quantized bias
term. It was observed by the preliminary experiments that it is
important to adjust weight initialization according to selected
weight bit widths.

The proposed architecture contains blocks of convolutional
layers followed by batch normalization and ReLU. This se-
quence has the advantage of hardware implementation which
FINN framework [23] utilizes and usage of batch normaliza-
tion layer leads to faster convergence [43]. After the training
it becomes fixed linear transformation during the inference.
Brevitas does not provide a quantized alternative to PyTorch
batch normalization layer, but FINN framework supports na-
tive PyTorch batch normalization. Since the threshold-based
quantized activation (ReLU) is used, batch normalization
is implemented using successive thresholding in the FINN
framework thanks to the process called Streamlining [44].
This process shows how integer only operations can be used
for forward pass of a quantized neural network layer with
uniformly quantized weights and activations.

C. Selected hardware

The trained neural network model is deployed on Zturn
development board equipped with SoC Xilinx Zynq Z7020.
Thanks to FPGA, Zynq is able to provide a platform for
computationally intensive processing, but at the same time
meets power consumption requirements of the developed
CNN. The target frequency is set to 100 MHz. For the power
consumption measurements, the J7-t USB safety meter was
used.

Xilinx Zynq is an all-programmable System-on-Chip (SoC),
which consists of the dual-core ARM Cortex-A9 processor
coupled with FPGA based on Xilinx 7-series FPGA archi-
tecture into a single integrated circuit [45]. ARM Cortex-
A9 is connected by industry standard AXI interfaces, provid-
ing low latency and high bandwidth between processor and
programmable logic. FPGA programmable logic consists of
85000 logic cells, 53200 Look-Up Tables (LUTs), 106400
Flip-Flops (FFs) and 4.9 Mb of block RAM (SoC data-sheet
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at [46]). In addition, it also contains 220 Digital signal pro-
cessing (DSP48E1) slices for high-speed arithmetic embedded
into fabric logic in proximity with Block RAM components.
The processor is capable of running Linux operating system
with PYNQ [47] library which enables usage of Python
programming language for programming both the processor
and hardware libraries called overlays. Power consumption in
idle state with booted Linux Ubuntu 18.04 was measured to
be 2.32W.

D. Proposed Workflow

The pipeline used to create the hardware accelerated CNN
consists of the following steps. First the baseline floating point
model is trained and evaluated to observe standard metrics
such as accuracy, recall, precision and F1 score. Next QAT
is used to train the quantized model, which is evaluated in
the same way as the baseline model. In addition to this
a smaller verification dataset with same distribution of tiles
in the respective cloud cover ranges is created and consists
of 380 tiles. Per tile evaluation is performed on this dataset
and resulting logits from the last layer are saved for the model
verification deployed on FPGA. Quantized model is exported
to ONNX format [48] and transformed to High level synthesis
(HLS) code using FINN framework. Model is then synthetized
using Vivado Design Tools from Xilinx and the resulting
bitfile is deployed to FPGA. Evaluation of deployed model
with focus on observing hardware accelerator attributes is per-
formed. Per tile evaluation on verification dataset is performed
and resulting logits are statistically compared using T-Test to
measure model distortion caused by deployment of the model
on the edge. Workflow is summarized on the scheme displayed
in Figure 8.

Steps i Artifacts i

Evaluation
S2bit | ' accurac
baseline ’ trained model * acy
Lanoe ; ; metrics
[ i s T
: | :
quantization i tram.ed i verification
. . quantized
aware training data set
model
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{ : :
high-level
synthesis ' '
l i E verification
i i data set
deployment : dep lo.y ed : F
on FPGA T quantized :
H model !
! ) hardware
i accelerator
i i metrics

Fig. 8: Scheme of proposed workflow.

E. Experimental setup

The main goal is to experiment with end to end development
of FPGA-based hardware-accelerated quantized CNN for on-
board cloud cover classification. Therefore the experiments
are divided into three stages: (1) Training of the classification
model with focus on observing the impact of quantization to
model accuracy; (2) Observe the accuracy of the resulting
model on different biomes and remove the outliers from
the dataset; (3) Explore hardware architecture design space
to identify configuration with highest throughput, pre-defined
target throughput and minimal FPGA resource utilization.

For the model training the aim is to achieve highest accuracy
and minimize false positive rate (FPR) on test dataset for
different bit widths of model weights and activations. Bayesian
optimization (summarized in [49]) is used for hyper-parameter
search of parameters defined in Table II. Number of epochs is
set to 40 with early stopping when accuracy on the validation
dataset starts to diverge. Overall 32 runs were conducted for
each of 4 total configurations with hidden layers weight and
activation bit widths set to 32, 4, 3, and 2. In both training
scenarios, model performance will be evaluated on the test
dataset using accuracy, precision, recall and F1 metrics with
addition to FPR. In the second stage, the accuracy achieved
on the particular biomes will be analyzed to identify the po-
tential lack of the model performance. Regarding the achieved
results, a new set of experiments will be conducted.

TABLE II: Hyper-parameter search constraints for Bayesian
optimization during training of neural network.

Values
14(0.0005, 0.002)
0,0.001, 0.0002
32,64,128
U, 4)

Parameter name
Learning rate
Learning decay
Batch size

FP penalizer (o)

In the last stage the hardware architecture design space is
explored using FINN framework. Selection of parallelism in
FINN can be defined as P = MMV x PEx SIMD [50]. At
the time of writing, FINN only supports MMV set to 1 so
just PE and SIMD are used to increase parallelization in the
experiments. The layer with the largest number of cycles will
limit the overall throughput of the network [50]. The estimated
number of clock cycles per layer for the proposed architecture
is shown in Table III in two configurations. One with default
folding (no parallelization) with the lowest performance and
the second one with maximum folding achievable for the
proposed architecture. First layer is the biggest bottleneck in
the network so the DSP slices were assigned to it as it requires
more resources to compute results with 8-bit inputs (uint8) and
8-bit weights.

IV. RESULTS

Results of cloud coverage classification employing full
L8-D dataset to train and evaluate proposed CloudSatNet-1
CNN are shown in Table IV. In the upper part of the table,
most accurate models for each analyzed bit width (weight and
activation) selected by ACC are presented. Top models for 32,
4, and 3-bit width provide similar classification performance
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TABLE III: Parallelization settings and their respective esti-
mated number of clock cycles

Base folding Maximum folding

layer (PE, SIMD) Cycles (PE, SIMD) Cycles
Conv_1 (1,1) 70778880 (10,3) 2359296
Conv_2 (LD 8847360 (6,10) 147456
Conv_3 (1,1) 5308416 (6,6) 147456
Conv_4 (LD 7077888 2,3) 1179648
Conv_5 (LD 442368 (LD 442368
Conv_6 (1,1) 331776 (1,1) 331776
Conv_7 (LD 442368 (LD 442368
Conv_8 (LD 27648 (LD 27648
Conv_9 (1,1) 20736 (1,1) 20736
Conv_10 (LD 884736 (1,2) 442368

FC_1 (1,2) 262144 (1,2) 262144

FC_2 (1,1) 1024 (1,1) 1024

! PE —processing elements; SIMD —single instruction multiple data; Cycles—
estimated number of cycles; Conv —convolution layer; FC — fully connected layer

(ACC =~ 88-90%, FPR =~ 7-10%). Though, the best-
performed 2-bit width model lags with ACC = 83.41 % and
FPR = 17.59 %. In the bottom part of Table IV, top models for
each analyzed bit width selected by FPR are shown (models
are selected from the top 10 models sorted by ACC). Marginal
change of classification performance can be observed (1-3 %),
except the model based on 32-bit width, where FPR was
reduced to 2.25% at the expense of approx. 3% of ACC.
For more insights, the dependence of model ACC on FPR
(with FPR value inverted for better readability) can be seen
in Figure 9. Optimal solutions, which represent a trade-off
between ACC and FPR, are stressed out by Pareto fronts.
Results of cloud coverage classification for best-performed
4-bit width models (4-bit width models are selected due to
best accuracy/FPR ratio from quantized models) per biome
using full L8-D dataset are shown in Table V. Models are
selected by the highest ACC. The model performed best
on the Grass/Crops biome (ACC = 95.91% and FPR =
0.83 %). However the best FPR = 0.49% was achieved
on the Forest biome, though with low ACC = 84.01%.
The worst performance (ACC = 69.24 % and FPR = 31.11 %)
was achieved on the Snow/Ice biome. Based on the results
of the cloud coverage classification per biome, hypothesis
is made that excluding the Snow/Ice biome (cloud coverage
classification on Snow/Ice biome using natural color com-
posite is irrelevant) from model training will improve overall
model performance (especially FPR). For a better illustration
of the problem, the examples of FP tiles are presented in
Figure 10.

Results of cloud coverage classification using L8-D dataset
without Snow/Ice biome to train, validate and test the proposed
CNN are shown in Table VI. In the upper part of the table,
best-performed models selected by ACC are presented. As can
be noticed, in comparison with previous models trained by
full L8-D dataset the classification performance was improved
(ACC =~ 92-95%, FPR = 2.9-5.7 %). In the bottom part of
Table VI, top models selected by FPR are shown (models are
selected from the top 10 models sorted by ACC). In case of the
32 and 2-bit width models, there is no change in performance.
However, FPR for 4 and 3-bit width models is lower, whereas
4-bit model outperforms the 32-bit width one. For a better

TABLE IV: Results of cloud coverage classification for best-
performed models employing full L8-D dataset.

Top models by ACC

BW | ACC [%] PRE [%] REC[%] FIl[%] FPR [%]
32 89.92 86.56 89.70 88.10 9.93

4 87.42 88.79 79.84 84.08 7.18

3 88.24 86.01 85.67 85.84 9.93

2 83.41 71.46 84.81 80.97 17.59

Top models by FPR

BW | ACC [%] PRE[%] REC|[%] F1[%] FPR [%]
32 86.67 95.74 71.12 81.62 2.25

4 87.42 88.79 79.84 84.08 7.18

3 86.10 85.83 79.71 82.69 9.38

2 81.78 78.41 71.59 78.00 15.23

' BW —bit width; ACC —accuracy; PRE —precision; REC —recall; F1 —F1 score;
FPR —false positive rate.
% Top models by FPR are selected from the top 10 models sorted by ACC.

100
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Fig. 9: Dependence of model ACC on inverse FPR value
(100% = 0% FPR) using full L8-D dataset. Optimal
solutions are highlighted by Pareto fronts.

illustration, the dependence of model ACC on FPR can be
seen in Figure 11, where optimal solutions are highlighted by
Pareto fronts.

Finally, the results of hardware architecture design space
exploration are summarized. In Table VII, the overview of
resource utilization measurements of quantized models using
different bit widths can be found. Maximum and base folding
setup was compared together with folding setup targeting
10FPS. Even though the FPS is changing from 0.9 to 15.5,
the average power consumption is stable at around 2.5 W.
The parallelization settings and their respective estimated
number of clock cycles for targeting specifically 10 FPS are
reported in Table VIII. Results of cloud coverage classification
for best-performed quantized models on FPGA can be seen in
Table IX. Classification ACC and FPGA resource utilization is
reported for quantized models trained using full L8-D dataset
and dataset excluding the Snow/Ice biome from the dataset.
The best-performed model is a quantized 4-bit width model
with Snow/Ice biome excluded from training and evaluation
(ACC = 94.84 %).

V. DISCUSSION
A. Quantized model for cloud detection

Based on the results of the best-performing models reported
in the upper part of Table IV, the increase of the quantization
level resulted in slight overall performance deterioration. Even
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TABLE V: Results of cloud coverage classification for best-
performed 4-bit width models per biome employing full L8-D
dataset

TABLE VI: Results of cloud coverage classification for best-
performed models using L8-D dataset excluding Snow/Ice
biome.

Biome ACC [%] PRE [%] REC [%] FI1[%] FPR [%]

Barren 87.32 85.69 83.83 84.75 10.14
Forest 84.01 99.29 68.36 80.97 0.49
Snowlce 69.24 50.47 70 58.65 31.11
GrassCrops 95.91 98.7 91.22 94.81 0.83
Shrubland 91.73 97.03 83.14 89.55 1.89
Urban 92.89 95.01 85.23 89.86 2.62
Water 93.89 94.32 90.82 92.54 3.92
Wetlands 84.41 98.51 68.33 80.69 0.94

! ACC - accuracy; PRE — precision; REC —recall; F1 —F1 score; FPR —false positive rate.

C: Barren — 10 % CCA

E: Urban — 68 % CCA

Fig. 10: False positive tile examples: A, B represent
the Snow/Ice biome; C, D represent cloud-like FP tiles; E,
F represent FP tile close to threshold (70 %).

though, the quantized models achieved comparable results to
the 32-bit baseline model (except the 2-bit model). The de-
crease of the overall accuracy for the 4-bit and 3-bit model
is just around 2 %, while for the 2-bit model it is more than
6 %. But rather than the highest overall accuracy, this study
emphasizes on the low FPR (it is more convenient to process
a redundant image than to discard the relevant one). Therefore,
a balance between the ACC and FPR is in demand. For
the baseline model and 3-bit model, the FPR is identically

Top models by ACC

BW | ACC [%] PRE [%] REC[%] Fl[%] FPR [%]
32 94.92 96.12 91.93 93.98 2.81
4 94.84 92.68 95.58 94.11 5.72
3 93.37 94.24 90.13 92.14 4.17
2 92.08 92.87 88.41 90.59 5.14
Top models by FPR
BW | ACC [%] PRE[%] REC|[%] Fl[%] FPR [%]
32 94.92 96.12 91.93 93.98 2.81
4 94.30 96.82 89.72 93.14 2.23
3 92.48 94.42 87.73 90.96 3.92
2 92.08 92.87 88.41 90.59 5.14

I BW —bit width; ACC —accuracy; PRE —precision; REC —recall; F1 —F1 score;
FPR —false positive rate.
2 Top models by FPR are selected from top 10 models sorted by ACC.

100
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Fig. 11: Dependence of model ACC on inverse FPR value
(100% = 0% FPR) using L8-D dataset excluding Snow/Ice
biome. Optimal solutions are highlighted by Pareto fronts.

TABLE VII: FPGA resource utilization and performance for
different model bit widths and folding setup.

BW/| Fold FPS APC [W] LUT [%] FF [%] BRAM [%] DSP [%]
max 15468  2.592 69.05  48.61 62.50 13.64
4 |SPEC 9931 2556 66.67  48.14 61.43 13.64
base 0.879  2.484 5842  46.96 57.14 0.45
max 15467 2.556 5890  40.39 47.86 13.64
3 |SPEC 9.932  2.520 5830  40.01 46.79 13.64
base 0.879  2.448 5511  39.06 42.86 0.45
max 15462 2.520 4772 3249 32.68 13.64
2 |SPEC 9.927 2484 4774 32.29 32.50 13.64
base 0.879  2.448 46.27  31.41 29.29 0.45

! BW —bit width; Fold - folding; SPEC —targeting specifically 10 FPS; FPS —frames
per second; APC —average power consumption; LUT —look up table utilization; FF—
flip flop utilization, BRAM —block random memory utilization; DSP— digital signal
processing slice utilization

equal to 9.93 %. In the case of the 4-bit model, almost 3 %
of FPR decrease can be noticed, however, the recall is lower
by 10 % in comparison to the 32-bit model. The 2-bit model
suffers the most from the quantization effect resulting in very
insufficient FPR = 17.59 %. More balanced (ACC vs. FPR)
results are provided in the bottom part of Table IV, where
the best models by FPR from the top 10 models sorted by ACC
are reported. Unfortunately, the performance of the quantized
models keeps almost on the same levels, yet the baseline model
significantly reduced its FPR to 2.25 %, while decreasing its
accuracy by around 3%. A more readable comparison of
the model’s performance can be seen in Figure 9. A trend
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TABLE VIII: Parallelization settings and their respective esti-
mated number of clock cycles for targeting specific 10 FPS.

Specific FPS folding
layer | (PE, SIMD) Cycles
Conv_l1 (10,3) 2359296
Conv_2 (6,10) 147456
Conv_3 3.1) 1769472
Conv_4 (1,2) 3538944
Conv_5 (LD 442368
Conv_6 (L,1) 331776
Conv_7 (LD 442368
Conv_38 (1,1) 27648
Conv_9 (L) 20736
Conv_10 (1,2) 442368

FC_1 (1,2) 262144
FC_2 (1,1) 1024

! PE—processing elements; SIMD —
single instruction multiple data; Conv —
convolution layer; FC— fully con-
nected layer

TABLE IX: Results of cloud coverage classification for best-
performed quantized models on FPGA.

BW | ACC (SI) [%] ACC (EXSI) [%] FPS RU [%] APC [W]
2 83.41 92.08 15.462 31.63 2.520
3 88.24 93.37 15.467 40.20 2.556
4 87.42 94.84 15.468 48.45 2.592

' BW—bit width; ACC-accuracy; SI-Snow/Ice biome included; EXSI-
Snow/Ice biome excluded; FPS—frames per second; RU—FPGA resource
utilization; APC —average power consumption.

of the trade-off between ACC and FPR across all quantized
models together with the baseline is highlighted by Pareto
fronts. It can be observed, that the baseline model outperforms
the quantized ones, however, there can be found adequate
alternatives to the 32-bit model.

To collect more insights and to improve the overall perfor-
mance of the proposed cloud detection system, each biome of
the L8-D dataset was investigated separately. We hypothesize
that some biomes produce significant noise during the training
process due to the false cloud-like features (snow, ice, or
fog). The 4-bit models were selected to investigate biomes in
quantized cases, and its results are reported in Table V. Best
performance was obtained by a model trained on Grass/Crops
biome with ACC = 95.91% and low FPR = 0.83%.
Yet, the best FPR = 0.49% and precision of more than
99 % was achieved by Forrest biome. However, this model
lags on accuracy due to low recall = 68.36 %, which will
result in a high number of undetected cloudy images. This
may be caused by the cloud categories merge (thin, thick)
or by the fog, which is a usual false cloud-like feature in
the Forest biome [29]. Similarly, the Wetlands biome (also
often affected by fog) resulted in low FPR = 0.94% and
high precision = 98.51 %, but with low recall = 68.33 %.
The Shrubland, Urban, and Water biomes achieved comparable
performance with ACC from 91.73% to 93.89% and FPR
from 1.89 % to 3.92 %. The Barren biome obtained the second
worse performance in terms of FPR = 10.14 %. The reason
for high FPR may lie in the nature of the Barren biome,
which exaggerates the thin clouds features to thick clouds.
The worst performance reports the Snow/Ice biome. Low
precision of 50.47% and high FPR = 31.11% make its

decision almost random. Since only the RGB channels were
considered, the reason for misclassification is the inability to
recognize between cloud, ice, and snow. To be able to classify
the clouds above the snow and ice, an additional spectrum
capable of altitude resolution will be necessary [6], [10], [29].

Regarding the previously mentioned results, all biomes, to
a certain degree, suffer from the cloud-like features problem.
An example is given in Figure 10, where six misclassified
cases are presented. The first example of the Snow/Ice biome
(A) has CCA = 0%, yet the snow in the image was
misclassified to a cloud. The second example of Snow/Ice
biome (B) with CCA = 42 % merged cloud with turbid snow
currents. Next, the smooth hilly terrain of the Barren biome
(C) stretches the features of thinly dispersed clouds. This
resulted in the falsely positive image, however, the CCA is
10% in reality. Similarly, the Water biome example (D) with
CCA = 1% was misclassified due to the wavy, serpentine
features of the shallow water. The last two examples (E, F) in
Figure 10 represent the case near the threshold (CCA = 70 %).
Hereabouts, a small number of cloud pixels may flip the CCA
over the threshold boundary. In addition, the precise value of
the CCA for each tile may be softly different from the CCA
label [31], [33].

Following the reported results, the Snow/Ice biome is not
suitable for the cloud detection using the proposed method.
Moreover, problematic coexistence of the snow, ice and cloud
in cloud detection systems has been also identified by [6], [10],
[29]. Therefore, we decided to withdraw the Snow/Ice biome
from the train, validation and test datasets, and to perform
the experiment without this noisy data. In the real use case,
the cloud detection system can omit known areas permanently
covered by snow or ice from the analysis. Based on the results
reported in Table VI, assumed improvements of all metrics can
be observed. The best performing baseline model achieved
ACC = 94.92% with FPR = 2.81 %. Top quantized models
obtained comparable accuracy from 94.84 % to 92.02 %, and
FPR from 2.23 % to 5.72 %. We would like to stress out, that
4-bit quantized model performed slightly better in terms of
precision (96.82 %) and FPR (2.23 %) in comparison to the 32-
bit model. This makes it a proper quantized substitution for
deployment on FPGA. Results of this analysis confirm our
hypothesis that Snow/Ice biome is naturally prone to being
false positive when using RGB channels only.

In Figure 11 the accuracy vs. FPR is visualized for models
trained with excluded Snow/Ice biome. From elevated position
of all models within this Figure it is evident that accuracy
increased all-around in comparison to Figure 9. Curves of
Pareto fronts lie closer together and to the baseline front,
as the quantization takes a lower toll on models performance
when without visually ambiguous data.

Based on these results, following observations will be em-
phasised to make a deduction. Increased quantization did not
cause substantial drop in values for evaluation metrics scores
of results with excluded Snow/ice biome. The 4-bit model
matched or overtook baseline’s metric scores in accuracy and
FPR. This implies equality between representational capacity
of 32-bit baseline and quantized models in classifier problems
that do not require high resolution for discerning discrimina-
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tive features. This statement is in line with results achieved in
other works [51]-[53] dealing with the quantization.

The most relevant study, CloudScout [20], [29], used hy-
perspectral bands for model training, resulting to 16-bit model
with ACC = 92 % and FPR = 1 %. Our proposed method out-
performed this result by a 4-bit model with higher accuracy up
to 3 %, however with lower FPR by 1.23 %. Considering, that
our model used RGB bands only (without Snow/Ice biome),
the presented CloudSatNet-1 method brings promising im-
provements in the on-board cloud detection systems. Another
relevant study [21] used a larger training dataset and achieved
ACC of 91 %. Nevertheless, when authors deployed the model
on FPGA, a significant drop of accuracy to 64 % occurred. The
method introduced in this paper does not encounter a similar
issue.

B. FPGA-Based Hardware Accelerator

The quantized models were deployed in three folding
configurations for each bit width setting. Throughput, power
consumption, and FPGA resource utilization were measured.
Models with maximum folding achieved 15 FPS with input
batch size of 1 and almost 20 FPS with batch size 120 which
is the maximal batch size allowed to be loaded into RAM.
Increase of the FPS with higher batch size was expected,
and also confirmed by [3]. Power consumption measured
with a USB power meter reported an increase of just over
~ 0.2W during the inference, compared to the resting state.
In comparison with related studies, the authors of CloudScout
[20], [29] reported a throughput of 2.89 FPS and 1.8 W of
power consumption using Myriad VPU with 512x512x3 input
size, 7FPS and 3.4 W of power consumption using Zynq Ul-
trascale+ ZCU106, and 3.77 FPS using XQRKUO060 solution
(estimation only). Next, in the study by Reiter etal. [21],
the authors reported 358.1 FPS with a much smaller input size
32x32x3, and maximum power consumption of 2.4 W. Regard-
ing these results, the throughput and power consumption of
the hardware accelerator achieved in this study is comparable
with the current state-of-the-art solutions.

Based on the estimated number of cycles per layer reported
in Table III, it is visible that a bottle-neck in the first layer
limited the optimal throughput, and it would require a change
in the network architecture to allow a higher throughput
target. It was demonstrated that the network throughput can
be controlled to target a specific FPS desired by the needs
of the mission. A set of experiments were conducted to target
specific throughput of 10 FPS. Used parallelization settings are
reported in Table VIII. This approach may be useful when
the instrument on the CubeSat does not have a high through-
put, e. g. the camera is generating data at lower FPS. It showed
flexibility in throughput control of the FPGA-based hardware
accelerator created by the FINN framework. The differences
for each bit width are in FPGA resource utilization, where
the 2-bit model in base folding configuration utilized the low-
est number of the resources (LUT = 46.27 %, FF = 31.41 %,
BRAM = 29.29 %, DSP = 0.45 %). This is achieved due to no
parallelization and a low memory footprint of 2-bit weights
and activations. It shows the potential to reduce bit width for

weights and activations even further to 1-bit and experiment
with BNN in the future to enable higher throughput and deeper
network on the same FPGA. As presented in Table VII, DSP
slices for the first layer were selected to be utilized by Vivado
just for SPEC and max folding in all bit width configurations.
Memory footprint (BRAM utilization) varies from 1.43 Mb to
3,06 Mb in the ascending order relative to bit width.

VI. CONCLUSION

Most of the RSI is contaminated by the clouds, hence
the quick and accurate method of cloud removal running
on-board of the satellite has potential to significantly save
the downlink. In this study, we introduced CloudSatNet-
1, an FPGA-based hardware-accelerated quantized CNN for
satellite on-board cloud coverage classification. We can con-
clude that the weights and activations quantization has a mini-
mal or no effect on the model accuracy. However, the memory
footprint reduction allows the model deployment and testing
on low-cost FPGA Xilinx Zyng-7020. Using the L8-D dataset
and its RGB bands only, up to 90 % of accuracy was achieved.
Next, we omitted the Snow/Ice biome tiles from the dataset
due to high noise production. The accuracy increased up
to 94.4% of accuracy with low FPR = 2.23% for the 4-
bit width model. With the maximum parallelization settings,
the hardware accelerator achieved 15FPS with 2.5W of av-
erage power consumption (0.2 W increase over the idle state).
Additionally, we proved that we can control throughput to
target specific FPS for the proposed classifier. Considering
the reported results, the presented novel approach achieved
outcome comparable with the state of the art.

The presented solution has several limitations that we would
like to stress out. Firstly, the high number of false positive
tiles with a terrain containing cloud-like features may be in
the future compensated with the analysis involving the multi-
spectral bands. Next, the cloud categories from the original
L8-D dataset were merged to form a binary problem. There-
fore, this study did not evaluate the result on the original
cloud categories of the L8-D dataset, which might provide
more insights on miss-classifications. Furthermore, we did not
cover effects of the radiation on the cloud detection system
and the redundancy will be subject of the future works. This
work is the beginning of the greater effort to provide solutions
based on Al for the space missions that can benefit from it,
thus this work is a pilot one in nature. In the future, we aim
to improve this solution to provide semantic segmentation
of clouds with clouds categorization to respective classes
compensating the binary decision provided in this study.
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