
Digital Object Identifier

Design Exploration and Code
Optimizations for FPGA-Based
Post-Quantum Cryptography using
High-Level Synthesis
ANDREA GUERRIERI12(Senior Member, IEEE), GABRIEL DA SILVA MARQUES1,
FRANCESCO REGAZZONI3,4, AND ANDRES UPEGUI1
1University of Applied Sciences of Western Switzerland, Geneva, 1202 Switzerland
2Swiss Federal Institute of Technology in Lausanne, Lausanne, 1015 Switzerland
3University of Amsterdam, Amsterdam, The Netherlands
4Università della Svizzera italiana, Lugano, Switzerland

Corresponding author: Andrea Guerrieri (e-mail: andrea.guerrieri@ieee.org).

ABSTRACT FPGAs are an extremely attractive computing platform for Post-Quantum Cryptography
(PQC) due to their spatial computation capability and energy efficiency compared to traditional CPUs.
The current way of designing with FPGAs is at RTL (Register-Transfer-Level) using VHDL or Verilog
hardware description languages. However, creating efficient solutions is extremely time expensive, requiring
months of development and verification time. With the evolution of Electronics Design Automation (EDA),
technologies such as High-Level Synthesis (HLS) offer a concrete and mature solution to increase design
productivity. Nevertheless, sometimes the QoR (Quality of Results) can be suboptimal due to the difficulties
of HLS in handling general-purpose software code. In this paper, we explore current limitations of HLS for
PQC and we propose code-level optimizations to overcome these problems, increasing QoR of generated
hardware. We analyzed and improved results for the lattice-based PQC algorithm competing in the 3rd round
of the NIST standardization process. We show how, starting from the original reference code submitted
for the competition, original performance and resource utilization can be improved, in some cases with a
speedup factor up to 200× or an area reduction of 80%.

INDEX TERMS FPGA, High-level synthesis, Post-Quantum Cryptography, Lattice-based, Saber, Crystals
Kyber, Crystal Dilithium, NTRU

I. INTRODUCTION

In recent years, quantum computing gained a lot of momen-
tum. Abiding by the rules of quantum mechanics, these com-
puters can solve in reasonable time problems that are con-
sidered hard for classical computers. But this great advance
in technology also poses a threat to classical and standard en-
cryption algorithms. Indeed, these algorithms rely on the very
same hard problems that quantum computers are now able to
break. For this reason, in 2016 the American National Insti-
tute of Standard and Technology (NIST) started a contest for
replacing encryption standards with post-quantum resistant
cryptography, algorithms able to defy attacks from quantum
computers. Almost seventy algorithms have been submitted,
using six different mathematical approaches; lattice-based,
multivariate, hash-based, code-based, supersingular elliptic

curve isogeny cryptography, and symmetric key quantum
resistance. After two rounds of hardening tests and elimi-
nation, only a tenth of the seventy algorithms is still run-
ning for the third round of standardization [1]. The result
of this contest will be a new set of certified Post-quantum
Cryptography (PQC) algorithms. FPGAs are an extremely
attractive computing platform for PQC due to their spatial
computation capability and energy efficiency compared to
traditional CPUs. The current way of designing with FPGAs
is at RTL (Register-Transfer-Level) using VHDL or Verilog
hardware description languages. However, creating efficient
solutions is extremely time expensive, requiring months
of development and verification time. High-level synthesis,
shortly HLS, is a mature Electronics Design Automation
(EDA) solution for building hardware design very quickly.

VOLUME 4, 2016 1

Guerrieri A. et al.: Design Exploration and Code Optimizations for FPGA-Based Post-Quantum Cryptography using High-Level Synthesis

It produces automatically HDL code for FPGAs out of
C/C++, bridging the gap from algorithm to hardware design.
Nowadays we can find commercial and academic tools. Both
Xilinx and Intel FPGA, the two largest FPGA companies
offer HLS tools targeting their FPGA families. For the NIST
submission, all the algorithms have been implemented in
C, a language widely supported for high-level synthesis.
Furthermore, these PQC algorithms are currently objected of
extensive hardening testing for the standardization process.
Hence, they can be subject to revisions to improve robustness
or simply for bug fixes. In this context, the adoption of
EDA tools such as HLS can be extremely interesting for
bridging the gap from algorithm to hardware hence reducing
time-to-market. In addition, starting from the same source
code, HLS is capable of producing a wide range of different
microarchitectures, each one with different characteristics in
terms of latency and resource utilization depending on the
synthesis directives adopted.

A. WHY SYNTHESIS DIRECTIVES ARE NOT ENOUGH?
Synthesis directives allow improving performance with, in
best cases, the price of increasing resources. Sometimes,
improper use can increase resource usage without having
any improvement on latency. Effective usage of synthesis
directives requires hardware design knowledge and a clear
understanding of the HLS process.

However, Figure 1 shows the main limitation of this ap-
proach; even adopting the best pragma configuration, some-
times HLS-based designs are pareto suboptimal in respect
with RTL-based designs [8]. Therefore, we will show in this
paper how to overcome performance bottlenecks allowing
HLS to improve QoR and achieve competitive results, as
shown in Figure 2.

II. CONTRIBUTION AND RELATED WORK
High-level synthesis for PQC has been used mainly to
off-load CPU from heavy-computations using a hardware-
software co-design approach [11]. In other cases, it has been
used for doing design space exploration and comparing the
characteristics of the different algorithms using synthesis
directives such as loop unrolling and pipelining [7]. Our
experiments differ from those related works for the follow-
ing points;(1)we do not use a hardware-software co-design
method, hence our module is fully synthesized in hardware
for FPGA. (2) We do not limit our experiments to synthe-
sis directives (#pragmas) that are very tool-specific, rather
we understand and overcome performance limitations using
code re-factorization techniques, which are instead valid
for all HLS tools. General-purpose optimizations techniques
for high-level synthesis have been addressed in literature
as research paper [12] [21] [14] [23] [22] and reference
books [13]. In this paper we leverage on these techniques,
applying to complex and innovatives use case as a post-
quantum cryptography algorithms. The paper is organized
as follows: section III introduces the algorithms under test,
section IV presents the principles of the high-level synthesis

Pareto HLS

Low-area

High-performance

A
R

E
A

LATENCY

RTL-based
designs

HLS-based
designs

FIGURE 1: Area Latency Design Points. HLS-based design are
suboptimal to RTL-based designs and bounded on the right side by
the limitations imposed by the automated process [8].

Low-area

High-performance

A
R

E
A

LATENCY

RTL-based
designs

HLS-based
designs

Pareto HLS

FIGURE 2: Our goal: push EDA boundaries achieving competitive
results. Both RTL-based and HLS-based designs shares now the
same space of solutions.

process and QoR metrics. Section V shows the model setup
for hls and profiling after first synthesis. Section VI presents
the optimizations adopted in this paper, how they apply, and
the impact they have on each algorithm. In section VII we
resume the final results and we conclude the paper with our
considerations.

2 VOLUME 4, 2016

Guerrieri A. et al.: Design Exploration and Code Optimizations for FPGA-Based Post-Quantum Cryptography using High-Level Synthesis

III. LATTICE-BASED POST-QUANTUM CRYPTOGRAPHY
ALGORITHMS
Among the algorithms competing in the third round of the
standardization process, we focus our analysis on the lattice-
based. In particular, we analyzed Saber [2], Crystals Kyber
[3] and Dilithium [4], NTRU [5]. In this paper we omitted
Falcon, which is planned for a future work. For the limits
imposed by the purpose of this manuscript we do not enter
into mathematical model no into details of the software
implementation of the algorithms. We limit to a brief intro-
duction with references to the official documentation.

A. SABER
Saber relies on the hardness of the Module Learning With
Rounding problem (Mod-LWR). Saber.PKE, indistinguisha-
bility under chosen-plaintext (IND-CPA) secure encryption
scheme and transform it into Saber.KEM, indistinguishabil-
ity under chosen-ciphertext attack (IND-CCA) secure key
encapsulation mechanism, using a version of the Fujisaki-
Okamoto transform [6]. Saber supports three different secu-
rity levels named LightSaber, Saber, and FireSaber, respec-
tively AES-128, AES-192, and AES-256-equivalent, which
can be set using preprocessor directives #defines changing
iterations and array sizes. In this work we focused on Saber,
as representative model of the algorithms’ family.

B. CRYSTALS KYBER
CRYSTALS Kyber is an IND-CCA2-secure key encapsu-
lation mechanism (KEM), whose security is based on the
hardness of solving the learning-with-errors (LWE) problem
over module lattices. It is available in three security levels:
Kyber-512, Kyber-768, and Kyber-1024 which are equivalent
in terms of hardness to respectively AES-128, AES-194, and
AES-256. It was developed to offer the same implementation
for different levels of security, only the number of iterations
changes as the number of dimensions increases by a mul-
tiple of 256. The main operations required for Kyber are
variants of Keccak, additions, multiplications, Gen_matrix,
and (Number Theoretic Transform) NTT. In the scope of this
work, we focused on optimizing Kyber-768 which offers a
good compromise between resource and latency usage and
security.

C. CRYSTALS DILITHIUM
CRYSTALS Dilithium is a digital signature scheme that
is strongly secure under chosen message attacks based on
the hardness of lattice problems over module lattices. The
security notion means that an adversary having access to
a signing oracle cannot produce a signature of a message
whose signature he hasn’t yet seen, nor produce a different
signature of a message that he already saw signed. Dilithium,
for now, has the smallest public key + signature size of any
lattice-based signature scheme that only uses uniform sam-
pling. Dilithium has three versions: Dilithium2, Dilithium3,
and Dilithium5 which represent 3 levels of security depend-
ing on a dimension parameter that allows using the same

algorithm but with different matrix sizes and execution in
more or fewer cycles. In the scope of this work, we focused
on optimizing Dilithium3 which offers a good compromise
between resource and latency usage and security. Dilithium
and Kyber are both from the same family: CRYSTALS
(Cryptographic Suite for Algebraic Lattices), and therefore
they have functions in common that make it easier to adapt
optimization from one algorithm to the other.

D. NTRU
NTRU is built on top of a generic transformation, coming
from a correct deterministic public key encryption scheme.
After the first appearance of NTRU 30-years ago, differ-
ent variants have been developed. For the post-quantum
standardization contest, NTRU-HRSS-KEM and NTRUEn-
crypt have been merged. For the third round, the submis-
sion package contains multiple versions: ntruhps2048509,
ntruhps2048677, ntruhps4096821, and ntruhrss701. In this
paper we focus our attention on the ntruhrss701, the version
recommended by the NTRU’s development team [5].

IV. BACKGROUND ON HIGH-LEVEL SYNTHESIS
In this section, we introduce the principle behind the pro-
cess of high-level synthesis, with the scope to understand
the optimizations steps presented in the paper. The pro-
cess of high-level synthesis consists of the transformation
from untimed code C/C++, into hardware description lan-
guage Verilog or VHDL. The standard process of high-
level synthesis is mainly composed of three phases; re-
source allocation, scheduling, and binding [24]. In the first
phase, resource allocation, the tool identifies the number of
hardware resources needed to accomplish the function. The
second phase, scheduling, design control FSM (Finite-State
Machine) to coordinate the operations. In the third phase,
binding, the control FSM is then connected to the datapath,
as well as further optimizations as resource sharing, static
timing analysis, and buffer insertion to meet the design con-
straints. Depending on the synthesis directives HLS can gen-
erate multiple hardware designs, optimized for performance
or resource utilization. To appreciate the quality of generated
hardware different metrics can be used. We introduce a few
here below.

1) Wall-Clock Time
Wall-clock time indicates the effective execution time needed
for the execution of the task by the generated hardware. It
is calculated as the product in between the minimum clock
period and the latency expressed in clock cycles.

WallClockT ime = ClockPeriod · Latency (1)

2) Latency-Area Product
Sometimes, to reduce latency a increase of parallelism is
needed, which reflects into an increase in resources. Latency-
area product is a meaningful parameter indicating the quality
of the results achieved.

VOLUME 4, 2016 3

Guerrieri A. et al.: Design Exploration and Code Optimizations for FPGA-Based Post-Quantum Cryptography using High-Level Synthesis

LD LD COMP

IL

II

L

ST

LD LD COMP ST

LD LD COMP ST

TC

FIGURE 3: Schedule of a pipelined loop. The labels iden-
tify abstract operations present in the body loop, LD(load),
COMP(compute), and ST(store)

LAP = WallClockT ime ·Area (2)

A. OTHER IMPORTANT METRICS: INITIATION INTERVAL
When pipelining a loop, the II identifies the numbers of clock
cycles where the pipelines must wait before starting a new
iteration of the loop. A perfect pipeline is indicated with II=1,
meaning that with each clock cycle a new iteration of the loop
can begin. Figure 3 shows the schedule of a pipelined loop.

Latency = IL+ II · (TC − 1) (3)

Where
• Latency = total latency of a given loop
• IL = iteration latency, the clock cycles required to

execute one loop iteration
• II = initiation interval, distance between two indepen-

dent iterations
• TC = trip-count, number of loop iterations

From equation 3 we observe how the latency contribution of
IL is independent of the number of iteration. Conversely, the
contribution of II increases proportionally with TC.

1) Factors Affecting II
The main objective of the scheduling algorithms is to achieve
II = 1. For doing that, HLS compilers commonly leverage
standard memory analysis techniques like polyhedral anal-
ysis to analyze dependencies and thus create the optimal
schedule for the given pipeline. Sometimes, achieving sub-
optimal results. The principal causes of II > 1 can be due
to resource conflicts, or loop-carried dependencies. Resource
conflict happens when a hardware resource with limited ports
is accessed multiple times in the same iteration of the loop.
In an example, this could be a BRAM or a specific shared
custom resource. Loop-carried dependencies appear when
the data used in the future iteration depends on a result
produced in the current iteration. In this case, delaying the
beginning of the next iteration by the number of clock cycles
required to produce the result needed. This could be for
example the memory location computed in the loop body.

Sometimes loop-carried dependencies can be solved apply-
ing techniques such as tiling, transposition, or interleaving
[12]. In some other cases, they cannot be solved at com-
pile time due to runtime dependencies. To overcome these
problems innovative techniques based on dynamic schedule
have been introduced in HLS tools like Dynamatic [15],
which produces dynamically-scheduled circuits, where the
scheduling process is delegated to components [16].

V. MODELS SETUP AND SYNTHESIS WITH HLS
The submission packages contain multiple software imple-
mentations optimized for different targets platforms like
CPUs with AVX (Advanced Vector Extension) or ARM
Cortex-M. For our experiments, we use the reference im-
plementation to avoid compatibility issues between the HLS
compiler and target-specific instructions, or coding structures
for specifically constrained computer architectures. To pro-
ceed with the synthesis of the code the identification of the
top level functions is needed. For the encapsulation schemes,
Saber, Kyber, and NTRU, the top level functions are as
following :

• Crypto_kem_keygen generates the public key (pk) and
secret key (sk).

• Crypto_Kem_enc takes as input the public key (pk) and
generates a session key (k) and the ciphertext (ck).

• Crypto_Kem_dec takes in secret key (sk) and encapsu-
lated key (ck), and outputs key (k).

For Dilithium, a signature scheme, these top level func-
tions are as following:

• Crypto_sign_keygen generates the public key (pk) and
secret key (sk).

• Crypto_sign takes as input the secret key (sk), the
message (m), the message length (mlen) and generates
a signed message (sm) and the signed message length
(smlen).

• Crypto_sign_open takes as input the public key (pk),
the signed message (sm) and the signed message length
(smlen) and generates the message (m) and the message
length (mlen)

HLS support for C/C++ language has historically been
limited to a constrained subset. Despite the improvements
in language integration, taking a software code meant to
run on a classical CPU still needs an assessment. Recur-
sive functions, unbounded loops, and third-party software
libraries are not supported for hardware synthesis. Then, all
random number generation functions using OpenSSL had
to be exported outside the design because of their non-
support by HLS tools. Thus creating a new input in top-level
functions. Also, to make design validations we replaced top-
level arguments pointers with defined size arrays.

A. PROFILING
The goal is the identification of the design bottleneck: the
critical functions where most of the clock cycles and re-
sources utilization are spent. Since most of the functions are

4 VOLUME 4, 2016

Guerrieri A. et al.: Design Exploration and Code Optimizations for FPGA-Based Post-Quantum Cryptography using High-Level Synthesis

common to both encapsulation/decapsulation operations, for
the sake of simplicity and limits in the manuscript we report
the profiling results that are valid in both cases. For doing
this, we set it as an initial target frequency 100MHz, with
the scope to not bias our initial results with potential timing
issues or resources overhead due to the excessive usage of
pipeline registers.

1) Saber
Apart from the random number generation, Saber’s reference
code is compatible with HLS. The latency contribution for
each internal module is reported in table 1, including the
resource utilization. More than 57% of the total clock cycles
are spent by the matrix-vector multiplications, and almost
30% by the inner product, both executing the polynomial
multiplication.

TABLE 1: Saber: Latency-Area utilization per module

Function Latency (cc) BRAMs LUTs FFs DSPs

sha3_256 3506 8 18352 3529 0
sha3_512 681 8 18269 3493 0
GenMatrix 9629 10 19124 3984 0
GenSecret 5162 9 18673 3662 0
MatrixVectorMul 58696 15 13161 4459 67
InnerProd 19564 15 13092 4440 67
sha3_256 857 8 16627 3369 2

2) Crystals Kyber
Apart from the modifications presented earlier, the reference
code did not require any major modification. The full results
for baseline are reported in table 2. We see that blocks using
the most resources are the hash, getnoise and gen_matrix
functions, that is to say mostly those using Keccak. They are
responsible for the use of 97 % of LUTs but in counterpart,
they don’t impact much latency. 85 % of latency is spent in
NTT and gen_matrix.

TABLE 2: Kyber: Latency-Area utilization per module

Function Latency (cc) BRAMs LUTs FFs DSPs

gen_matrix 32407 8 19568 4054 0
getnoise_eta2 1567 9 18526 3518 0
getnoise_eta2_1 1567 9 18526 3515 0
shake256 1115 8 17961 3362 0
basemul_mont 1281 1 445 456 30
basemul_mont_1 1281 1 418 452 30
basemul_mont_2 1281 1 393 446 30
pack_ciphertext 5072 0 1095 258 2
polyvec_ntt 42483 1 689 562 5
polyvec_invntt 59379 1 704 536 8
sha3_256_1 4058 8 18526 3500 0
sha3_256_2 3865 8 18439 3477 0
sha3_256 921 8 17972 3356 0
shake256_1 985 8 17960 3359 0
sha3_512 809 7 17969 3370 0

3) Crystals Dilithium
Apart from the modifications presented earlier, the reference
code did not require any major modification. The full results
for baseline are reported in table 3. We see that blocks using
the most resources are those using Keccak as poly_challenge
(15% of LUTs), poly_uniform, and poly_uniform_gamma1
(22% of LUTs each). Functions spending must of the latency
are poly_challenge, poly_matrix_expand and as in Kyber,
NTT and INVNTT. Dilithium is a relatively simple algorithm
but with numerous loops which will increase the latency in
the tens of millions.

TABLE 3: Dilithium: Latency-Area utilization per module

Function Latency (cc) BRAMs LUTs FFs DSPs

poly_uniform 13115 11 57831 11857 0
p_unif_gamma1 12629 11 56931 11405 0
poly_challenge 124638 9 39284 8502 0
keccak_absorb_2 5855 2 20645 4868 0
keccak_absorb_1 6639 2 18804 3884 0
keccak_squeeze_1 118 2 17275 3198 0
keccak_squeeze_2 96 2 17258 3194 0
pvk_invntt_tomont 46195 1 886 611 6
pv_matrix_expand 393522 - - - -
polyvecl_ntt 33370 - - - -
polyveck_ntt 44044 - - - -
polyveck_ntt 44044 - - - -
while_omega 11409278 - - - -

pvl_unif_gamma1 63155 - - - -
polyvecl_ntt 33370 - - - -
pv_matrix-
_montgomery 43098 - - - -

p = poly, pv = polyvec, pvk = polyveck, pvl = polyveck, unif = uniform

4) NTRU
NTRU presents very simple loops and a contained resource
utilization. On the other side, latency-wise is very expen-
sive. The majority of the latency contribution is due to
poly_Rq_mul function, consuming 99% of the total. This
function is called once in the encapsulation and three times
during the decapsulation process.

TABLE 4: NTRUHRSS701: Latency-Area utilization per
module

Function Latency (cc) BRAMs LUTs FFs DSPs

sha3_256 1562 8 18326 3489 0
poly_Sq_frombytes 701 0 751 94 0
poly_Sq_tobytes 2194 0 812 143 0
poly_lift 9800 1 905 249 6

poly_Rq_mul 4916113 - - - -
poly_Z3_to_Zq 1400 - - - -
poly_S3_tobytes 19564 - - - -

VI. DESIGN AND OPTIMIZATIONS
The optimization method used in our experiments is inspired
by literature [12] [21] [14] and extended for a practical
complex design. It is essentially composed by the stages
showed in Figure 4. First, we try to concentrate our effort
to increase performance, limiting as much as possible the
overhead in resources. In particular, we focus on optimize
the generated pipelines and exploiting the parallelism, doing

VOLUME 4, 2016 5

Guerrieri A. et al.: Design Exploration and Code Optimizations for FPGA-Based Post-Quantum Cryptography using High-Level Synthesis

parallel computations per clock cycle. Second, we focus on
resource optimization, such as sharing resources and mem-
ory. In detail, we apply:

• Pipeline Optimizations : to reach the maximum speed,
the goal is to achieve II=1 for all the pipelined loops.

• Exploiting Parallelism : exploiting the spatial comput-
ing of FPGA doing parallel computation elements per
clock cycle.

• Memory optimizations : avoiding as much as possible
data movements reusing the same memory

• Resource Sharing : reusing computation units in differ-
ent temporal moments, reducing resource utilization.

In the coming paragraph, we pass through each optimization
stage explaining how this applies for each algorithm under
design.

A. INCREASING PERFORMANCE
The goal of this step is to speed up the solution in generating
more efficient hardware. We analyze the cause of suboptimal
initiation interval and applying the optimization techniques
[12] [13] we improve the pipeline to achieve II = 1.
Furthermore, we try to exploit spatial computation feature of
FPGAs, running parallel operations in the same clock cycle.
The scope of this optimization step is to optimize as much as
possible the available parallelism provided by the underlying
computation platform. Despite the most common technique
to increase parallelism in HLS consists of unrolling loops,
our primary goal is to improve the execution without recur-
ring on that hence without introducing resource overhead.
Usually, state-of-the-art HLS tools automatically detect data
and operation dependencies and try to exploit instruction-
level parallelism (ILP). Nevertheless, the capability of this
analysis is generally limited to a single module. Task-level
parallelism extraction is a current limitation and should be
identified and solved by the designer. How two tasks can be
executed in parallel? If two tasks are both data-independent
and resource-independent they can be executed in parallel
without area overhead. Why synthesis directives are not
enough in this case? Unfortunately, dataflow pragma can not
be applied to a module containing both data-independent and
data-dependent tasks, generating conservative scheduling to
ensure functionality.

1) SABER
Polynomial multiplication is based on toom_cook_4way

karatsuba. The toom_cook_4way is mainly composed of
three parts: evaluation, multiplication, and interpolation. In
the multiplication stage, seven calls to karatsuba are in-
stantiated. The schedule diagram generated synthesizing the
reference code is reported in Figure 5. The evaluation part
is composed of two independent loops of N_SB = 64
iterations, with II = 2 and IL = 3. The cause of suboptimal
II is due in this case of memory contention due to the
4 accesses to BRAMs, with only 2 access ports. Splitting
the array is possible then achieving maximum performance.

int i, j;

// EVALUATION
for (j = 0; j < N_SB; ++j) {

//aw1-7 initializations
//...

}
for (j = 0; j < N_SB; ++j) {

//bw1-7 initializations
//...

}

// MULTIPLICATION

karatsuba_simple(aw1, bw1, w1);
karatsuba_simple(aw2, bw2, w2);
karatsuba_simple(aw3, bw3, w3);
karatsuba_simple(aw4, bw4, w4);
karatsuba_simple(aw5, bw5, w5);
karatsuba_simple(aw6, bw6, w6);
karatsuba_simple(aw7, bw7, w7);

// INTERPOLATION
for (i = 0; i < N_SB_RES; ++i) {

//...
}

Listing 1: Toom Cook 4 Way, original code

Additionally, loop fusion allows reducing the total latency by
merging the two loops into a single one. Internal results for
karatsuba loops show II = 64 over a IL = 64, highlighting
the potential difficulty in exploiting the pipeline. How to
improve the pipeline in this case? The karatsuba core is
mainly composed of two nested loops. While pipelining au-
tomatically all the loops, the inner loop is unrolled, although
the loop-carried dependencies limit the pipeline. Using the
tiling or loop interchange technique the loop-carried depen-
dency can be solved. However, with the cost of increasing
DSP resources. Avoid unnecessary loop unrolling instead,
and pipelining only the inner loop an initiation interval of
7, with a no increase of DSP usage and a still a reasonable
speedup. Resource contention due to the limited BRAM ports
can be solved by partitioning the array. The interpolation part,
instead, requires a different approach. The original schedule
presents a TC = 127, with IL = 11 and II = 7 limited
again by the BRAM limited access ports. Nevertheless, in
this case, the array partition cannot be easily applied because
of the array accesses pattern. In this case, we apply the loop
fission or loop splitting [17] to remove the dependencies and
improve overall latency. Figure 6 shows the final schedule.
Applying those techniques, we achieve a total speedup of
4.85× in respect to the baseline design and 2.3×, and 15×
of DSP reduction in respect to the best version using only
synthesis directives. In the case of Saber, the DCFG shows
the matrix generation and secret generation are both data and
resource independent. In the original source code, they are
called in sequence in the indcpa-kem-enc module, therefore
the parallelism cannot be exploited due to the presence
of other non-independent tasks. In this case, a simple re-

6 VOLUME 4, 2016

Guerrieri A. et al.: Design Exploration and Code Optimizations for FPGA-Based Post-Quantum Cryptography using High-Level Synthesis

FIGURE 4: Our Proposed Optimization Process

evaluation

karatsuba simple

karatsuba simple

interpolation

L=128

L=1606

L=893

evaluation

L=128

II = 2
IL = 3

TC = 64

II = 2
IL = 3

TC = 64

II = 7
IL = 11

TC = 127

FIGURE 5: Toom Cook 4 Way - Resulting schedule

arrangement of these instructions in a sub-function allows
the parallelism to be exploited. This optimization step allows
a further latency reduction of 10 %, without introducing
resource overhead.

evaluation

karatsuba simple

karatsuba simple

interpolation

interpolation

interpolation

interpolation

L=64
L=875

L=65

II = 1
IL = 2

TC = 64

II = 1
IL = 2

TC = 64

II = 1
IL = 2

TC = 64

II = 1
IL = 2

TC = 64

II = 1
IL = 2

TC = 64

L=65
L=65

L=65

FIGURE 6: Toom Cook 4 Way - Final schedule after pipeline
optimizations.

2) Crystals Kyber/Dilithium
Kyber and Dilithium share most of their functions and logic
so they are both treated in this section.
NTT optimization The Number Theoretic Transform is use-
ful to compute convolutions and is used multiple times in
the algorithm. It’s reference implementation is presented by
listing 3. Loops of NTT have variable bounds and are too
complex for HLS to understand so it fails to evaluate latency.
The usage of directives allowed the tool to understand that
the reduce function is executed a total amount of 896 times.
Despite the global directive to the pipeline, HLS could not

int i, j;

// EVALUATION
for (j = 0; j < N_SB; ++j) {

//aw1-7 initializations
//...
//bw1-7 initializations
//...

}
// MULTIPLICATION

karatsuba_simple(aw1, bw1, w1);
karatsuba_simple(aw2, bw2, w2);
karatsuba_simple(aw3, bw3, w3);
karatsuba_simple(aw4, bw4, w4);
karatsuba_simple(aw5, bw5, w5);
karatsuba_simple(aw6, bw6, w6);
karatsuba_simple(aw7, bw7, w7);

// INTERPOLATION
for (i = 0; i < N_SB_RES/4; i++)
{

//...
}
for (i = 0; i < N_SB_RES/4; i++)
{

//...
}
for (i = 0; i < N_SB_RES/4; i++)
{

//...
}
for (i = 0; i < N_SB_RES/4; i++)
{

//...
}

}

Listing 2: Toom Cook 4 Way, modified code

do so because of both loop-carry and loop-independent de-
pendencies. Indeed, it waits for the termination of the reduce
function before starting a new iteration, leading to an II=13
for the inner loop. Figure 7 represents the scheduling with
data dependency. The use of directives for loop-independent
dependencies and refactoring the inner loop for loop-carry
dependencies allowed to pipeline the algorithm to achieve
a II = 2. Furthermore, loops were modified as in listing 4
to simplify the tool analysis and make it possible to use
unroll primitives to increase performance. The II = 1 can be
achieved by using a supplementary BRAM or by partitioning
the array. The final schedule is presented in Figure 8.

VOLUME 4, 2016 7

Guerrieri A. et al.: Design Exploration and Code Optimizations for FPGA-Based Post-Quantum Cryptography using High-Level Synthesis

k = 1;
for(len = 128; len >= 2; len >>= 1){

for(start = 0; start < 256; start = j + len){
zeta = zetas[k++];
for(j = start; j < start + len; j++){

t = fqmul(zeta, r[j + len]);
r[j + len] = r[j] - t;
r[j] = r[j] + t;

}
}

}

Listing 3: NTT as described in NIST submission for Kyber

LD

reduce

L=1

L=10

II = 13

IL = 13

TC = 896

LD

LD

L=1

STR

L=1

LD

reduce

L=1

L=10
LD

LD

L=1

Iteration
1

Iteration
2

STR

FIGURE 7: NTT initial - First two iterations of the NTT with data
dependency

Loops merge. Crystals use sometimes simple functions
but are repeated in loops many times for the different di-
mensions of matrices. Every time HLS enters and exits a
loop it takes cycles and thereby many cycles are used in loop
control. However, most of these loops have the same number
of iterations so by using directives or by merging manually
these, we can avoid wasting cycles in control.

k = 1;
zeta = zetas[k++];
for (len = 128; len >= 2; len >>= 1){

limit = len;
start = 0;
for (int j = 0; j < 128; j++){

uint16_t r_j_len = r[start + len];
uint16_t r_j = r[start];
t = fqmul(zeta, r_j_len);
r[start + len] = r_j - t;
r[start] = r_j + t;

start++;
if (start == limit)
{

start += len;
limit += (len << 1);
zeta = zetas[k++];

}
}

}

Listing 4: NTT rewritten

LD

reduce

L=1

L=10LD
L=1

STR

LD

reduce

L=10LD
L=1

STR

Iteration
1

Iteration
2

LD

reduce

L=10LD

II = 2

IL = 12

TC = 896 Iteration
3

STR

STR

FIGURE 8: NTT pipelined - First two iterations of the NTT with
loop-carry and loop-independent dependencies corrected.

3) NTRU
Pipelining NTRU did not present any significant issue with
the initiation interval. The loops structures are regular and
simple, perfect use-cases where high-level synthesis technol-
ogy improved lot QoR over the years. Therefore, the nested
loops with large iterations (701) increase the total clock
cycles. To improve performance the increase of parallelism
is needed. More specifically, the nested loop Poly_Rq_mul
covers the main contribution of the total latency. The original
code is composed of three loops: one external that iterates
of a factor=701, and two internals, which presents variable
a variable iteration bounds, shown in list 6. The resulting
schedule is reported in Figure 9. To improve the latency
of this function, applying synthesis directives such as loop
unrolling is not sufficient. Few code modifications are needed
for exploiting the parallelism of this loop. The first is the loop
merge. Merging the two internal loops with a fixed bound
reduces overall the complexity. However, even improving
the bottleneck in the memory accesses between a[], b[], and
r[], the loop unroll cannot be exploited, as shown in 10. In
fact, due to the structure of the loop, applying the unrolling
pragma increase the resource utilization without improving
performance due to the dependency to the r[k]. To remove
the loop-carried dependency and fully exploit the hardware
parallelism, the loop interchange transformation should be
applied, inverting the boundary index of k and i. Using the
modified code shown in Figure 6 the dependency to r[k] is
removed and the loop can be unrolled, as shown in Figure
11.

B. REDUCING AREA
Sharing resources is the pass allowing the area reduction,
consisting in the use of the same hardware resources in differ-
ent temporal moments. Efficient stack usage and preventing
memory leaks are always the first concerns of a software
programmer. But what happens when we use the source code
with HLS? Array declarations are synthesized as BRAMs,
and variables as registers. To reduce the BRAM utilization
is worth analyzing the time-of-life of specific arrays, along
with the potential parallel utilization, and then trying to reuse
it as much as possible. Executing our analysis we managed

8 VOLUME 4, 2016

Guerrieri A. et al.: Design Exploration and Code Optimizations for FPGA-Based Post-Quantum Cryptography using High-Level Synthesis

int k,i;
for(k=0; k<NTRU_N; k++)
{
r->coeffs[k] = 0;

for(i=1; i<NTRU_N-k; i++)
{
r->coeffs[k]+=a->coeffs[k+i]*b->coeffs[NTRU_N-i];
}

for(i=0; i<k+1; i++)
{
r->coeffs[k] += a->coeffs[k-i] * b->coeffs[i];
}

}

Listing 5: Poly RQ, original code

LD

mul

add

LD

LD

mul

add

LD

ST

ST

for(k=0;k<NTRU-1;k++)

for(i=0; i<NTRU-k; i++)

for(i=0; i<k+1; i++)

LD

LD

r[k]

r[k]

II=1
IL=5

TC=701..1

II=1
IL=5

TC=1..701

FIGURE 9: Poly RQ MUL - Resulting schedule

to reduce the BRAM utilization by almost 80% from the
baseline implementation.

1) SABER
In a complex module like Saber there are multiple common
functions used in the different stages. All SHA functions, for
example, can be shared since they are used in different phases
of the process. Furthermore, the polynomial multiplication
can be shared in between the matrix-vector multiplication
and the inner product, saving 67 DSPs, ∼15K FFs, and ∼7K
LUTs. For Saber, after applying the area optimization steps,
we obtain a total LUT reduction up to 77%.

2) Crystals Kyber/Dilithium
Kyber and Dilithium share most of their functions and logic
so their resource reduction is both treated in this section. The
most greedy function as defined in chapter V-A2 and V-A2
is Keccak. It is a sponge function that consists of absorption
and a squeeze step. During both steps, it uses the same func-
tion KeccakF1600_StatePermute which proceeds to XOR
and permute bits in multiple rounds. These operations are
effectuated in 1’600 bits at each step so it takes a considerable
amount of LUTs. To reduce this usage, the employment of
directive allowed inline functions and made it possible for

for(i=0; i<NTRU_N; i++)
{

a0_int[i] = a1_int[i] = a->coeffs[i];
b0_int[i] = b1_int[i] = b->coeffs[i];

}
for(i=0; i<NTRU_N; i++)
{
for (k=0; k<NTRU_N; k++)
{
if (i < NTRU_N-k)
{

r0_int[k] += a0_int[k+i] * b0_int[NTRU_N-i];
}
if (i < k+1)
{

r1_int[k] += a1_int[k-i] * b1_int[i];
}
r_int[k] = r0_int[k] + r1_int[k];
}

}
for(i=0; i<NTRU_N; i++)
{
r->coeffs[i] = r_int[1];

}

Listing 6: Poly RQ rewritten

LD

mul

add

LD

LD

mul

add

LD

ST

ST

for(k=0;k<NTRU;k++)

for(i=0; i<NTRU; i++)

LD

LD

Unrolling Factor

r0[k]

r0[k]

ST

LD r0[k]LD

mul

add

LD

Dependency-unrolling cannot be exploited

FIGURE 10: Poly RQ MUL - Schedule after pipeline optimiza-
tions.

the HLS tool to share this problematic block. Furthermore,
the reference implementation of Keccak was planned to
effectuate two steps of permutation at once. Adapting the
code to effectuate only one step reduced the usage block
by 2 times. The total reduction of resources was about 4
times for Kyber and about 6 times for Keccak. The study of
the memory allocation and their time of life also allowed to
reuse the same arrays instead of declaring new ones and thus
saving BRAMS. Finally, we detected a particular behavior
that inferred a lot of unnecessary resources. Indeed, a simple
instruction of copy as z = y; with z and y being large arrays
generates an increase both in latency and resources due to
registers which buffer all values of the first array and the
bottleneck to read from it. Adapting the code to set values of
z at the same time we set them into y to reduce the number

VOLUME 4, 2016 9

Guerrieri A. et al.: Design Exploration and Code Optimizations for FPGA-Based Post-Quantum Cryptography using High-Level Synthesis

LD

mul

add

LD

LD

mul

add

LD

ST

ST

for(k=0;k<NTRU;k++)

for(i=0; i<NTRU; i++)

LD

LD
Unrolling Factor

r0[k]

r1[k]

add

LD

ST

r[k]

FIGURE 11: Poly RQ MUL - Final schedule after pipeline opti-
mizations.

of Look-Up Tables (LUTs) by 20k.

3) NTRU
Among all the functions, NTRU presents very small resource
usage compared to the other encryption schemes. Compared
to the other lattice-based finalists, NTRU HRSS701 it is
characterized by a small, regular loops with a large num-
ber of iteration. Hence, all the pipeline structures are very
simple and efficient. Nevertheless, the majority of the area
is concentrated in the hash functions, notably SHA-3. The
optimization presented earlier for SHA-3 applies to NTRU
as well.

VII. FINAL RESULTS
In this section we resume the final results after applying all
the optimization steps presented earlier.

A. EXPERIMENTAL SETUP
To carry our experiments we used Vitis HLS 2020.2, target-
ing as FPGA a Xilinx Kintex Ultrascale+ xcku5pffvb676.
The choice of the tool and target device is purely related to
application needs. To obtain the minimum clock period and
evaluate then the wall-clock time we rise up the frequency up
to the maximum supported by the design.

B. DISCUSSING RESULTS AND BOTTLENECK
Table 5 resume the results obtained. For the limits imposed
by the manuscript, we report the results of the final optimized
versus the baseline. For Saber, Crystals, and Dilithium we
are able to achieve a speedup of a factor between 4.8× and
7.3×, with a resource utilization reduced in some cases up
to 80%, depending on the operation. For NTRU instead, the
speedup is much higher, with the drawback of using more
resources. However, comparing LAP we still achieve a more
efficient solution. In fact, in front of 224× of speedup, we
have almost 3× LUTs, 5× FFs, and 15× DSPs. Despite the
different mathematical models used by the algorithms, poly-
nomial multiplication represents the common computing-
extensive module in all schemes. Hence, each of the algo-

rithms presents different performance limitations and code
modifications, as presented in section VI. Resource-usage
side, the hash functions cover most of the resources, also
common for all the algorithms analyzed in this paper. Figure
12 shows a wall-clock comparison between the baseline and
the optimized version.

C. VERIFICATION
Although the C simulation passes all tests, there is non-
proof that the RTL code will generate the same behavior
as with directives we can introduce errors in the design
by declaring wrong false dependencies for example. The
C/RTL Co-Simulation (Cosim) works in the same way as C
Simulation and uses the same files. The particularity is that
it will first execute the C code on the host and produce a
snapshot of input and output vectors of the top-level function.
Then, it will re-execute the same test but instead of using
the C code, it will simulate the RTL and compare the results
with the previous one. It is important to be aware that the top
level’s array argument must have a defined size to the Cosim
works even though that it is not necessary for synthesis and C
Simulation. As a result of the Cosim, there is the success of
the test and the average execution latency time which brings
us a lot of information. Indeed, the synthesis tool could only
give estimations but now there is real execution with the
minimum, maximum, and average latency. There are some
details to take into account during Cosim to have a successful
test. The behavior of Vitis during this verification is to first,
execute a complete C simulation and take a snapshot of inputs
and outputs of the Device Under Test (DUT), then, execute
again with the DUT being replaced by the RTL implemen-
tation and simulated. The RTL output is then compared to
the previous snapshot and the remaining of the simulation is
executed. The thing is that in this second step, inputs given to
the DUT are taken from the snapshot made before and not
from the actual simulation. This can lead to a failing test
as, although the DUT outputs matches, the testbench fails.
During the C simulation, 3 random numbers are generated
among which the two first are given to the keypair function
which produces a public and secret key. The public key and
the third random number are given as input to the encapsulate
function and the secret key to the decapsulate function. Both
functions produce results which are then verified inside the
testbench.

VIII. CONCLUSION
High-level synthesis is a powerful EDA technology for de-
signing for FPGA in a short time. Sometimes, performance
achievable is limited due to the original code. In this paper,
we implement the lattice-based post-quantum cryptography
algorithm with HLS, starting from the original code sub-
mitted for the standardization process. Since the limitations
presented and the code optimizations are independent of the
HLS tool used, the optimizations techniques can be applied to
either commercial or open-source HLS tools, i.e. Intel HLS,
Catapult, Synphony, Dynamatic, LegUp [20], or many more.

10 VOLUME 4, 2016

Guerrieri A. et al.: Design Exploration and Code Optimizations for FPGA-Based Post-Quantum Cryptography using High-Level Synthesis

TABLE 5: Implementation comparison between baseline implementation and our optimized implementation for Saber, Crystals
Kyber and Dilithium and NTRU

PQC Design Operation Latency
(cc)

Freq. Max
(MHz)

WC-Time
(µs)

Speedup
(×)

BRAMs
(+%)

DSPs
(+%)

FFs
(+%)

LUTs
(+%)

Saber

Baseline
Enc 169882 476 357 - 95 134 52689 157497

Dec 205389 476 288 - 120 201 50887 137553

Keygen 121403 476 255 - 43 67 18832 56263

Optimized
Enc 35515 476 74 4.8 45(-52) 67(-50) 27775(-47) 35466(-77)

Dec 37055 476 77 5.5 91(-24) 67(-66) 47757(-6) 58402(-57)

Keygen 23008 476 48 5.2 34(-20) 67(-) 21805(15) 27252(-48)

Crystals
Kyber

Baseline
Enc 299199 400 746 - 50 113 50183 63200

Dec 395004 407 969 - 50 160 41167 50700

Keygen 145225 312 464 - 29 67 17828 37242

Optimized
Enc 48493 382 126 5.9 25(-50) 74(-34) 11184(-78) 11111(-82)

Dec 59584 390 152 6.3 30(-40) 86(-46) 11879(-71) 11716(-76)

Keygen 34620 413 84 5.5 21(-28) 22(-67) 8175(-54) 8635(-77)

Crystals
Dilithium

Baseline
Sign 2136921 205 10428 - 68 88 49671 102209

Verify 357929 205 1751 - 44 47 38120 79680

Keygen 291940 208 1403 - 47 27 46017 97029

Optimized
Sign 583107 410 1421 7.3 57(-16) 11(+26) 18419(-63) 15886(-84)

Verify 141964 392 362 4.8 40(-9) 67(+42) 14980(-60) 13562(-83)

Keygen 140765 500 281 5 33(-30) 38(+40) 11642(-75) 9761(-89)

NTRU

Baseline
Enc 6926955 478 14447 - 15 8 7457 23112

Dec 20723246 476 43518 - 23 12 14114 44575

Keygen 155845324 476 327275 - 18 7 3899 8371

Optimized
Enc 30843 478 64 224 17(13) 134(1575) 48688(552) 90091(289)

Dec 153642 476 322 134 35(52) 390(3150) 138998(884) 249019(458)

Keygen 6478480 370 17492 19 19(5) 7(0) 18263(368) 38369(358)

A. BENEFITS OF USING HLS

Correctness. The synthesis process is carried by the tool;
hence ensuring the functionality of the generated implemen-
tation. Nevertheless, after each of the optimization steps
presented, we compiled the code with GCC and assessed
functionality using the KAT (Known Answers Tests) avail-
able in the submission package.
Productivity Increased. The optimizations and code modifi-
cations shown in this paper are terribly faster compared to the
hardware development in VHDL or Verilog.
Flexibility. When designing at RTL the target latency and
area constraints should be usually defined at the early stages,
constraining the architectural choices and reducing the flexi-
bility of having different implementations available in a short
time.
Are these the best results achievable? The final results pre-
sented in this paper represent a trade-off between perfor-
mance and area. The aim of this paper is to extract the bottle-
neck and overcome limitations in using HLS. Nevertheless,
there is still room for further performance improvements or
area reduction if the final target design must be optimized for

maximum performance or minimum area.

B. FINAL REMARKS

The main goal of this paper is not to overcome the perfor-
mance results of already existing PQC designs. Rather, to
demonstrate the opportunity of using recent design automa-
tion techniques for this new class of applications. As shown
in the motivation and the review of related work, none of the
techniques applied in this paper are individually original nor
independently addressed in other contexts. Yet, from the best
of our knowledge, this paper is the first attempt on trying to
ameliorate results achievable for post-quantum cryptography
algorithms. Furthermore, we believe that this paper collects
and presents a concrete method that combines pragmatically
and effectively the optimization techniques applied to real
use cases. We plan to publish the modified optimized code
for HLS on Github to make it available for the community.
We believe that this is a great advantage for making hardware
designers cognizant when designing lattice-based PQC for
FPGAs, to profit from emerging design tools and reconfig-
urable platforms with negligible effort and in a short time.

VOLUME 4, 2016 11

Guerrieri A. et al.: Design Exploration and Code Optimizations for FPGA-Based Post-Quantum Cryptography using High-Level Synthesis

356752

74582

431317

77816

254946

48317

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

enc-baseline enc-optimized dec-baseline dec-optimized key-baseline key-optimized

La
te

nc
y

(u
s)

Saber

746801

126712

969735

152654

464865

83711

0

200000

400000

600000

800000

1000000

1200000

enc-baseline enc-optimized dec-baseline dec-optimized key-baseline key-optimized

La
te

nc
y

(u
s)

Crystals Kyber

10428174

1421032
1750631

362008

1402772

281389

0

2000000

4000000

6000000

8000000

10000000

12000000

sign-baseline sign-optimized open-baseline open-optimized key-baseline key-optimized

La
te

nc
y

(u
s)

Crystals Dilithium

14477336
64462

43311584

321112

327275180

17491896

0

50000000

100000000

150000000

200000000

250000000

300000000

350000000

enc-baseline enc-optimized dec-baseline dec-optimized key-baseline key-optimized

La
te

nc
y

(u
s)

NTRU-HRSS701baseline
optimized

FIGURE 12: Wall-clock time comparison

FIGURE 13: Latency vs Area Design Points

ACKNOWLEDGMENTS
This research has been carried out as part of the project
"Dynamically Reconfigurable CryptoEngine" supported by
Innosuisse under Grant No. 32291.1 IP-ICT, a joint collab-
oration with Cysec S.A. The authors thank also Alexandre
Duc for his help in selecting the algorithms analyzed in this
paper.

REFERENCES
[1] https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-

submissions
[2] Andrea Basso, Jose Maria Bermudo Mera, Jan-Pieter D’Anvers, Ang-

shuman Karmakar, Sujoy Sinha Roy, Michiel Van Beirendonck, Frederik
Vercauteren, "SABER: Mod-LWR based KEM (Round 3 Submission)"

[3] Peter Schwabe, Roberto Avanzi, Joppe Bos, Leo Ducas, Eike Kiltz,
Tancrede Lepoint, Vadim Lyubashevsky, John M. Schanck, Gregor Seiler,
Damien Stehle, "Crystal Kyber, Algorithm Specifications And Supporting
Documentation"

[4] Vadim Lyubashevsky, Leo Ducas, Eike Kiltz, Tancrede Lepoint, Peter
Schwabe, Gregor Seiler, Damien Stehle, Shi Bai, "Crystal Dilithium,
Algorithm Specifications And Supporting Documentation"

[5] Cong Chen, Oussama Danba, Je rey Ho stein, Andreas Hülsing, Jo ost
Rijneveld, John M. Schanck, Peter Schwab e, William Whyte, Zhenfei
Zhang "NTRU, Algorithm specifcations and supporting documentation".

[6] Eiichiro Fujisaki and Tatsuaki Okamoto. Secure Integration of Asymmet-
ric and Symmetric Encryption Schemes. In Advances in Cryptology -
CRYPTO ’99, 19th Annual International Cryptology Conference, Santa
Barbara, California, USA, August 15-19, 1999, Proceedings,volume 1666
of Lecture Notes in Computer Science, pages 537–554. Springer, 1999

[7] D. Soni, K. Basu, M. Nabeel, and R. Karri, “A Hardware Evaluation Study
of NIST Post-Quantum Cryptographic Signature schemes

[8] S. Lahti, P. Sjövall, J. Vanne and T. D. Hämäläinen, "Are We There Yet?
A Study on the State of High-Level Synthesis," in IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 38, no.
5, pp. 898-911, May 2019, doi: 10.1109/TCAD.2018.2834439

[9] A. Ferozpuri, F. Farahmand, V. Dang, M. U. Sharif,J.P. Kaps, and Kris Gaj,
“Hardware API for Post-Quantum Public Key Cryptosystems“.

[10] V B. Dang, F. Farahmand, M. Andrzejczak, and Kris Gaj, “Implement-
ing and Benchmarking Three Lattice-Based Post-Quantum Cryptography
Algorithms Using Software/Hardware Codesign“2019 International Con-
ference on Field-Programmable Technology (ICFPT)

[11] F. Farahmand, D. T. Nguyen, V B. Dang, M. Andrzejczak, and Kris Gaj,
“Software/Hardware Codesign of the Post Quantum Cryptography Algo-
rithm NTRUEncrypt Using High-Level Synthesis and Register-Transfer
Level Design Methodologies “ 2019 29th International Conference on
Field Programmable Logic and Applications (FPL)

12 VOLUME 4, 2016

Guerrieri A. et al.: Design Exploration and Code Optimizations for FPGA-Based Post-Quantum Cryptography using High-Level Synthesis

[12] Johannes de Fine Licht, Maciej Besta, Simon Meierhans, Torsten Hoefler,
“Transformations of High-Level Synthesis Codes for High-Performance
Computing“

[13] Ryan Kastner, Janarbek Matai, and Stephen Neuendorffer, “Parallel Pro-
gramming for FPGAs, The HLS Book“

[14] Steve Dai, Gai Liu, Ritchie Zhao, Zhiru Zhang, Enabling Adaptive Loop
Pipelining in High-Level Synthesis, Asilomar 2017

[15] Lana Josipović, Andrea Guerrieri, and Paolo Ienne. Dynamatic: From
C/C++ to Dynamically-Scheduled Circuits. Invited tutorial. In Proceed-
ings of the 28th ACM/SIGDA International Symposium on Field Pro-
grammable Gate Arrays, Seaside, Calif., February 2020

[16] Lana Josipović, Andrea Guerrieri, and Paolo Ienne. Synthesizing General-
Purpose Code Into Dynamically Scheduled Circuits. IEEE Circuits and
Systems Magazine, Special Issue FPGA Evolution, Volume 21, Number 2
Second Quarter 2021

[17] Junyi Liu, John Wickerson, George A. Constantinides, “Loop Splitting
for Efficient Pipelining in High-Level Synthesis“2016 IEEE 24th Annual
International Symposium on Field-Programmable Custom Computing
Machines (FCCM)

[18] Sujoy Sinha Roy and Andrea Basso, “High-speed Instruction-set Co-
processor for Lattice-based Key Encapsulation Mechanism: Saber in
Hardware.“ In Transactions in Cryptographic Hardware and Embedded
Systems 2020.

[19] Jose Maria Bermudo Mera, Furkan Turan, Angshuman Karmakar, Su-
joy Sinha Roy and Ingrid Verbauwhede, “Compact domain-specific co-
processor for accelerating module lattice-based key encapsulation mecha-
nism“ In 57th Design and Automation Conference DAC 2020.

[20] Canis Andrew, Choi Jongsok, Aldham Mark, Zhang Victor,Kammoona
Ahmed, Czajkowski Tomasz, Brown Stephen, Anderson Jason, LegUp: An
Open-Source High-Level Synthesis Tool for FPGA-Based Processor/Ac-
celerator Systems, ACM Transactions on Embedded Computing Systems
(TECS).

[21] Marco Minutoli, Vito Giovanni Castellana, Antonino Tumeo, Fabrizio
Ferrandi, Inter-procedural resource sharing in High Level Synthesis
through function proxies, 2015 25th International Conference on Field
Programmable Logic and Applications (FPL).

[22] Lan Huang, Da-Lin Li, Kang-Ping Wang, Teng Gao1, and Adriano
Tavares, A Survey on Performance Optimization of High-Level Synthesis
Tools. Journal of Computer Science and Technology, May 2020.

[23] Jason Cong, Bin Liu, Stephen Neuendorffer, Juanjo Noguera, Kees Vis-
sers, and Zhiru Zhang. 2011. High-level synthesis for FPGAs: From
prototyping to deployment. IEEE Trans. Comput.-Aided Design Integr.
Circ. Syst. 30, 4 (2011), 473–491

[24] P. Coussy, D. D. Gajski, M. Meredith and A. Takach, "An Introduction to
High-Level Synthesis," in IEEE Design & Test of Computers, vol. 26, no.
4, pp. 8-17, July-Aug. 2009, doi: 10.1109/MDT.2009.69.

ANDREA GUERRIERI (S’15, M’17, SM’21)
started working on embedded systems for industry
in 2006. He graduated in Electronic Engineering
from Politecnico di Torino, Italy, in 2015, becom-
ing a Principal Engineer responsible for the devel-
opment of flagship products. In 2017, he joined
the Processor Architecture Laboratory at EPFL,
Switzerland, where he leads and participates in
research projects in collaboration with industry.
Recent projects involve high-level synthesis, re-

configurable SoCs exploiting dynamic partial reconfiguration of FPGAs for
future space missions, and exoplanet observation. He is also a co-developer
of Dynamatic and a recipient of the Best Paper Award at FPGA’20, held
in Seaside, California. He is a Senior Member of the IEEE, he published
multiple articles in peer-reviewed journals and international conferences,
and he is also co-author of the book Fundamentals of SoC Design in
collaboration with Arm.

GABRIEL DA SILVA MARQUES started work-
ing at the University of Applied Sciences and Arts
Western Switzerland of Geneva in 2018 where he
studied and earned his BSc and MSc in mobile and
embedded systems. His work as research assis-
tant went through multiple and diverse projects as
implementing a Human Machine Interface for an
industrial controller with LabVIEW to designing
PCBs for connected watches. It’s actual work in-
cludes exploring HLS solutions to implement Post

Quantum Algorithms on FPGAs.

FRANCESCO REGAZZONI is assistant profes-
sor at University of Amsterdam and group leader
at Università della Svizzera italiana. He received
his Master of Science degree from Politecnico
di Milano and his PhD degree from Università
della Svizzera italiana. He held research positions
at the Université Catholique de Louvain and at
Technical University of Delft, and has been vis-
iting researcher at several institutions, including
NEC Labs America, Ruhr University of Bochum,

and EPFL Lausanne. His research interests are in the field of secure IoT
devices and embedded systems, covering in particular design automation for
security, physical attacks and countermeasures, post-quantum cryptography,
and efficient implementation of cryptographic primitives.

ANDRES UPEGUI is Associate Professor at
the University of Applied Sciences of Western
Switzerland - Geneva (HES-SO, Hepia) since
2010. He obtained a diploma on Electronic Engi-
neering in 2000 from the UPB (Medellín, Colom-
bia), he joined the UPB microelectronics research
group from 2000 to 2001. from 2001 to 2002 he
did the Graduate School on Computer Science at
the EPFL, and then he joined the Logic Systems
Laboratory (LSL) as PhD student. In 2006, he

received the title of PhD. from the EPFL for his thesis entitled "Dynamically
reconfigurable bio-inspired hardware". Afterwards he worked as senior
researcher and lecturer at the REDS institute (HEIG-VD, Yverdon) and
the CoRES group (Hepia, Geneva). His main research interest include self-
adapting hardware, FPGA dynamic partial reconfiguration, evolutionary
computation, and diverse digital hardware architectures including neural
networks, optimization algorithms, evolvable systems and cryptocores.

VOLUME 4, 2016 13

