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Abstract: Biomedical datasets distill many mechanisms of human diseases, linking diseases to genes 1

and phenotypes (signs and symptoms of disease), genetic mutations to altered protein structures, 2

and altered proteins to changes in molecular functions and biological processes. It is desirable to 3

gain new insights from these data, especially with regard to the uncovering of hierarchical structures  4

relating disease variants. However, analysis to this end has proven difficult due to the complexity of 5

the connections between multicategorial symbolic data. This article proposes Symbolic Tree Adaptive  6

Resonance Theory (START), with additional supervised, Dual-Vigilance (DV-START), and Distributed 7

Dual-Vigilance (DDV-START) formulations, for the clustering of multicategorical symbolic data from  8

biomedical datasets by demonstrating its utility in clustering variants of Charcot-Marie-Tooth disease  9

using genomic, phenotypic, and proteomic data. 10
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1. Introduction 13

Precision medicine depends upon a detailed unraveling of the relationships between 14

diseases, phenotypes, genes, and the underlying proteins and biological pathways [1– 15

7]. The ready availability of protein, disease, gene, phenotype, and biological pathway 16

ontologies makes it possible to construct purpose-specific datasets for studying human 17

disease. These can take the form of symbolic relationships that can be organized into formal 18

ontologies that are instantiated as knowledge graphs defining the permissible relationships 19

between classes and the instances within them. 20

However, many elements in these disease-gene-protein datasets are formatted as 21

categorical rather than numerical variables, bringing a unique challenge to machine learning 22

algorithms. Although tools exist to analyze and visualize categorical data, the tools for 23

clustering these datasets depend heavily on recasting categories into real-valued spaces, 24

which is largely unavoidable due to the definition of the problem statement; all modalities 25

of machine learning assume distance metrics or similarity measures of their feature spaces, 26

whereas categorical data contains symbols that do not belong to ordered sets and thus do not 27

inhabit metric spaces. An important design choice then when working with mixed or fully 28

categorical data is how to recast categorical features into spaces with similarity measures [8]. 29

This recasting, whether by one-hot encoding, ordinal encoding, or other encoding scheme, 30

can bring its own deleterious consequences; one-hot encoding of categories can generate 31

large sparse feature vectors due to many different categories, while ordinal encoding can 32

introduce measures of proximity between categories that do not intrinsically exist. Meta- 33

analyses of symbolic datasets may yield similarity meta-metrics that useful for clustering 34
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[9,10], but these meta-metrics require domain knowledge of the categories in the dataset,  35 

limiting both their transferability to other datasets and applicability to streaming learning. 36 

While statistical machine learning algorithms can compensate for some of these input  37 

feature space shortcomings through sophisticated machinery that relies on large dataset 38 

size and high degrees of feature cardinality, these methods naturally suffer in regimes with 39 

small categorical datasets. Furthermore, these encoding schemes and the machine learning 40 

algorithms do not gracefully extend to instances of hierarchical or nested attributes such as 41 

occurs with the variably-sized association of diseases with phenotypes, genes, and proteins. 42 

Adaptive Resonance Theory (ART) algorithms principally belong to the class of in- 43 

cremental neurogenesis clustering algorithms with many variants for use in supervised 44 

and reinforcement learning applications. The design of these algorithms allows them to 45 

update existing categories or create new ones from the data alone in a stable, incremental, 46 

and lifelong manner. With the notable exception of the binary-valued ART1 algorithm,  47 

most of these algorithms work upon real-valued preprocessed feature datasets [11]. The 48 

Gram-ART algorithm was designed for the meta-optimization of genetic algorithms and 49 

thus is designed to work with variable-length symbolic datasets [12], but it too has its 50 

shortcomings when tackling the large numbers of terminal symbols encountered in medical 51 

disease datasets. 52 

With these myriad design challenges in mind, this article describes the design of a 53 

new ART algorithm named Symbolic Tree Adaptive Resonance Theory (START) for the 54 

clustering of variable-length symbolic statements. This formulation of START also includes 55 

both dual-vigilance (DV-START) and distributed dual-vigilance (DDV-START) variants 56 

[13,14]. This article also outlines methods for casting categorical disease-gene biomedical 57 

datasets into symbolic datasets for both unsupervised clustering and supervised training 58 

where labels are available. 59 

The changes of START to the Gram-ART algorithm summarize the novel contributions 60 

of this article, in addition to the use of this algorithm to the study of biomedical disease 61 

variant data. START extends Gram-ART as a novel approach to analyzing biomedical 62 

disease variant data in the following ways: 63 

1. Both a match and activation function for the Gram-ART match rule. 64 

2. Optimizations to the prototype encoding scheme to mitigate memory complexity in 65 

grammars with large sets of terminal symbols. 66 

3. A mechanism to grow prototype tree structures when novel production rule sets are 67 

encountered. 68 

4. Both Dual-Vigilance and Distributed Dual-Vigilance START variants [13,14]. 69 

5. A supervised modification for each unsupervised START variant. 70 

This article is organized into the following sections: Section 2 provides a background 71 

of literature necessary to the formulation of START, while Section 3 describes the derivation 72 

and structure of START and its dual-vigilance variants. Section 4 outlines the datasets 73 

and experimental methodology utilized in the evaluation of START, including benchmark 74 

machine learning datasets and the target biomedical disease variant datasets of the article, 75 

and Section 5 contains the results of these experiments. Section 6 discusses the experimental 76 

results and their biological plausibility, with Section 7 providing final conclusions on both 77 

START and biomedical dataset analysis of the previous sections. 78 

2. Background 79 

2.1. Adaptive Resonance Theory 80 

Adaptive Resonance Theory (ART) is a neurocognitive theory of how biological neural 81 

networks for self-stable representations and learn without catastrophic forgetting, online 82 

and without supervision, through feedback and competitive dynamics [15,16].  Since 83 

its inception, a variety of machine learning models have been implemented using the 84 

theory as a basis. Though these algorithms in large part belong to the class of incremental 85 

neurogenesis clustering algorithms, they have been adapted for applications in supervised, 86 

reinforcement, and even multimodal learning [11,17], tackling clustering issues from sample 87 
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granularity [13,14] to distributed representations [18] and context recognition [19,20]. Some 88 

algorithms based upon ART have even been combined with Incremental Cluster Validity 89 

Indices (ICVIs), metrics of clustering performance in the absence of supervised labels, 90 

to enable a variety of incremental, online, and multimodal clustering and biclustering 91 

applications [21–25] ART algorithms are additionally well suited for Lifelong Learning (L2) 92 

applications because they are derived from theories on how biological neural networks 93 

address the stability-plasticity dilemma to mitigate catastrophic forgetting [26,27]. 94 

Nearly all ART formulations trade the explicit coarseness parameters of other clus- 95 

tering algorithms for a vigilance parameter (   (0, 1)) which behaves as a threshold of 96 

agreement between a sample and expectations to determine whether to update existing 97 

knowledge or to create new categories altogether, a process known as the ART match rule 98 

[28]. Samples are provided in a feature representation layer F1, which is compared with a 99 

category representation layer F2 through ART competitive dynamics that include a check 100 

against this vigilance parameter. 101 

2.2. Gram-ART 102 

Gram-ART is a clustering algorithm, based on ART learning dynamics, that defines its 103 

prototypes and input features as trees of parsed statements adhering to a formal grammar 104 

[12]. Originally designed to tackle the problem of comparing similarity between symbolic 105 

expressions for the meta-optimization of genetic algorithms, it is capable of accepting 106 

statements of an arbitrary length according to a user-defined context-free grammar (CFG) 107 

expressed in the Backus-Naur form (BNF). In the original formulation, Gram-ART samples 108 

are statements adhering to a CFG that are parsed into rooted syntax trees. These parsed 109 

samples are then compared according to ART learning rules to Gram-ART prototypes that 110 

are themselves rooted trees containing distributions of encountered terminal symbols at 111 

each node. Gram-ART answers the questions of how to formulate prototype trees of varied 112 

shape, compute similarities of sample statements to prototypes of differing shapes, and 113 

update the terminal symbol distributions at each node during learning. 114 

Gram-ART is the first ART algorithm capable of clustering inputs samples of arbitrary 115 

length, but it also inherits some problems from working with symbolic data. Terminal 116 

symbols under a grammar have no fuzzy membership or relation without an additional 117 

embedding scheme. Gram-ART tackles this by updating distributions of terminal symbols 118 

at each position along the rooted prototype trees during learning. However, this technique 119 

quickly grows in space and subsequent time complexity in grammars with sets of terminal 120 

symbols larger than the algebraic expressions that it was originally designed for. 121 

3. Method 122 

3.1. START: Symbolic Tree Adaptive Resonance Theory 123 

This paper introduces a new formulation of the Gram-ART algorithm called START for 124 

the clustering of symbolic datasets. START is a prototype-based unsupervised clustering 125 

algorithm that when presented with a new sample utilizes ART dynamics to determine 126 

whether to update an existing template or to instantiate a new one. START targets symbolic 127 

expressions adhering to a context-free grammar CFG(T, N, P, S) with a complete set of 128 

terminal symbols T, non-terminal symbols N, production rules P, and statement entry 129 

point S. The prototypes of START are rooted trees containing learned distributions of 130 

encountered terminal symbols at each node representing a non-terminal position, and 131 

symbolic statements are parsed into rooted constituency parse trees that are subsequently 132 

processed against these prototypes using ART learning dynamics. With such a formulation, 133 

the method is naturally extended to the clustering of purely categorical datasets of variable 134 

length sequences, such as in the myriad categorical fields of disease-gene-protein data. 135 

3.1.1. Motivation 136 

Given that START shares the objective of Gram-ART to cluster variable-length symbolic 137 

expressions, the key design challenges of START’s design are in how to formulate metrics 138 
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of similarity between these symbolic expressions. In such a formulation, statements are 139 

collections of symbols sampled from unordered sets; individual symbols share no fuzzy 140 

membership, so similarity between symbols is dictated by strict equivalence in a set 141 

theoretic sense. Furthermore, though statements of equal length introduce a step-wise 142 

fuzziness when symbols in the same relative positions are identical, many datasets do not 143 

satisfy the assumption of equivalent non-terminal structure across all statements. In the 144 

pursuit of creating a clustering algorithm for variable length symbolic datasets, START 145 

utilizes a prototype method as a proxy for direct comparisons between statements, using 146 

ART-based competitive learning dynamics for determining when to update templates and 147 

when to instantiate new ones. As with all ART algorithms, START therefore inherits both 148 

the theoretically unlimited learning capacity of neurogenesis algorithms and the problems 149 

of category proliferation that they bring; though new prototypes can be instantiated for an 150 

arbitrary number of categories, this growing knowledge base incurs its own search time 151 

complexity [11,29]. 152 

3.1.2. START Algorithm 153 

START shares the nomenclature of Gram-ART and other ART algorithms from its 154 

structure to its learning dynamics, so existing terminology is preferred where available. 155 

START also follows the procedure of most ART unsupervised clustering algorithms with 156 

additional considerations for handling symbolic data. As in Gram-ART, START handles 157 

this symbolic data by working in the space of the syntactic trees representing the symbolic 158 

data as statements under a formal grammar. 159 

Algorithm 1: Shared START notation. The learning dynamics of START and 
its variants follow the activation, competition, match, update, and initialization 
rules of unsupervised ART algorithms, so the notation here largely adheres 
the elementary ART algorithm notation outlined in [11]. Dual-vigilance lower- 
bound lb and upper-bound ub follow the notation in DVFA [13] and DDVFA 
[14]. 

/* Notation */ 
R: set of prototype nodes. 
R: a single prototype node. 
C: set of prototype nodes indices. 

: subset of active ART module nodes indices (   C). 
: START vigilance threshold,   (0, 1). 
lb: dual-vigilance lower-bound vigilance threshold, ( ub > lb > 0). 
ub: dual-vigilance upper-bound vigilance threshold, (1 > ub > lb). 

n: number of input dataset statements. 
X: statements parsed as syntax trees with terminal metadata. 
Parser(·): syntactic parsing algorithm taking a set of statements and a grammar 

and producing rooted trees. 
fT(·): activation function. 
fM(·): match function. 
fN(·): node initialization function. 
fL(·): node weight update function. 
U: internal supervised category indices. 
L: set of cluster indices. 

A START module is initialized to contain the CFG(T, N, P, S) rules of the target sym- 160 

bolic dataset statements. This grammar can be inferred from an existing dataset of state- 161 

ments if all relevant symbols and production rules are represented in the dataset. Statements 162 

from the dataset are parsed according to the production rules of the grammar into rooted 163 

contituency parse trees, the basic unit of which is known in Gram-ART and START as a 164 

TreeNode. Each parsed statement tree is presented incrementally to the START module, 165 

and each sample either mutates an existing prototype or is used to instantiate an entirely  166 
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Symbol : NonTerminalGrammarSymbol
Distribution : Dictionary{TerminalGrammarSymbol, Float} 
InstanceCount : Dictionary{TerminalGrammarSymbol, Integer} 
Children : Vector{ProtoNode}

ProtoNode

Figure 1. A simple UML diagram of the stateful information of one START TreeNode [12]. A symbol 
in a TreeNode in START is realized by either a terminal or non-terminal symbol at the syntax tree 
position of the node. A rooted tree of TreeNode in this regard contains the minimum information 
necessary to describe the syntax tree of a statement parsed with a prescribed grammar.

Figure 2. A simple UML diagram of the stateful information of one START ProtoNode, which is the 
basic element of the rooted trees constituting the prototypes of START [12]. A rooted tree of START 
ProtoNode encodes only through the non-terminal positions of the syntax tree of a TreeNode tree. 
Each ProtoNode encodes a PMF of terminal symbols encountered at and below the non-terminal 
position of the ProtoNode itself, with instance counts of each terminal encoded for the renormalization 
of the PMF when learning occurs at the node itself.

new prototype [11]. Prototypes in START are themselves rooted trees with a modified 167

structure from the statement trees, the basic unit of which is known in Gram-ART as a 168

ProtoNode. The stateful information of START ProtoNode and TreeNode can be seen in 169

Figures 2 and 1, respectively. 170

Here, START and Gram-ART differ on an important point in formulation; Gram-ART 171

treats ProtoNode and TreeNode as modified dependency relation syntax trees where each 172

node representes a terminal symbol, the children of which are the dependents of that 173

symbol. This formulation is most apparent in the case of operators, such as in the algebraic 174

statement x + y, where the operator terminal + would have branch dependents x and 175

y. In START, however, ProtoNode and TreeNode are defined as relation parse trees with 176

non-terminal symbols representing non-terminal positions and terminal symbols at the 177

leaves of the rooted tree. The same algebraic statement x + y is then treated as 178

In START, sample symbolic statements are preprocessed into parse trees via a syntactic 179

parser such as an Earley parser according to the production rules P of the grammar written 180

most generally in an Extended Backus-Naur form (EBNF) [30]. These syntax trees can 181

be interpreted as concrete constituency-relation parse trees belonging to constituency 182

grammars, also known as phrase structure grammars, where branches of a parse tree 183

are all non-terminal symbols in the grammar, including the statement entry point, and 184

leaf nodes are terminal symbols [31]. These parse trees are then converted to statement 185

trees via an inclusion of metadata at each node indicating the symbol to be terminal or 186

non-terminal. Prototypes in START are rooted trees containing probability mass functions 187

(PMF) of terminal symbols encountered at and below the position of each ProtoNode on the 188

tree. In contrast with Gram-ART, these START prototypes do not contain terminal symbol 189

leaves; instead, the nodes of the prototypes represent the non-terminal positions of the 190

grammar production rules applied to the node’s position on the tree, which reduces the 191

effective size of each prototype tree while still encoding the occurrence of terminal symbols 192

at and below those positions via their PMFs. 193

3.1.3. Derivation of the START Match Rule 194

A fundamental characteristic of ART algorithms is the use of a match rule, whereby 195

a process of bottom-up activations drive the evaluation of how much the input sample 196

matches existing top-down categories [28]. Because of the origins of these algorithms in 197

the analysis of the competitive dynamics of biological neural networks, these activation 198

Symbol : GrammarSymbol 
Children : Vector{TreeNode}

TreeNode
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Algorithm 2: START algorithm. A set of symbolic statements under a formal 
context-free grammar are parsed into their syntax trees. Prototypes are defined as 
Learning dynamics otherwise follow the activation, competition, match, update, 
and initialization rules of unsupervised ART algorithms [11]. ART dynamics 
notation here largely follow the elementary ART algorithm outlined in [11]. 
Inference during classification follows the same match rule dynamics without 
the instantiation of new categories; in the case of complete mismatch, either 
an “unknown" label or the best matching unit (the category that maximizes the 
match criterion) may be returned. 

Data: Symbolic statements S; CFG grammar G with terminal symbols T, 
non-terminal symbols N, production rules P, and statement definition S. 

Result: Cluster labels Y Nn 
/* Parse statements into contsituency parse trees */ 

1 X  Parser(S, G) 
/* Iteration over parsed statement trees */ 

2 foreach x  X do 
/* Compute activations for all nodes */ 

3 Tj  fT x, Rj , j  C 
/* Perform WTA competition for active nodes */ 

4 J arg max Tj 
j  

/* Compute match for the winning category */ 
5 M  fM x, RJ 

/* Vigilance test */ 
6 if M >  then 

/* Update category */ 
7 RJ  fL x, RJ 
8 else 

/* Deactivate category */ 
9     {J} 

10 if  =  then 
/* Continue match search */ 

11 Goto Line 4 
12 else 

/* Create and initialize new category */ 
13 K  1 + 1 
14 RK  fN(x, G) 
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(a) START relation parse tree TreeNode. (b) Gram-ART syntax tree TreeNode.
Figure 3. Comparison of the constituency relation parse trees of START to the syntax trees of Gram-
ART to the simple algebraic statement x + y. START TreeNode are full constituency relation parse
trees containining terminal symbols at the leaves of the tree, while START ProtoNode contain only
non-terminal symbols at non-terminal positions on the parse tree, are full relation grammar parse
trees. As in the grammar Listing 1, non-terminal symbols are surrounded by arrows <·> and terminal 
symbols are in single quotations. Here, <oper> is “operation," <op> is “operator," and <arg1> and
<arg2> are “arguments" of the operator.

and match functions are frequently analogized with bottom-up prediction and top-down 199

expectation, respectively. 200

Gram-ART utilizes an activation function, while START introduces separate activation 201

and match functions. The distinction between the two lies in the normalization scheme of 202

the activation and match functions; for example, in ART1 the match function (Equation 2) 203

is the activation function (Equation 1) normalized by the size of the input [11]. 204

Tj = x wj 1 (1)

Mj =
y(F1 ) 1

x 1
= x wj 1 (2)

x 1

FuzzyART replaces the binary intersection with the fuzzy intersection in both equa- 205

tions and normalizes the activation by the magnitude of the weight vector [11]. When 206

evaluated at a single node, an input terminal symbol can be interpreted as a one-hot binary 207

vector encoding at the terminal symbol position, so the magnitude of the membership  208

of sample x in weight wj is indeed the fuzzy intersection x wj 1. This is computed 209

in START for the terminal distribution of each ProtoNode climbing up from the aligned 210

leaf representing the terminal symbol. In statements with many branches arising from 211

non-trivial production rules, this means the evaluation of the activation at each protonode 212

for potentially multiple terminal descendants. 213

The activation is then normalized by the size of the input pattern, which can be realized 214

in multiple manners requiring a design decision; with the rooted tree definition of parsed 215

input statements, the size of the input pattern could be interpreted as the number of nodes 216

in the parsed statement, the number of terminal symbols in the unparsed statement, or 217

a more complex function of the number of terminals that could be realized beneath the 218

non-terminal position of the node in question according to the production rules of the 219

grammar of the sample. For simplicity, the remainder of this study utilizes the length of 220

the unparsed statement itself as a normalizing factor, having the effect of discounting the 221

disproportional contributions to the match value of increasingly longer statements. In 222

grammars where statements are of equal length such as in the processing of tables with 223

<oper>

<op> <arg1> <arg2>

‘+’ ‘x’ ‘y’

‘+’

‘x’ ‘y’
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single-category data, each decision trivially scales the required vigilance values to satisfy 224 

the vigilance criterion. 225 

The remainder of the match rule follows the activation, competition, match, and 226 

vigilance test of unsupervised ART algorithms as can be seen in Algorithm 2, with the 227 

exception of the dual-vigilance variants of START which can be seen in Section 3.1.5 and 228 

Algorithm 3. 229 

3.1.4. Derivation of the Weight Update 230 

When a prototype is selected for learning according to the START match rule, the 231 

input TreeNode and selected ProtoNode are root-aligned and compared similar to in the 232 

activation and match processes. The terminal symbols contributing to the activation and 233 

match functions of the winning prototype are used for updating the PMF at each non- 234 

terminal symbol position at each ProtoNode up the prototype tree. The instance count 235 

of the observed terminal symbol is incremented, and the PMF update is weighted by the 236 

instance count of each terminal of the distribution to renormalize. In Equation 3, the weight 237 

value w of the PMF indexed at terminal T in node i is updated with instance count N and a 238 

Kronecker delta T that is satisfied if the terminal symbol x being evaluated is equivalent 239 

to the PMF index T. 240 

T wT  N + Tx 
wi = i 

N + 1 
(3) 

 = 1  if T = x 
0  otherwise 

(4) 

If no prototype satisfies the vigilance criterion, a new one is instantiated. START 241 

prototypes do not encode all combinations of non-terminal production evaluations during 242 

instantiation, as this would quickly combinatorially explode towards the Catalan number 243 

of the non-terminal production rules, and it could be infinite in some recursive grammars. 244 

Instead, prototypes are instantiated as structural clones of the input TreeNode without 245 

the inclusion of the terminal symbols at their leaves. This design decision is made to 246 

mitigate the time and memory complexity of the ProtoNode evaluation given that the 247 

non-terminal node preceding a terminal leaf already encodes all of the instances that the 248 

terminal symbol is encountered. The new structural clone prototype is then trained upon 249 

the input sample, updating the PMFs of each ProtoNode for the first time. In the case that 250 

an existing winning prototype does not contain a the input TreeNode as a structural subset 251 

(i.e., it is missing a non-terminal production rule path describing the parsed TreeNode), 252 

these new non-terminal paths are instantiated on the winning prototype and updated as 253 

usual. 254 

3.1.5. Dual-Vigilance and Distributed Dual-Vigilance START 255 

The FuzzyART algorithm provides a foundation of how to adapt ART learning rules 256 

to real-valued datasets [11]. Like most ART modules, FuzzyART utilizes the ART match 257 

rule evaluated at a single threshold value that is either the vigilance hyperparameter  258 

or a function thereof. Dual-Vigilance FuzzyART (DVFA) utilizes instead two vigilance 259 

parameters for the match rule evaluation, a lower-bound lb and upper-bound ub, which 260 

separates prototypes in a many-to-one mapping from categories to clusters and introduces 261 

the ability to compensate for differing granularity both within and between clusters [13].  262 

Distributed Dual-Vigilance FuzzyART (DDVFA) advances this idea by representing entire 263 

clusters with FuzzyART modules governed by a global FuzzyART module, compensating 264 

for even varying granularity within different clusters and enabling the ability learn arbitrary 265 

cluser shapes [14]. Each node in the global F2 layer competes for assignment of a provided 266 

sample through modified activation and match linkage methods defining the relevant 267 

proximity measures of the sample to an entire F2 FuzzyART module node. 268 
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i 

j=1 j

j j

j j

Median median 
( 

f i 
}

The principles of dual-vigilance and distributed dual-vigilance are extended here  269 

for START. In the Dual-Vigilance formulation (DV-START), the same cascading technique 270 

as in DVFA is used for determining category-cluster assignments through upper- and 271 

lower-bound vigilance hyperparameters during the ART match evaluation: 272 

1. Case 1: MJ > ub: if the current match candidate satisfies the upper vigilance thresh- 273 

old, then the winning category is updated according to the START weight update 274 

rules. 275 

2. Case 2: ub > MJ > lb: if the current match candidate only satisfies the lower 276 

vigilance threshold but not the upper, then a new category prototype is instantiated 277 

that belongs to the same cluster as the winning node. 278 

3. Case 3: lb > MJ: if the current match candidate does not satisfy even the lower- 279 

bound vigilance threshold, then the normal mismatch procedure is followed where a 280 

new category is instantiated belonging to an entirely new cluster. 281 

In the Distributed Dual-Vigilance formulation (DDV-START), additional modifications 282 

are made to accommodate the rooted tree structures of the prototypes. DDVFA utilizes a 283 

global FuzzyART module that represents nodes themselves as FuzzyART modules [14].  284 

The basic unit of DDV-START is the rooted ProtoNode trees, but global module dynamics 285 

are not restricted to their use; because the global module of DDV-START is largely agnostic 286 

to the formulation of the input samples, the global module may be approximated as a 287 

FuzzyART module coordinating the learning of its START F2 nodes. With the exception 288 

of the centroid linkage method, which in DDVFA is defined as a function of local Fuzz- 289 

yART weights, all other linkage methods from DDVFA can be utilized in DDV-START; by 290 

independently defining the activation and match values for each ProtoNode within an F2 291 

START module, the global values can be compared using the Hierarchical Agglomerative 292 

Clustering (HAC) methods of DDVFA as can be seen in Table 1. 293 

Table 1. Distributed Dual-Vigilance START activation and match linkage methods where hierarchical 
agglomerative clustering (HAC) functions and distributed dual-vigilance notation are shared with 
DDVFA [14]. Global activation Tg and match Mg functions are defined via the generic function hg

 
i i i 

for global F2 node index i as a function of inner node indices j = 1 . . . k where k is the number of F2 
nodes in the local START module i. Each HAC method then is a “function of functions" evaluated at 
each F2 node in the global module to determine either the match or activation value in the global 
module match rule dynamics. 

HAC method hg
 

Single max 
( 

f i 
}

Complete min 
( 

f i 
}

j j 

Average  1 ki f i 
ki j=1 j 

Weighted1 ki  pj f i 
ni 1 pj =  j where ni is the number of samples (i.e., instance count) encoded by j of the local START module at 

g j 
i g i 

global F2 index i and ni = j nj . 

3.1.6. Supervised Variants 294 

Most ART algorithms are designed as unsupervised clustering algorithms with vari- 295 

ants and compositions of the elementary ART module motif providing supervised and 296 

reinforcement learning variants [11]. ARTMAP is a formulation of ART, comprised of 297 

two elementary ART modules and an inter-ART map field, that enables multidimensional 298 

mapping between two feature fields [32]. A simplified version of FuzzyARTMAP, where 299 

the second module ARTB is replaced with vectors representing class labels, provides a basic 300 

n
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Algorithm 3: Dual-Vigilance START algorithm. This algorithm combines Algo- 
rithm 2 with the dual-vigilance procedure of DVFA [13]. The vigilance test is 
split into a cascade of two vigilance checks for the current match candidate node. 
Passing the upper vigilance check updates the current category node, while 
passing only the lower vigilance check creates a new category node belonging 
to the same cluster label. Failing to pass both vigilance checks results in the 
instantiation of a new category node belonging to an incrementally new cluster 

  label. 
Data: Symbolic statements S; CFG grammar G with terminal symbols T, 

non-terminal symbols N, production rules P, and statement definition S. 
Result: Cluster labels Y Nn 
/* Parse statements into contsituency parse trees */ 

1 X  Parser(S, G) 
/* Iteration over parsed statement trees */ 

2 foreach x  X do 

RJ  fL
 
x, RJ

 

3 

4 

5 

6 

/* Compute activations for all nodes */ 
Tj  fT

 
x, R j

 
, j  C 

/* Perform WTA competition for active nodes */ 
J  arg max

 
Tj

 
 

j  
/* Compute match for the winning category */ 
M  fM

 
x, RJ

 
 

/* Dual vigilance tests */ 
if M > ub then 

/* Update current category */ 
7 

8 

9 

else if M > lb then 
/* Create a new category within 
K  1 + 1 

the same cluster */ 

10 LK  LJ 
11 RK  fN(x, G) 
12 else 

13 

/* Deactivate category 
    {J} 

*/ 

14 if  =  then 

15 

/* Continue match search 
Goto Line 4 

*/ 

16 else 

17 

/* Create and initialize new 
K  1 + 1 

category and cluster */ 

18 LK  max (L) + 1 
19 RK  fN(x, G) 
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procedure for adapting unsupervised ART modules to simple supervised ARTMAP vari- 301 

ants [33]. Though START is designed as an unsupervised clustering algorithm, it utilizes 302 

these supervised modifications for evaluation on benchmark datasets in Section 4.1. 303 

Algorithm 4: Simplified supervised modification for all START variants. The 
variation between START variants is captured in the evaluation of vigilance test 
as a function fV; if some node satisfies the match rule of the START variant, the 
sample is said to fall within the vigilance region of the prototype [11]. Complete 
mismatch instead occurs when no vigilance test is satisfied, and the prototype 
initialization procedure of the START variant is triggered. 

Data: Symbolic statements S; supervisory labels ; CFG grammar G with 
terminal symbols T, non-terminal symbols N, production rules P, and 
statement definition S. 

Result: Cluster labels Y  Nn 
/* New prototype initialization procedure */ 

1   Function initialization( ): 
/* Create and initialize new category */ 

2 K  1 + 1 
3 RK  fN(x, G) 

/* Add the label to the label map */ 
4 UK   

/* Parse statements into syntax trees */ 
5 X  Parser(S, G) 

/* Iteration over parsed statement trees */ 
6 foreach x,   X, do 

/* Instantiate a new prototype with the supervised label if the 
label is completely novel */ 

7 if  / U then 
8 initialization( ) 
9 else 

/* Parse statements into contsituency parse trees */ 
10 VJ = fV (R, x) 

/* Update winning node J if it correctly predicts label  */ 
11 if VJ  (   U ) then 

/* Run START update procedure */ 
12 fL RJ, x 
13 else 
14 initialization( ) 

3.1.7. Comparison with Existing Methods 304 

START is most directly comparable with Gram-ART for two important reasons: Gram- 305 

ART is the first and, prior to START, only ART-based symbolic data clustering algorithm,  306 

and the design of START uses Gram-ART as a basis with some important modifications. 307 

Details on the design differences between START and Gram-ART can be seen in the Supple- 308 

mentary Materials section of this paper. 309 

4. Evaluation 310 

START is evaluated here both on existing benchmark machine learning datasets with 311 

known labels (outlined in Section 4.1) and on a custom biomedical dataset (outlined in 312 

Section A). 313 
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4.1. Benchmark Datasets 314 

Purely categorical machine learning benchmark datasets are not as widespread and 315 

well-studied as real-valued benchmark datasets, and the START algorithm and its variants 316 

are not designed to handle real-valued data without modification. Therefore, START is 317 

evaluated on a combination of both real-valued clustering datasets and purely categorical 318 

datasets with caveats. 319 

Gram-ART is originally verified upon a discretized version of the UCI Iris dataset, the 320 

UCI Mushroom dataset, and the UCI Unix User dataset [12,34–36]. For comparison, START 321 

is evaluated upon the following open-source machine learning benchmark datasets with 322 

existing labels: a set of real-valued clustering benchmark datasets [37,38], the categorical 323 

UCI mushroom dataset [35], and a categorical lung cancer patient dataset [39]. Because 324 

benchmark datasets such as the Iris flower dataset elements are real-valued, each feature is 325 

range-normalized and binned into a set of terminal symbols representing each bin. 326 

Both the written procedures for accommodating real-valued benchmark datasets for 327 

evaluation and the results of all real-valued and categorical benchmark evaluations can be 328 

viewed in the Supplementary Material of this paper. 329 

4.2. Charcot-Marie-Tooth Disease Data Set 330 

To test the ability of START to cluster rows in a complex data set with various multi- 331 

category fields of varying length, we created a test data set based on Charcot-Marie-Tooth 332 

disease (CMT). CMT, also known as hereditary motor and sensory neuropathy, is one of 333 

the most common neurogenetic diseases with a population prevalence of 1 in 2,500 [40]. As 334 

a starting point, we began with 81 variants of CMT in the Online Mendelian Inheritance of 335 

Man (OMIM) phylogenetic series. A known genetic mutation characterizes each variant. 336 

The protein associated with the mutation is known in all but three variants. For each CMT 337 

variant, we added a row to a flat file with the following columns: variant name, OMIM 338 

number, gene, gene location, chromosome, mode of inheritance, phenotype, protein name, 339 

UniProtKB number, protein location, biological process in which the protein participates, 340 

protein molecular function, protein length, and protein weight. External data sources 341 

were identified to populate the data set (Table 2), including the Online Inheritance in Man 342 

(OMIM), the Human Phenotype Ontology (HPO), UniProtKB and the Human Protein Refer- 343 

ence Database (HPRD) [41–44]. The final data set had 81 rows and 17 columns, as shown in 344 

Table 2). Seven columns were multicategorical. Gene number (OMIM), phenotype number 345 

(HPO), protein number (UniProtKB) and variant number (OMIM) were not used in the 346 

clustering. 347 

Example production rules resulting from the interpretation of this dataset as statements 348 

sampled from a grammar can be found in Appendix A. 349 

4.3. Cluster Feature Means and Heat Maps 350 

After clustering by START, a cluster membership (between 1 and 9) was assigned to 351 

each row. Multicategorical features (see Table 2) were flattened into individual features 352 

by one-hot encoding. Feature means for each cluster were calculated using the Aggregrate 353 

procedure from SPSS (Version 29.0, IBM). The features were visualized using heat maps 354 

from Orange 3.35 [45]. For the heat maps, raw feature means were used for the categorical 355 

variables, and normalized feature means (in the interval [0, 1] were used for the numerical 356 

variables (see Table 2). 357 

4.4. SHAP Values 358 

SHAP summary values were calculated by the method of Lundberg et al. [46]. START 359 

cluster membership was added to the flattened feature array (see above). The cluster config- 360 

uration was fitted to the HistGradientBoostingClassifier (scikit-learn). The shap.TreeExplainer 361 

and the shap.summary_plot procedures were used to compute SHAP values and create the 362 

SHAP summary plot (Figure 13). 363 
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Figure 4. Effect of vigilance parameter  on number of clusters. As  was increased from 0.0 to 1.0, 
the maximum cluster size decreased, the number of clusters increased, and the number of singleton 
clusters increased. A value of  = 0.6 (yellow dashed line) was selected to yield 9 clusters with only 
two singleton clusters. Larger  values gave too many singleton clusters, and smaller ones put too 
many cases into one cluster. 

5. Results 364 

5.1. Selection of Cluster Configuration for the CMT Dataset 365 

The vigilance factor  was varied between 0.0 and 1.0 (Fig: 4). To minimize the size of 366 

the largest cluster and minimize the number of clusters with one member, a  = 0.6 was 367 

selected, yielding 9 clusters (Figure 5). 368 

Feature Type Format Length Multi-Category
variant name categorical string variable no 
variant number categorical string fixed no 
gene name categorical string variable no 
gene number categorical integer fixed no 
protein name categorical string variable no 
protein number categorical string fixed no 
protein length numerical integer variable no 
protein weight numerical integer variable no 
protein location categorical string variable yes 
protein molecular function categorical string variable yes 
protein biological process categorical string variable yes 
protein class categorical string variable yes 
mode of inheritance categorical string variable yes 
Phenotype categorical string variable yes
phenotype number categorical string variable yes 
Chromosome categorical string variable no
chromosome location categorical string variable no 
chromosome location categorical string variable no 

Table 2. Table of features and their characteristics in CMT flat file. Protein numbers were from 
UniProtKB [43]. Variant and gene numbers were from OMIM [41]. The phenotype numbers were 
HPO [1,47]. Since genes, proteins, and diseases have multiple names, the names were normalized 
to the standard form. Most of the features were categorical, and some were multicategorial. The 
features were formatted as integers or strings of variable or fixed length. 

5.2. Cluster Characterization by Feature Composition 369 

We used heat maps to visualize the features that characterized each cluster. The clusters 370 

differed in mode of inheritance, protein localization within the cell, protein participation in 371 

biological processes, protein length, molecular weight, motifs and domains in amino acid 372 

chains, phenotype, and protein molecular function (Figures 6, 7, 8, 9, 10, 11, 12, and 13).  373 
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The heat maps were used to create a narrative summary of each cluster’s most important 374 

feature characteristics (Table 3). 375 

5.3. Identifying features that contributed the most to cluster configuration 376 

We used SHAP [46] to find the features that drove the cluster configuration. The SHAP 377 

summary plot (Figure: 13) showed that protein length, chromosome number (autosomes 378 

1  22 and X and Y), mode of inheritance (autosomal recessive and autosomal dominant), 379 

protein localization in the cell (cytoplasm and plasma membrane) and phenotype (hyperto- 380 

nia, auditory and cognitive) contributed the most to cluster formation. 381 

k N Process Function Location Domain Inherit Phenotype Plus 
1 6 apoptosis Hydrolase AD auditory, visual 
2 3 cytoplasm AD hypertonia 
3 7 protein 

synthesis 
Transferase AD, AR 

4 53 plasma 
membrane 

TM AD,AR 

5 4 plasma 
membrane 

TM AD cognitive, auditory 

6 1 immunity 
transcription 

Transferase plasma 
membrane 

AD cognitive, ataxia 
seizure, hypertonia 
speech, hyperreflexia 

7 4 transcription DNA binding plasma 
membrane 

AD, AR cognitive, hypotonia 

Transferase 
8 2 autophagy 

apoptosis 
hydrolase 
GNRF 

nucleus AR cognitive, auditory 
hypertonia 

9 1 Transferase mitochondrion TM XLR cognitive, auditory 
Table 3. Summary of features that characterize CMT clusters. k is the cluster number and N is 
count of members in each cluster. Phenotype Plus lists signs and symptoms in addition to weakness, 
atrophy, deformities, sensory loss, and hyporeflexia that characterize most cases of CMT. AD is 
autosomal dominant inheritance; AR is autosomal recessive; XLR is X-linked recessive. TM is the 
transmembrane protein domain. GNRF is the guanine nucleotide-releasing factor. Note that some of 
the characteristics identified by the SHAP analysis, including cognitive, hypertonia, auditory, plasma 
membrane, autosomal recessive, and autosomal dominant (Figure 13), recur in this summary table. 

6. Discussion 382 

6.1. Feasibility of Clustering Multi-Categorical Biomedical Data with START 383 

START demonstrates several important capabilities that make it particularly useful 384 

for the clustering of multi-categorical data. Firstly, it directly represents the categorical 385 

data without an intermediate encoding representation and all the problems introduced 386 

therein; categorical data by definition does not define distance metrics or fuzzy membership 387 

between categories and features dimensions. The problem is circumvented here by the 388 

definition of prototype parse trees tracking the distributions of symbols from learned 389 

statements using the ART match and learning rules. 390 

Secondly, it naturally compensates for data points with missing elements entries in 391 

its fields; rather than requiring a special encoding scheme for missing fields or removing 392 

data points altogether, START can represent missing fields as ununsed non-terminal posi- 393 

tions when representing multi-categorical datasets as statements containing one or more 394 

attributes, which has the effect of penalizing the degree to which samples with missing 395 

features match existing prototypes while still accommodating prototypes of varying sizes. 396 

Thirdly, and as a consequence of the previous point, START can handle symbolic data 397 

of varying length when interpreted as statements under a grammar; in fact, this paper 398 

demonstrates an analysis of multi-categorical datasets of depth 2 due to the nature of 399 

the CMT data available, but categorical datasets of arbitrary depth can be analyzed with 400 

START when treating categories as themselves non-terminal symbols with production rules 401 

mapping to other sets of categories. This can be interpreted as processing hierarchical 402 
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symbolic databases where individual fields can themselves link to other symbolic database 403 

tables. 404 

6.2. Biological Interest and Plausibility of Derived Clusters 405 

When the START vigilance parameter was set to  = 0.6 (Figure 4), we obtained 406 

nine clusters (Table 3). Cluster 4, the largest, had 53 members, and clusters 6 and 9 were 407 

singleton clusters. The fact that cluster 4 is large is not surprising since most cases of 408 

CMT are similar and have similar core symptoms of weakness, sensory loss, hyporeflexia, 409 

orthopedic abnormalities, atrophy, and gait abnormalities in common [40]. Although it 410 

is usual to differentiate clinically between axonal forms (involving the neuron axon) and 411 

demyelinating forms (involving the myelin sheath of the axon) of CMT, it is not surprising 412 

that we did not find axonal and demyelinating clusters of CMT since we did not input 413 

electromyographic data into the clustering algorithm. The finding of small clusters of CMT 414 

variants with auditory, hypertonic, or cognitive phenotypes is interesting and plausible 415 

biologically and is consistent with clinical observations. 416 

The clusters differed in inheritance (Table 3) in biologically plausible ways and consis- 417 

tent with clinical practice. Since each variant of CMT was due to a gene mutation and since 418 

each gene coded for a unique protein, protein weight, protein length, protein configura- 419 

tion (motifs and domains), protein involvement in biological processes, protein molecular 420 

function, and protein locations could be examined for each CMT cluster and compared to 421 

the observed phenotype (Figures 6, 7, 8, 9, 10, 11, 12, and 13, and Table 3). Although these 422 

observations are intriguing, they do not offer a precise path to connect protein function, 423 

location, and process to the neurological phenotype in CMT. As an example of explainable 424 

AI [48], the SHAP plots in Figure 13 provide biologically plausible explanations for how 425 

START depended on certain features to form clusters. 426 

6.3. Limitations 427 

One limitation of this work is that START is used to cluster a small biomedical dataset 428 

without ground truth labeling. Although the diagnosis of each row (CMT disease variant) 429 

is known, cluster memberships for the dataset as a whole are unknown. As a result, this 430 

work cannot contain an analysis of either truth in cluster membership and structure or 431 

performance of START with respect to such a ground truth. 432 

Another limitation of this work is that all available features are used as inputs to the 433 

START clustering algorithm. A separate work is warranted to study how withholding some 434 

of the features as meta-features would allow potentially interesting cluster composition 435 

analyses. 436 

6.4. Future Work 437 

This paper demonstrates that START can work with data from a knowledge graph 438 

or ontology when flattened into a rectangular file. Alternatively, knowledge graphs and 439 

ontologies can be converted into triplets as subject-object-predicate triplets, which retains 440 

the underlying graph architecture. In the future, we plan to determine whether START can 441 

successfully cluster these triplets derived from knowledge graphs into meaningful clusters. 442 

Additional future work includes a comparison of START cluster results with other 443 

standard clustering algorithms, evaluation of START clustering on large multi-categorical 444 

data sets with a known ground truth cluster membership, and further experiments on 445 

data sets in which some features are withheld from input and retained as meta-features for 446 

post-clustering analysis. 447 

7. Conclusion 448 

This work introduces the START algorithm and for the clustering of symbolic data 449 

with arbitrary length statements. This work also introduces dual-vigilance and distributed 450 

dual-vigilance variants of START along with a supervised modification for each. Because 451 

START is designed for symbolic datasets, it is naturally suited for the clustering of both 452 
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categorical and multi-categorical datasets where each sample feature may realize multiple 453 

values. This multi-categorical clustering capability is demonstrated on a curated biomedical 454 

dataset of Charcot-Marie-Tooth disease variants and their disease-gene attributes, such as 455 

disase phenotypes and protein molecular functions. 456 
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Abbreviations 477 

478 

The following abbreviations are used in this manuscript: 479 

ART Adaptive Resonance Theory
BNF Bachus-Naur Form
CFG Context-Free Grammar
CMT Charcot-Marie-Tooth disease
DDVFA Distributed Dual-Vigilance FuzzyART 
DDV-START Distributed Dual-Vigilance Symbolic Tree Adaptive Resonance Theory
DVFA Dual-Vigilance FuzzyART
DV-START   Dual-Vigilance Symbolic Tree Adaptive Resonance Theory 
EBNF Extended Bachus-Naur Form
F1 ART Feature Input Layer (Field 1) 
F2 ART Category Representation Layer (Field 2) 
HAC Hierarchical Agglomerative Clustering 
L2 Lifelong Learning
ML Machine Learning
PMF Probability Mass Function 
START Symbolic Tree ART 
WTA Winner-Take-All

480 

Appendix A Charcot-Marie-Tooth Dataset Grammar 481 

An analysis of the Charcot-Marie-Tooth (CMT) dataset a posteriori demonstrates the 482 

process used in this article for interpreting tabular multi-categorical data as statements 483 

sampled from a context-free grammar that can be expressed as set of EBNF production 484 

rules, which can be seen in Grammar Listing 1. Gene-protein disease data is gathered for 485 

81 variants of CMT with categorical attributes (Table 2). Categories such as phenotype 486 

are subsumed where hierarchically relevant to reduce attribute feature dimensionality 487 

(e.g., variants of “pain" symptomology are subsumed to one feature belonging to the 488 

“phenotype" attribute). This process results in a 81-row flat file dataset of features with 489 



Version October 9, 2023 submitted to Information 17 of 26 

NSC-614-5761 dated 11/2023 
Unclassified Unlimited Release 

multi-categorical attributes represented as piped entries for each disease variant, including 490 

attributes with missing entries. 491 

Listing 1: Formal grammar for parsing Charcot-Marie-Tooth disease-protein flat-file data. 
EBNF syntax is used for production rules with the exception of the regular expression 
symbol ‘+‘, which is used to denote one or more occurrences of the preceding symbol. 
Statements are composed of a series of one or more categorical attributes, all of which are 
listed in the non-terminal symbol <attribute>. When an attribute is missing or otherwise 
unknown for a CMT variant, then it is not included in the parsed syntax tree and handled 
accordingly by START. The production rules for two notable multi-category attributes, 
<phenotype> and <biologic_process>, are listed to demonstrate how statements formulated 
from CMT disease variant entries illustrate how a gene can be associated with multiple 
phenotypes and biologic processes. Other multi-category attributes are not listed for brevity. 

S  ::= attribute + ; 4932 

attribute  ::= num  | gene_location  | disease  | disease_MIM  | gene  | gene_MIM  4945 

| inheritance + | protein  | uniprot  | chromosome  | chromosome_location  | 496 

protein_class + | biologic_process + | molecular_function + | disease_involvement + 497 

| MW  | domain + | motif + | protein_location + | length  | disease_MIM2  | 498 

phenotype + | weight_tag  | length_tag  ; 499 

phenotype  ::= ‘ataxia’  |  ‘atrophy’  |  ‘auditory’  |  ‘autonomic’  |  ‘behavior’  | 5001 

‘cognitive’ | ‘cranial_nerve’ | ‘deformity’ | ‘dystonia’ | ‘gait’ | ‘hyperkinesia’ 502 

| ‘hyperreflexia’ | ‘hypertonia’ | ‘hypertrophy’ | ‘hyporeflexia’ | ‘hypotonia’ | 503 

‘muscle’ | ‘pain’ | ‘seizure’ | ‘sensory’ | ‘sleep’ | ‘speech’ | ‘tremor’ | ‘visual’ | 504 

‘weakness’ ; 505 

biologic_process  ::= ‘Apoptosis’  |  ‘Mitosis’  |  ‘Lipid_metabolism’  |  ‘Symport’ 5067 

| ‘Ubl_conjugation_pathway’ | ‘Glycolysis’ | ‘Glucose_metabolism’ 508 

| ‘Ion_transport’ | ‘Unfolded_protein_response’ | ‘Cell_division’ 509 

| ‘DNA_repair’ | ‘Cell_adhesion’ | ‘Notch_signaling_pathway’ | 510 

‘Protein_biosynthesis’ | ‘Stress_response’ | ‘Endocytosis’ | ‘Transcription’ 511 

| ‘Sodium_potassium_transport’ | ‘Transcription_regulation’ | 512 

‘Fatty_acid_metabolism’  |  ‘Host_virus_interaction’  |  ‘Antiviral_defense’ 513 

| ‘Lipid_degradation’ | ‘Autophagy’ | ‘Sodium_transport’ | ‘Immunity’ | ‘none’ 514 

|  ‘Protein_transport’  |  ‘Nucleotide_biosynthesis’  |  ‘Calcium_transport’ 515 

|  ‘Transport’  |  ‘Phagocytosis’  |  ‘Inflammatory_response’  |  ‘DNA_damage’ 516 

|  ‘Potassium_transport’  |  ‘Carbohydrate_metabolism’  |  ‘Cell_cycle’  | 517 

‘Innate_immunity’ ; 518 
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Figure 5. With = 0.6, clustering by START yielded nine clusters from 81 variants of CMT. Each cluster is a different color on the heat 
map. Order of clusters on heat map is 7, 9, 8, 2, 1, 6, 5, 3, 4 with ordering by Euclidean distance between cluster centroids [45]. The 
largest cluster is 4 (dark green), with 53 members. Singleton clusters are 9 (white) and 6 (pea green). A shortened variant name is 
shown in the right margin. Dejerine Sottas disease appears four times in the heat map because it is caused by four distinct mutations in 
the MPZ, PMP22, PRX, and EGR2 genes.
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Figure 6. Heat map of molecular function for proteins in 
CMT clusters. Kinase function is associated with cluster 9, 
hydrolase function with clusters 1 and 8, DNA binding with 
cluster 7, activator function with cluster 7, and transferase 
function with cluster 9.

Figure 7. Heat map of biological pro-
cess for proteins by CMT cluster. Clus-
ter 1 is apoptosis, Cluster 8 is au-
tophagy and apoptosis, Cluster 3 is pro-
tein synthesis, Cluster 6 is transcription 
and immunity, and Cluster 7 is UBL 
protein conjugation and transcription.

Figure 8. Heat map of protein lo-
cations by CMT cluster. Cluster 
2 is cytoplasm, clusters 5, 6, and
7 are plasma membrane, cluster
8 is nucleus, and cluster 9 is mi-
tochondrion.

Figure 9. Heat map showing protein motifs and domains by CMT cluster. Motifs and domains
are characteristics of configurations of the amino acid chains that make up proteins and are often 
associated with a specific function. Note the over-representation of the transmembrane (TM) domains 
in clusters 5, 6, and 9 (red arrow). The CC motif is found in most proteins except for cluster 7.

Figure 10.  Heat map 
of molecular weights and 
amino acid chain lengths 
for proteins for CMT clus-
ters.
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Figure 11. Phenotype scores for each of the nine clusters for the 81 variants of CMT. Scores have 
been normalized to the interval [0, 1] where 1 indicates 100% and 0 indicates 0%. Note, as expected, 
that gait, atrophy, deformity, hyporeflexia, weakness, and sensory loss are common features in 
most cases (red bracket). Cluster 6 with one case and Cluster 9 with one case are different because 
they manifest auditory and cognitive symptoms (Cluster 9) or ataxia, cognitive, hyperreflexia, 
hypertonia, seizures, and speech symptoms (Cluster 6). Cluster 6 is also of interest because it lacks
weakness and atrophy, two of the core symptoms of CMT. Cluster 2 (3 cases) is also interesting 
because subjects have hypertonia. Cluster 4, with 53 cases, is the most common pattern and shows 
a typical phenotype of gait, atrophy, deformity, hyporeflexia, weakness, and sensory symptoms, 
which is characteristic of CMT.

Figure 12. Modes of inheritance 
for the nine CMT clusters. Clus-
ter 8 is largely autosomal reces-
sive. Cluster 9 is X-linked reces-
sive. Clusters 5, 6, and 7 are au-
tosomal dominant inheritance.
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Figure 13. SHAP cluster summary plot for the 9 clusters derived from CMT dataset with  = 0.6. The SHAP plot shows which features 
contributed the most to the cluster configuration by cluster. Important features were protein length, chromosome, mode of inheritance 
(autosomal dominant and recessive), protein location (cytoplasm and plasma membrane), and certain phenotypes (auditory, cognitive, 
and hypertonia). The domain expert rated these features as highly biologically plausible. SHAP plots were created using the method 
of Lundberg et al. [46]. 




