
Multi-Party Cross-Chain Asset Transfers
André Augusto∗ Rafael Belchior∗† Thomas Hardjono‡ André Vasconcelos∗ Miguel Correia∗

∗INESC-ID and Instituto Superior Técnico †Blockdaemon Ltd ‡MIT Connection Science & Engineering

Abstract—With the growing interest in blockchain technology,
researchers and developers in different industries are shifting
their attention to creating interoperability mechanisms. Existing
mechanisms usually encompass asset exchanges, asset transfers,
and general data transfers. However, most of the solutions
based on these mechanisms only work for two permissionless
blockchains falling short in use cases requiring more complex
business relationships. Also, contrary to existing legacy systems,
there is little standardization for cross-chain communication.
Here we present MP-SATP, a resilient multi-party asset transfer
protocol built on top of the Secure Asset Transfer Protocol
(SATP). Furthermore, we enhance SATP’s crash recovery mech-
anism that directly influences the reliability and performance
of our solution. Using MP-SATP, we show how to perform N-
to-N resilient asset transfers in permissioned environments by
decoupling them into multiple 1-to-1 asset transfers. Our results
demonstrate that the latency of the protocol is driven by the
latency of the slowest 1-to-1 session; and how the usage of backup
gateways avoid the overhead caused by rollbacks. Enterprise-
grade environments such as supply-chain management systems
can immediately leverage our solution to perform atomic multi-
party asset transfers as shown by our use case.

Index Terms—asset transfer, cross-chain, interoperability,
multi-party, SATP

I. INTRODUCTION

Interest in blockchain technology has rose since the appear-
ance of Bitcoin [26] in 2008. Since then many other cryp-
tocurrencies and crypto-related projects were created mainly
in permissionless (public) networks. In the last few years
we have been witnessing a shift of attention to permissioned
(or private) blockchains, where enterprises spread out across
multiple industries have been adopting the technology [10].
Finance, healthcare, copyrights, and supply chain are some
examples [2], [12].

A blockchain can be defined as a distributed ledger, com-
posed of a sequence of blocks that are cryptographically
dependent on one another – in a way that if there is a change
in one block, all the succeeding blocks are invalidated [15].
It offers properties like immutability and decentralization.
Blockchains can differ in multiple aspects, being the most
obvious the security, privacy, and scalability guarantees.

Given the uniqueness of each industry, the design of a
blockchain solution must enable the full potential of the
service being offered to the respective clients [13]. What is
sometimes considered mandatory for a use case or industry
is not for another, which makes having only one blockchain
to rule the entire world impractical. One must work in inter-
operability mechanisms that provide the building blocks for
cross-blockchain communication.

Blockchain Interoperability (BI) fills this gap, allowing a
source chain to change the state of a target chain through

cross-chain transactions [10]. Several studies [7], [10], [32]
categorize the different interoperability modes into asset ex-
changes, where assets in different blockchains are swapped
between parties, such as atomic swaps; asset transfers, where
one asset is locked or burned (deleted) in the source chain and
a representation is created in the target one; and data transfers,
where data is copied across blockchains, for instance, through
the use of oracles [5].

The majority of interoperability solutions have been focused
on cross-chain communication between at most two parties;
there are either solutions between two entities and not ex-
tendable to multiple parties, or those that introduce multi-
party interoperability are only related to asset exchanges – via
atomic swap protocols [16], [20], [27]. The additional gap
identified in the literature is the lack of studies focused on
interoperability in permissioned networks. Existing solutions
are designed for permissionless networks given that all parties
need access to the internal state of all the others, which is
impossible unless explicit permission is given to them before
each swap (which is not practical). This represents a major
drawback for use-cases based on supply chain management
systems (e.g. Delivery vs Payment), or Central Bank Digital
Currencies [6].

We motivate the need for multi-party asset transfers using an
example based on supply-chain management systems, which
is further explored as a supply-chain use case in Section V.
In such an environment multiple business relationships can
be created. A supplier might have individual agreements with
different wholesalers – e.g. set a lower price because they buy
more units of the product – or even just between wholesalers,
where they partner with one another to tailor-make business
strategies or create products to be sold. Considering two
wholesalers and two producers. Each wholesaler issues cross-
chain transactions to the respective producer to pay for the
goods being shipped the other way around; additionally, we
assume the wholesalers depend on one another to build a
final product (e.g. different hardware parts are needed to build
a computer). One party might claim the unwillingness to
perform its transfer if the others do not go through as well. In a
supply chain network composed of these multiple subnetworks
(i.e. blockchains), containing complex dependencies between
parties, one must enable multi-party blockchain interoperabil-
ity in a way that N transfers of assets can be performed
atomically.

Having identified the different gaps in the literature, we
propose MP-SATP, a multi-party asset transfer protocol that
enables the transfer of multiple assets between N parties in
permissioned networks. MP-SATP is based on the Secure



Asset Transfer Protocol (SATP), a work in progress in the
scope of the Internet Engineering Task Force (IETF). SATP
is a gateway-based protocol, whose main objective is per-
forming cross-chain asset transfers while guaranteeing atom-
icity, fairness, and consistency in the participating ledgers.
It is also paving the way for standardization in cross-chain
communication, working towards making the interoperation
of heterogeneous blockchains immediate and consistent. This
appears as a key requirement in a time when interoperability
solutions are single-purpose, due to being built for specific
ledgers or use cases. To the best of our knowledge, this
is the first multi-party blockchain interoperability solution
focused on asset transfers between permissioned networks,
with an additional focus on cross-chain standardization. Given
that our proposal is built on top of SATP, we also design
a new primary-backup mode to enhance the gateway crash
recovery procedure, automatically enhancing the resiliency of
our solution.

This paper is structured in the following way. The back-
ground knowledge necessary for the understanding of this
paper is presented in Section II. We present MP-SATP in
Section III, and the primary-backup mode of SATP in Sec-
tion IV. A use case using promissory notes is presented next
in Section V. Section VI present the implementation and
evaluation details. Lastly, we present the Related Work and
draw our conclusions in Sections VII and VIII.

II. BACKGROUND

This section introduces the building blocks for our solution.
We walk through some of the most important blockchain
interoperability concepts, the gateway-based architecture for
interoperability; and finally SATP and its crash recovery
mechanism, an asset transfer protocol paving the way for
standardization in cross-chain communication.

A. Cross-Chain Asset Transfers

Currently, solutions that perform cross-chain asset transfers
follow roughly the same scheme: an asset is locked or burnt
in a source chain; and either some asset is unlocked in the
target chain, or a representation of the original one (it can be
some form of a wrapped asset) is minted there. The difference
between these approaches is tied to the concept of permanent
or temporary transfers – an asset is expected to be burnt in
the source chain, or remains locked until it is transferred back,
respectively. We represent a cross-chain transfer of an asset a
between party A and party B as A a→ B.

In this paper, we consider the case of permanent asset
transfers, where an asset is burnt in the source chain, and a
representation is created in the target one, with no obligation
of being brought back to the original.

B. Gateway-Based Blockchain Interoperability

Hardjono T. [18] proposes a singular perspective when
thinking about interoperability architectures. An analogy be-
tween the early days of the Internet and the adoption of
blockchains is made, which can be modeled by applying the

2

1 13

Client App

Gateway 1

API Type-1

A
P

I 
Ty

p
e

-2

A
P

I 
Ty

p
e

-3

Gateway 2

API Type-1

A
P

I 
Ty

p
e

-3

A
P

I 
Ty

p
e

-2

SATP
DLT


Network 1
DLT


Network 2

Client App
off-chain 

communication
2

Fig. 1. Gateway-based architecture for blockchain interoperability. (1) Gate-
ways have read and write access to a network; (2) Client applications can
request gateways to perform asset transfers; (3) Gateways initiate sessions
with other gateways to run SATP, a gateway-to-gateway protocol.

same fundamental goals. At the time, the solution proposed to
scale up and interconnect different networks was to implement
border gateway routers, which would provide an entry point
to each network. This new device would have distinct commu-
nication methods depending on if it was intra- or inter-domain
routing. Mapping the concept to blockchains, a gateway-
based blockchain interoperability architecture, assumes one
or more gateways deployed in front of each network that
mediates traffic to/from each blockchain the same way routers
forward data packets between networks. Gateways can there-
fore be thought of as facilitators for performing cross-chain
transactions. Gateways are owned by a certain entity that is
legally responsible for them, abiding by regulatory compliance
concerning the assets being transferred. Hence, we assume
gateways are trusted entities, which makes the gateway-based
architecture suitable for permissioned environments.

Figure 1 depicts the gateway architecture. There are three
different APIs defined for a gateway: (1) one that is reached by
other gateways, where gateway-to-gateway protocols are run;
(2) a client-specific API to receive requests from the respective
clients; and (3) a DLT-specific one, to interact with the
ledger in which it is deployed. A client is always responsible
for initiating the execution of a gateway-to-gateway protocol
between its respective gateway and the corresponding one.
During the execution of such protocol, transactions are issued
to the underlying ledgers.

C. Secure Asset Transfer Protocol (SATP)

The Secure Asset Transfer Protocol (SATP – previously
called Open Digital Asset Protocol) [19] is currently in
specification in the scope of the Internet Engineering Task
Force (IETF). It appears as the “first cross-chain communi-
cation protocol handling multiple digital asset cross-border
transactions by leveraging asset profiles (the schema of an
asset) and the notion of gateways.” [9]. The main goal of the
IETF working group is for SATP to become a standard in the
communication across different domains - being them DLTs,
distributed databases, legacy systems and so on.

In SATP, clients instantiate gateway-to-gateway interactions
to perform asset transfers. Considering a source gateway
GS , and a recipient gateway GR, an SATP session can be
represented as GS

satp→ GR.
There are four phases in the protocol:
0) Identity and Asset Verification Flow: gateways mutually

verify their identities and the identities of their owners,



ensuring that both gateways are valid (if gateways use
trusted hardware this can be performed through attesta-
tion techniques);

1) Transfer Initiation Flow: gateways exchange the com-
munication terms and rules, making verifications re-
garding their jurisdictions and the asset that is being
transferred;

2) Lock-Evidence Verification Flow: the asset being trans-
ferred is locked, and a piece of evidence is presented to
the other party;

3) Commitment Establishment Flow: the involved gateways
commit the changes and terminate the asset transfer.
The commitment corresponds to the deletion of the
asset in the source blockchain, and the creation of a
representation in the target blockchain.

Note that all communication is done through a trusted com-
munication channel using, for example, TLS.

D. SATP Crash Recovery Protocol

HERMES [9] proposed the crash recovery mechanism that
allows any party running SATP to recover from a crash when
exchanging messages to guarantee consistency across both
blockchains. It is based on the logs generated before and after
each sent and received message. Currently, these protocols are
focused only on failures by crashing and are not concerned
with Byzantine behavior.

According to the authors, when a crash occurs, the Recovery
Procedure needs to be triggered by the recovered gateway or
by a backup one. Therefore, there are two possibilities when
a gateway crashes: self-healing: the crashed gateway recovers
and re-establishes communication with the other gateway; or
a primary-backup mode: if the crashed gateway does not
recover within a bounded time δt, a backup gateway resumes
the execution of the protocol. The existing specification only
mentions the necessity of such procedures, not proposing
any concrete solution. We, therefore, explore in section IV
a solution to the problem.

On the other hand, if there is no response from a gateway
(or a backup) within δrollback, s.t. δt < δrollback, there must
be a rollback to ensure termination in a consistent state. A
rollback is equivalent to issuing transactions with a contrary
effect to the ones already issued [9]. When the crashed gateway
is finally alive, it runs the Recovery Procedure, in which it
learns the rollback performed by the other gateway, rolling
back as well.

III. MP-SATP: MULTI-PARTY CROSS-CHAIN ASSET
TRANSFERS

In this section, we present the building blocks for MP-SATP,
a multi-party asset transfer protocol built on top of SATP.
MP-SATP performs N-to-N transfers of assets through their
decomposition in coordinated 1-to-1 SATP transfers.

A. General Assumptions

In this section we present the general assumptions in which
we model MP-SATP:

• Gateways abide by regulatory compliance concerning the
assets being transferred, being suitable for permissioned
environments. In case of disputes, third-party audit enti-
ties can request asset transfer evidence.

• The nodes of each blockchain comply with the consensus
protocol of the networks they belong to. We assume
blockchains are secure – i.e. any valid transaction broad-
cast will eventually be added to the blockchain, and that
every correct node will eventually converge to a single
truth.

• For a successful transfer, all clients involved in a multi-
party asset transfer have previously agreed on transferring
their assets, and authorize the respective gateway to act
on behalf of them (an example is the use of the approve()
function in ERC-201 token standard for smart contracts).

• We assume the latency of any message is bounded by δt.
This means that if no message is received within δt, it is
assumed that a gateway has crashed.

B. Notation

Here we define the notation used to model our protocol.
Furthermore, hereafter the concepts are presented based on an
example, which is depicted in Figure 2. Let us consider a set
of clients C = {C1, C2, C3, C4} that want to engage in a multi-
party asset transfer. Each client Ci has a wallet in blockchain
Bi, thus, we consider blockchain B1, B2, B3, and B4. For
simplicity, but without loss of generality, we only consider
two transfers between elements of C, C1

a1→ C2 and C3
a2→ C4;

these represent the transfer of asset a1 from C1 to C2, and the
transfer of asset a2 from C3 to C4. The goal is to ensure the
atomicity of both transfers – i.e. either both succeed or both
fail.

We also leverage gateways as entry points for the underly-
ing blockchains, therefore, we denote as Gi a gateway with
read and write access to Bi, that will be reached by Ci to
initiate cross-chain transfers. There may be multiple gateways
connected to the same network which are used to parallelize
cross-chain transactions and can also serve as backups to one
another. We represent a backup gateway for G1 as G′1 (not
represented in Figure 2).

C. System Model

As mentioned in Section III-A, clients are assumed to agree
on the assets being transferred off-chain (e.g. match orders in
an off-chain forum), building a graph D1 = (V1, E1), where V1
is a finite set of vertexes, and E1 is a finite set of edges between
elements of V1. V1 is the set of parties (clients C) involved in
the multi-party cross-chain asset transfer. Additionally, E1 is
the list of cross-chain asset transfers between elements of V1.
Each cross-chain transfer is a tuple (CS , CR, a), where CS is
the source client, CR is the recipient client, and a is the profile
of the asset being transferred. In Figure 2, E1 = {(C1, C2, a1),
(C3, C4, a2)}.

1https://ethereum.org/en/developers/docs/standards/tokens/erc-20,
accessed on December 18, 2022

https://ethereum.org/en/developers/docs/standards/tokens/erc-20


Fig. 2. Example of multi-party asset transfers between clients (C1, C2, C3,
C4) through the respective gateways. Asset a1 is initially owned by C1 and
a2 by C3

The communication between clients, and consequently, be-
tween blockchains must be enabled through an interoperability
mechanism [7]. In this solution, we leverage gateways as this
component. Given that gateways run a gateway-to-gateway
protocol, a mapping between each client and their respective
gateways must exist. Therefore, in the gateway layer, the graph
D1 must be translated into a graph D2 = (V2, E2) where V2
is the set of gateways that represent each client, and E2 is the
previous list of cross-chain asset transfers concatenated with
the respective gateways. This time, each cross-chain transfer
is a tuple (CS , CR, GS , GR, a), where CS is the source client,
CR is the recipient client, GS is the source gateway, GR is
the recipient gateway, and a is the profile of the asset being
transferred. In the given example, one would have E2 = {(C1,
C2, G1, G2, a1), (C3, C4, G3, G4, a2)}.

Note that the assets being transferred in a single multi-party
cross-chain asset transfer session can be heterogeneous; they
might concern different fungible assets or even non-fungible
ones.

D. Protocol

MP-SATP is depicted in Figure 3. A client in C is re-
sponsible for sending the graph D2 to all gateways in V2.
A leader election protocol is initiated between all gateways to
elect a gateway to manage the set of transfers specified in E2.
Considering our model we leverage a simple leader election
algorithm that uses the gateway identifier as a tiebreaker. The
gateway with the highest ID is elected, and is therefore called
the coordinator.

The core of the protocol, after the leader election, is
divided into two phases, assimilating with two-phase commit
protocols: the prepare and completion phases. For clarity, we
divide the completion phase into the commit and rollback
phases according to the result of the first one.

1) Prepare Phase: The coordinator is responsible for ini-
tiating an MP-SATP session with every source gateway GS in
the asset transfers list E2. The session is initiated through a
mp-satp-prepare message. In the example depicted in Figure 2,
whoever is elected as the coordinator sends a mp-satp-prepare
to G1 and G3, the source gateways in each cross-chain asset
transfer.

Return

1. <..., mp-satp-prepare, a1>
1. <..., mp-satp-prepare, a2>

3. <...mp-satp-prepare-ack, a1>
3. <...mp-satp-prepare-ack, a2>

4. <..., mp-satp-commit, a2>

6. <..., mp-satp-commit-ack, a2>
6. <..., mp-satp-commit-ack, a1>

4. <..., mp-satp-commit, a1>

2. SATP (UNTIL LAST COMMIT)

LEADER ELECTION

5. SATP COMMIT / ROLLBACK

Fig. 3. MP-SATP session initiated by a client Ci. In this example we consider
G1

satp→ G2 and G3
satp→ G4, where G4 was elected as the coordinator.

This first message includes the data necessary for each
gateway to start its SATP 1-to-1 session with the corresponding
counterparty gateway. This assimilates to the message sent
by clients in a normal SATP 1-to-1 session when initiating
a gateway-to-gateway interaction. Hence, after receiving the
message, G1 and G3 initiate an SATP session with G2 and
G4, respectively. This can be translated into G1

satp→ G3 and
G2

satp→ G4. At this point we are under the assumptions of
SATP and its crash recovery mechanism, i.e. if there is a crash
in one gateway the crash recovery procedure is executed, or in
the worst case scenario the rollback. These gateways run SATP
only until the end of phase 2, the Lock-Evidence Verification
Flow. At this point, every ai in E2 should be locked in the
corresponding source blockchains, which marks the end of
the prepare phase. If everything goes well until this stage,
gateways are ready to commit. To indicate their readiness to
proceed to the next phase, each source gateway in every SATP
session acknowledges the coordinator, which gathers a set of
mp-satp-prepare-ack responses with a boolean indicating the
successfulness of this first stage. If every gateway responds
positively, the commit phase is initiated. Otherwise, the roll-
back phase is triggered.

2) Commit Phase: If MP-SATP reaches the commit phase,
every SATP session is ready to commit. Committing in a
SATP session corresponds to deleting the locked asset in the
source chain, and creating a representation of that asset in the
target one. Therefore, the coordinator sends a mp-satp-commit
message to every client gateway in E2. In each SATP session,
the third (and last) phase is run. After the completion, a final
mp-satp-commit-ack message is sent by all source gateways
in each SATP session to the coordinator stating the success of
the cross-chain transfer.

Upon receiving a success message from every 1-to-1 SATP
session, the coordinator gateway can return to the client. Note
that the return can be done in a previous stage according to
the consistency model required by the client.

3) Rollback Phase: When MP-SATP reaches the rollback
phase, at least one SATP session is not ready to commit.



This can be either because of an issue when issuing the lock
transaction, or any disagreement between gateways when run-
ning SATP. In this situation, the coordinator is responsible for
sending a mp-satp-rollback message, triggering the rollback
in each SATP session. This encompasses issuing transactions
with the contrary effect of the ones already issued (e.g. if
the asset is locked in the source blockchain, a transaction
unlocking the asset must be issued).

When MP-SATP reaches the rollback phase, at least one
SATP session is not ready to commit. This might be due
to a revert on the lock transaction or a dispute between
gateways while performing SATP. In this case, the coordinator
is in charge of delivering a mp-satp-rollback message, which
initiates the rollback in each SATP session. This includes
issuing transactions that have the inverse effect of those that
have previously been issued (e.g., if the asset was previously
locked in the source blockchain, a transaction unlocking the
asset must be issued guaranteeing a consistent state across
blockchains).

The communication between the coordinator gateway and
every other gateway is done through the exchange of MP-
SATP messages, whose format is specified in the following
box. Moreover, every message is encrypted and signed with
gateways keys to ensure confidentiality and integrity, respec-
tively.

MP-SATP Message Format

1) Version: MP-SATP protocol version;
2) Message Type: each message has a specified

format (e.g., urn:ietf:mp-satp:msgtype:mp-satp-
prepare);

3) SessionID: unique identifier (UUIDv2) repre-
senting an MP-SATP session;

4) MP-SATP Phase: MP-SATP phase (prepare,
commit, rollback);

5) Sequence Number: an increasing counter that
uniquely represents a message from a session;

6) Coordinator Gateway ID: the public key of the
coordinator;

7) Recipient Gateway ID: the public key of the
gateway interacting with the coordinator;

8) Payload: any necessary payload including the
profiles of the assets subject to transfer;

9) Message Hash: the cryptographic hash of this
message;

10) Signature: the signature of this message;

IV. ENHANCING SATP CRASH RECOVERY

Given that our protocol is built on top of SATP, we also
propose an enhancement to its crash recovery mechanism, di-
rectly impacting the guarantees of our solution. HERMES [9]
proposes a crash fault-tolerant protocol for SATP. The authors
of the paper assume that any gateway recovers from crashes
within a defined bound of time, but in case of severe malfunc-
tions (e.g. hardware failure), it might not be possible to recover

within the defined amount of time – jeopardizing the guarantee
of atomicity. We remove the assumption that no gateway will
ever crash indefinitely, and introduce backup gateways that are
capable of resuming the execution of protocol on behalf of the
crashed one. Hence, we propose an extension to the existing
protocol, where the main goal is to define how a backup
gateway can build trust with the counter party’s gateway to
resume the execution of the protocol.

A. Data Replication

The first step to ensure that a gateway can resume the
execution of the protocol is to be up-to-date with the latest
operations – i.e., it has access to the logs of other SATP
executions. There are multiple options concerning the log
storage infrastructure: centralized (e.g., locally or in the cloud)
or decentralized (e.g., an IPFS network). Either way, given
the possibility of dealing with private information, one must
ensure data is not stored in cloud providers or IPFS networks
unencrypted. To avoid the leakage of this information we
leverage a primary-secondary scheme in which the primary
gateway replicates log entries to all the backup gateways, and
only the hashes of the logs are published in another (possibly
public) data structure for integrity checks and, eventually, for
accountability.

B. Protocol Description

To demonstrate the solution we assume only one SATP
session, given by G1

satp−→ G3. The proposed enhancement
is based on X.509 certificates, therefore, we consider that
every gateway has a valid X.509 certificate that was is-
sued by its owner – the entity legally responsible for the
gateway. Moreover, in the extensions field of the certificate,
there is a list containing the hash of the authorized backup
gateways. Assuming G′1 and G′′1 a backup gateways for G1,
the extensions field of G1’s X.509 certificate is given by
LG1

= [H(Cert(G′1)),H(Cert(G′′1 ))], where H(m) represents
the cryptographic hash of m, and Cert(G) represents gateway
G’s X.509 digital certificate.

As mentioned in Section III-A, if G1 does not send any mes-
sage for δt, G′1 assumes the crash of G1. To avoid rollbacks, G′1
contacts G3 before δrollback expires, to resume the execution
of the open SATP session. The main issue here is how G3
knows that G′1 is authorized to replace the G1 and resume the
execution of the protocol. The solution proposed is based on
three validations conducted by G3 concerning the certificates
of the gateways:

1) Validate G′1 certificate validity by running a certification
path validation algorithm [14], which includes validating
all the intermediate certificates up to a trusted root.

2) To ensure G′1’s ability and permission to replace G1,
G3 needs to verify if the parent certificate of both G1
and G′1 certificates is the same. In other words, if both
certificates were issued by the same institution, which
proves they belong to the same legal entity.

3) Verify if G′1’s certificate hash belongs to the list specified
in G1’s certificate extensions [14] which indicates a set



of gateways that are eligible to be the backup gateway in
the case of a crash – i.e., H(Cert(G′1)) ∈ LG1

. This is set
by each entity when issuing a certificate for a gateway.

V. USE CASE USING PROMISSORY NOTES

In this section, we present a simple supply chain use case
that would benefit from the implementation of our proposals,
where multiple parties engage in a multi-party asset transfer.

A promissory note can be defined as a promise “made
by one or more persons to another, engaging to pay a
certain sum of money subject to certain requirements as
to the promise” [24]. Replacement bills or notes issued by
central banks can be substituted and must be signed by the
promisor [28]. Recent advances in the financial industry have
focused on the digitalization of promissory notes and their
integration into blockchains, given that paper promissory notes
are hard to track and require hand signatures [3], [8]. Further-
more, the concept of promissory notes in the interoperability
of the blockchain-based on gateways was already proposed
by [8], [9].

As we have been remarking through this paper, gateway-
based interoperability solutions fit in the permissioned en-
vironment of enterprise solutions. Gateways are identified
entities within an organization and comply with the existing
regulations/legal frameworks imposed by the organization’s
home jurisdiction, making them suitable for this use case.
We therefore, present an example where a gateway-to-gateway
protocol provides the building blocks for inter-jurisdiction
asset transfers.

We leverage the example provided by [8] and extend it
to realize an N-to-N atomic cross-jurisdiction asset transfer,
using MP-SATP. The base example consists of two entities, a
Producer (P) that sells goods to a Wholesaler (W). P issues an
invoice for value V to W, which should be paid in a maximum
of 90 days. Since P might not want to wait 90 days for the
payment, it can request a promissory note stating that W will
pay V to P in 90 days. This promissory note can now be sold
by P to a third party.

Gateways can facilitate the transfer of promissory notes
between different jurisdictions while abiding by the regulations
in each end. Given this base illustration, we extend it to
demonstrate MP-SATP in a similar supply chain example as
depicted in Figure 4. Two wholesalers – W1 and W2 – form a
consortium that, among other products sold individually, sells
products in partnership. W1 and W2 depend on the products
sold by two producers – P1 and P2 – respectively.

When P1 sells goods to W1, P1 issues an invoice for value
V1, and requests a promissory note PN1 stating the debt. The
same happens between P2 and W2, with respect to a value V2.

Given that W1 and W2 depend on one another to sell their
final products, W1 might not want to go into debt (buying and
issuing a PN1 to P1) unless P2 also sells the necessary amount
of goods to W2. We can therefore represent this problem as
two independent asset transfers that need to be performed
atomically. The problem can be formulated as a set of transfers

Producer 1 Wholesaler 1
Promissory Note 1

Depend on one 
another for 

delivery of final 
product

Promissory Note 2
Producer 2 Wholesaler 2

MP-SATP coordinates both transfers

SATP sessionApp communicationOff-Chain communication

Fig. 4. Producer 1, Producer 2, Wholesaler 1, and Wholesaler 2 engaging in
a multiparty asset transfer using MP-SATP.

– W1
PN1−−→ P1, and W2

PN2−−→ P2 – that must be atomic, either
are both successful, or both failed.

If we consider GP1 as P1’s gateway, GP2 as P2’s gateway,
GW1 as W1’s gateway, and GW2 as W2’s gateway we can
leverage MP-SATP to perform the multi-party asset transfers.
The problem can, therefore, be formulated as GW1

satp−→ GP1

and GW2
satp−→ GP2 that must be atomic.

MP-SATP makes possible the execution of multi-party
cross-jurisdiction asset transfers.

VI. IMPLEMENTATION & PERFORMANCE EVALUATION

We implement MP-SATP in Hyperledger Cacti [25] in the
form of a business logic plugin. We also develop the core
SATP plugin and its crash recovery mechanism, given that our
work is dependent on them. The total implementation reaches
approximately 30k lines (including tests) of code and is
expected to be merged into the main code base of the project in
a near future. Furthermore, we present an initial evaluation of
our proposals, including the overall latency of MP-SATP with
asset transfers between Hyperledger Fabric and Hyperledger
Besu networks. Finally, we show the performance gained
through our primary-backup solution.

A. Hyperledger Cacti

Cacti is a project under the Hyperledger ecosystem. It allows
users to make an adaptable and secure integration of different
blockchains and provides a pluggable architecture that enables
the execution of ledger operations across as many blockchains
as needed. It leverages ledger connectors that serve as APIs
to the underlying ledgers. One major advantage of using Cacti
is that it is capable of handling the integration of both public
and private blockchains. At the date of writing, the project has
nearly 1.5 million lines of code, 250 stars, and 192 forks on
GitHub.

B. Architecture

We present a simplified architecture of the solution in
Figure 5. Cacti offers support for API Servers, that receives a
list of plugins – a plugin registry – and exposes the endpoints
provided by those plugins. We assume client communication is
performed off-chain and only communicates to the respective
gateways the final graph of asset transfers. In this imple-
mentation, each gateway is represented by a business logic
plugin (SATP plugin) that has multiple connections: 1) the
local database to store logs generated by the execution of the



CLIENT APP CLIENT APP

CACTUS NODE 2

HYPERLEDGER 
BESU

HYPERLEDGER 
BESU


CONNECTOR

HYPERLEDGER 
FABRIC


CONNECTOR

ODAP

PLUGIN

ODAP

PLUGIN

MP-SATP

PLUGIN

MP-SATP

PLUGIN

LOCAL

DATABASE

LOCAL

DATABASE

IPFS

CONNECTOR

IPFS

CONNECTOR

CACTUS NODE 1

HYPERLEDGER 
BESU

IPFS

Fig. 5. MP-SATP and SATP Implementation architecture in Hyperledger
Cacti. We represent in green our contributions. We leverage the Hyperledger
Besu connector and the IPFS connector available in Cacti.

protocol; 2) an IPFS connector to an IPFS network, which is
used as decentralized log storage to guarantee availability and
integrity of the logs (only hashes of the logs are published to
ensure confidentiality and integrity); 3) ledger connectors that
make possible the interaction with the underlying blockchains
in the form of transactions. Each gateway is connected to
a different blockchain connector, that reaches a different
blockchain.

We developed both the SATP and MP-SATP plugin. The
latter has a direct connection to the SATP plugin that initiates
1-to-1 transfers. The MP-SATP plugin contains the logic for
every stage of the protocol specified in Section III, and its
algorithm is depicted in Algorithm 1.

Algorithm 1: MP-SATP algorithm
Input: E2
Result: True
numberTransfers← E2.length()
prepareResponses← [0..numberTransfers];

foreach (i, t) ∈ E2 do
prepareResponses[i]← t.GS .initSATPAsync(t)

wait() ; // wait for every response
for i← 0 to numberTransfers do

if prepareResponses[i] ̸= true then
foreach t ∈ E2 do

t.GS .rollbackSATPAsync(t);
wait() ; // wait for every rollback
return False;

foreach t ∈ E2 do
t.GS .commitSATPAsync(t)

wait() ; // wait for every commit
return True;

C. Testing Environment

All tests were run in a Google Cloud Compute Engine VM
instance composed of 4 vCPUs, and 20 GB of memory, having
a Boot Disk mounted using an Ubuntu 20.04 image, and a
100 GB SSD. As previously mentioned in Section VI, we
leverage a Besu and a Fabric connector in Cacti. Hence, for
testing purposes, we utilized the respective all-in-one Docker
images – Cacti Fabric All-In-One and Cacti Besu All-In-One –

 0

 5

 10

 15

 20

 25

 30

a) SATP 1 b) MP-SATP 1 c) SATP 2 d) MP-SATP 2

La
te

n
cy

 (
se

co
n
d

s)

Phase 1
Phase 2
Phase 3

Prepare Phase
Commit Phase

Fig. 6. (a) latency of running a single SATP session between Besu networks;
(b) latency of running MP-SATP transferring 5 assets between Besu networks;
(c) latency of running a single SATP session between a Fabric and a Besu
network; (d) latency of running MP-SATP transferring 5 assets: 4 between
Besu networks and 1 between a Fabric and a Besu network.

available in Docker Hub. Every result presented in this section
is the average of 100 independent runs.

D. MP-SATP Evaluation

We perform the evaluation of the protocol in two experi-
ments using at most 10 different networks given the constraints
of running multiple blockchains in a single machine. We start
by creating an MP-SATP session composed of 5 asset transfers
between Hyperledger Besu networks/gateways. Figure 6 (a)
depicts the latency of one SATP asset transfer between two
different Besu networks; Figure 6 (b) depicts the latency of
one MP-SATP session composed of 5 SATP asset transfers
between different Besu networks. The MP-SATP session has
a slight overhead compared to the single 1-to-1 session, that
is caused by the communication between the coordinator
and every participant. The prepare phase in MP-SATP takes
around one more second than phases 1 and 2 together in
a single SATP session because the coordinator waits for all
SATP sessions to return before sending the mp-satp-commit
message. This indicates that the latency will always be tied to
the latency of the slowest SATP session – i.e., with the highest
latency.

In the second experiment, we replaced one of the 5 SATP
transfers between Besu networks with an asset transfer be-
tween Fabric and Besu, to observe the change in the overall
latency. Given that transactions take longer to be confirmed in
a Fabric network (as observed in Figure 6 (c)), the latency in
this MP-SATP session is also expected to increase. In Figure 6
(d) we note that the overall latency is similar to a single Fabric
to Besu asset transfer, even though there are still 4 transfers
between Besu networks.

These findings lead us to the predicted conclusion that
the latency of such a protocol is strongly related with the
confirmation times of the ledgers – i.e., the SATP session with
the highest latency drives the total latency of an MP-SATP
session. Formally, the latency of an MP-SATP session is given

http://ghcr.io/hyperledger/Cacti-fabric-all-in-one
http://ghcr.io/hyperledger/Cacti-besu-all-in-one


 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

SATP MP-SATP

La
te

n
cy

 (
se

co
n
d

s)

Phase 1
Phase 2

Phase 3 (until last message)
Timeout (agreed previously)

Rollback procedure (Target Gateway)
Recovery and Rollback procedure (Source Gateway)

Backup gateway gets to know primary crash
Recovery Procedure (conducted by backup)

Fig. 7. Latency of an SATP session having a source gateway crash. When
our proposal is not implemented both gateways rollback – i.e., every action
is reverted. When using a backup gateway, it gets to know the crash of the
original one and resumes the execution of the protocol – i.e., the asset is
successfully transferred to the target chain.

by max([Lat(E12 ), Lat(E22 ), ..., Lat(En2 )]), where Lat(E i2) is
the latency of the ith cross-chain transfer in E2.

E. SATP’s Crash Recovery Enhancement

To understand the importance of our contribution to SATP’s
crash recovery mechanism, through the primary-backup mode,
we analyze the worst-case scenario with and without our
solution. In the worst-case scenario, there is a crash at the
end of SATP’s last phase. Firstly, we ran SATP without our
solution, hence, we simulate the crash of a source gateway and
let the target gateway timeout (set to 5 seconds), triggering
the rollback procedure. When the crashed gateway recovers,
it learns the rollback performed by the other gateway through
the recovery procedure and rolls back as well. In the sec-
ond experiment we simulate the crash of a source gateway,
however, this time we ensure there is a backup gateway that
resumes the execution of the protocol within δrollback. This
one only needs to run the recovery procedure and continue
the protocol execution. Given that we simulate the crash in the
last messages exchanged by gateways, as soon as the recovery
procedure terminates, the protocol terminates as well. Without
our proposal, the protocol terminates as it started (because
all transactions were reverted) and takes, on average, around
46.3 seconds. With backup gateways no rollback shall ever be
triggered due to gateway crashes and the asset is successfully
transferred to the target chain taking, on average, 25 seconds.
The results are depicted in Figure 7.

VII. RELATED WORK

Here we present similar work that has been done to inter-
operate multiple blockchains.

Polkadot [29] and Cosmos [22] enable the interconnection
of different chains through the Cross-Chain Message Passing
Protocol (XCMP) [4], and the Inter-Blockchain Communi-
cation protocol (IBC) [1], respectively. XCMP enables the
interoperation with more than two heterogeneous blockchains,

however, IBC can only interoperate with up to two hetero-
geneous blockchains. These solutions can only interoperate
blockchains in the same ecosystem which limits the commu-
nication with the rest of the world.

Herlihy [20] proposed multi-party atomic cross-chain
swaps, using HTLCs; however, it requires some assumptions.
A cross-chain swap is modeled as a strongly-connected di-
rected acyclic graph, whose vertexes are parties and arcs are
proposed asset transfers. The solution requires 1) a specific
deployment order of smart contracts; 2) there can not be a
cycle in the graph of transactions; 3) and most importantly,
it cannot guarantee that an honest party does not lose its
assets in case of a temporary crash. ACW3N [31] appears
as a solution for some of these issues with the introduction
of a witness network where proofs are published, and where
the global state is stored which can only be changed with a
multi-signature from all involved parties. Lilac [16] proposes
a multi-party asset exchange scheme, where assets can be
locked in parallel. These solutions do not seamlessly work
in permissioned blockchains unless access to those chains has
been granted beforehand to every party involved in the swap.

Luo et al. [21] suggest an inter-blockchain architecture
for routing management and transfer of messages between
blockchains that requires a third-party blockchain. Fyn et
al. [17] propose Move that enables the transfer of smart
contracts between blockchains built on top of the EVM, by
leveraging 2PC; however, it only focuses on 1-to-1 interac-
tions. Wang et al. [27] also leverage 2PC to conduct transac-
tions across N blockchains, however, the safety and liveness
properties are not yet theoretically proved. If the coordinator
crashes, atomicity is only guaranteed through the assumption
that eventually a new coordinator is elected. Reference [27]
presents a centralized component that performs actions in
multiple blockchains based on a 2PC.

Some solutions also leverage TEEs [11], [23], [30] to per-
form cross-chain transactions, but they are limited to only two
blockchains. These solutions provide more security guarantees
in the relayers but lack scalability guarantees due to the
physical restrictions imposed by the trusted hardware.

VIII. CONCLUSION

Because there are no solutions for the multi-party asset
transfer problem focused on permissioned environments, this
paper proposes MP-SATP, a protocol based on a 2PC to
ensure coordination between the various entities and built on
top of the Secure Asset Transfer Protocol (SATP). MP-SATP
launches and coordinates multiple SATP sessions on multiple
assets agreed upon by the clients. Additionally, we propose an
improvement to the existing SATP’s crash recovery procedure,
in the primary-backup mode. From the implementation and
evaluation of our proposals, we show that MP-SATP guar-
antees atomicity and finality properties. Additionally, with the
use of gateways, one can guarantee the auditability of transfers
of assets performed between gateways and compliance with
legal frameworks. We also present a supply chain use case
that would benefit from this new proposals.



REFERENCES

[1] Inter-blockchain communication protocol. Technical report. [Online].
[2] Blockchain challenges and opportunities: A survey. Int. J. Web Grid

Serv., 14(4):352–375, jan 2018.
[3] Electronic promissory notes on blockchain. https://www.gov.pl/

attachment/e3ff4c9d-72f0-4ae4-89ac-f952f8ea666f, 2018. [Online].
[4] Cross-consensus message format (xcm) · polkadot wiki. Technical

report, 2020. [Online].
[5] H. Al-Breiki, M. H. U. Rehman, K. Salah, and D. Svetinovic. Trust-

worthy blockchain oracles: Review, comparison, and open research
challenges. IEEE Access, 8:85675–85685, 2020.

[6] A. Augusto, R. Belchior, A. Vasconcelos, I. Kocsis, and G. László.
CBDC bridging between Hyperledger Fabric and permissioned EVM-
based blockchains. 1 2023.

[7] R. Belchior, L. Riley, T. Hardjono, A. Vasconcelos, and M. Correia.
Do you need a distributed ledger technology interoperability solution?
Distrib. Ledger Technol., sep 2022. Just Accepted.

[8] R. Belchior, A. Vasconcelos, M. Correia, and T. Hardjono. Enabling
cross-jurisdiction digital asset transfer. In 2021 IEEE International
Conference on Services Computing (SCC), pages 431–436, 2021.

[9] R. Belchior, A. Vasconcelos, M. Correia, and T. Hardjono. Hermes:
Fault-tolerant middleware for blockchain interoperability. Future Gen-
eration Computer Systems, 129:236–251, 2022.

[10] R. Belchior, A. Vasconcelos, S. Guerreiro, and M. Correia. A survey
on blockchain interoperability: Past, present, and future trends. ACM
Comput. Surv., 54(8), oct 2021.

[11] I. Bentov, Y. Ji, F. Zhang, L. Breidenbach, P. Daian, and A. Juels.
Tesseract: Real-time cryptocurrency exchange using trusted hardware.
In Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’19, page 1521–1538, New York, NY,
USA, 2019. Association for Computing Machinery.

[12] U. Bodkhe, S. Tanwar, K. Parekh, P. Khanpara, S. Tyagi, N. Kumar,
and M. Alazab. Blockchain for industry 4.0: A comprehensive review.
IEEE Access, 8:79764–79800, 2020.

[13] W. Chen, Z. Xu, S. Shi, Y. Zhao, and J. Zhao. A survey of blockchain ap-
plications in different domains. In Proceedings of the 2018 International
Conference on Blockchain Technology and Application, ICBTA 2018,
page 17–21, New York, NY, USA, 2018. Association for Computing
Machinery.

[14] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and W. Polk.
Internet x.509 public key infrastructure certificate and certificate revo-
cation list (crl) profile. RFC 5280, RFC Editor, May 2008.

[15] M. Di Pierro. What is the blockchain? Computing in Science &
Engineering, 19(5):92–95, 2017.

[16] D. Ding, B. Long, F. Zhuo, Z. Li, H. Zhang, C. Tian, and Y. Sun. Lilac:
Parallelizing atomic cross-chain swaps. In 2022 IEEE Symposium on
Computers and Communications (ISCC), pages 1–8, 2022.

[17] E. Fynn, A. Bessani, and F. Pedone. Smart contracts on the move. In
2020 50th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), pages 233–244, Los Alamitos, CA, USA,
jul 2020. IEEE Computer Society.

[18] T. Hardjono, A. Lipton, and A. Pentland. Toward an interoperability
architecture for blockchain autonomous systems. IEEE Transactions on
Engineering Management, 67(4):1298–1309, 2020.

[19] M. Hargreaves, T. Hardjono, and R. Belchior. Secure Asset Transfer
Protocol. Internet-Draft draft-hargreaves-sat-core-01, Internet Engineer-
ing Task Force, Nov. 2022. Work in Progress.

[20] M. Herlihy. Atomic cross-chain swaps. In Proceedings of the 2018
ACM Symposium on Principles of Distributed Computing, PODC ’18,
page 245–254, New York, NY, USA, 2018. Association for Computing
Machinery.

[21] L. Kan, Y. Wei, A. Hafiz Muhammad, W. Siyuan, L. C. Gao, and H. Kai.
A multiple blockchains architecture on inter-blockchain communication.
In 2018 IEEE International Conference on Software Quality, Reliability
and Security Companion (QRS-C), pages 139–145, 2018.

[22] J. Kwon and E. Buchman. Cosmos whitepaper, 2019.
[23] Y. Lan, J. Gao, Y. Li, K. Wang, Y. Zhu, and Z. Chen. Trustcross:

Enabling confidential interoperability across blockchains using trusted
hardware. In 2021 4th International Conference on Blockchain Technol-
ogy and Applications, ICBTA 2021, page 17–23, New York, NY, USA,
2022. Association for Computing Machinery.

[24] D. M. Lobl. Promissory notes, 2013.

[25] H. Montgomery, H. Borne-Pons, J. Hamilton, M. Bowman, P. Somogy-
vari, S. Fujimoto, T. Takeuchi, T. Kuhrt, and R. Belchior. Hyperledger
cactus whitepaper.

[26] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2008.
[27] X. Wang, O. T. Tawose, F. Yan, and D. Zhao. Distributed nonblocking

commit protocols for many-party cross-blockchain transactions, 2020.
[28] J. S. Waterman. The promissory note as a substitute for money. Minn.

L. Rev., 14:313, 1929.
[29] G. Wood. Polkadot: Vision for a heterogeneous multi-chain framework.

White Paper, 21, 2016.
[30] Z. Yin, B. Zhang, J. Xu, K. Lu, and K. Ren. Bool network: An open,

distributed, secure cross-chain notary platform. IEEE Transactions on
Information Forensics and Security, 17:3465–3478, 2022.

[31] V. Zakhary, D. Agrawal, and A. El Abbadi. Atomic commitment across
blockchains. Proc. VLDB Endow., 13(9):1319–1331, jun 2020.

[32] A. Zamyatin, M. Al-Bassam, D. Zindros, E. Kokoris-Kogias, P. Moreno-
Sanchez, A. Kiayias, and W. J. Knottenbelt. Sok: Communication
across distributed ledgers. In N. Borisov and C. Diaz, editors, Financial
Cryptography and Data Security, pages 3–36, Berlin, Heidelberg, 2021.
Springer Berlin Heidelberg.

https://www.gov.pl/attachment/e3ff4c9d-72f0-4ae4-89ac-f952f8ea666f
https://www.gov.pl/attachment/e3ff4c9d-72f0-4ae4-89ac-f952f8ea666f

	Introduction
	Background
	Cross-Chain Asset Transfers
	Gateway-Based Blockchain Interoperability
	Secure Asset Transfer Protocol (SATP)
	SATP Crash Recovery Protocol

	MP-SATP: Multi-Party Cross-Chain Asset Transfers
	General Assumptions
	Notation
	System Model
	Protocol
	Prepare Phase
	Commit Phase
	Rollback Phase


	Enhancing SATP Crash Recovery
	Data Replication
	Protocol Description

	Use Case using Promissory Notes
	Implementation & Performance Evaluation
	Hyperledger Cacti
	Architecture
	Testing Environment
	MP-SATP Evaluation
	SATP's Crash Recovery Enhancement

	Related Work
	Conclusion
	References

