loading page

Twitter Big Data as a Resource for Exoskeleton Research: A Large-Scale Dataset of about 140,000 Tweets and 100 Research Questions
  • Nirmalya Thakur
Nirmalya Thakur
Author Profile


The exoskeleton technology has been rapidly advancing in the recent past due to its multitude of applications and diverse use-cases in assisted living, military, healthcare, firefighting, and industry 4.0. The exoskeleton market is projected to increase by multiple times of its current value within the next two years. Therefore, it is crucial to study the degree and trends of user interest, views, opinions, perspectives, attitudes, acceptance, feedback, engagement, buying behavior, and satisfaction, towards exoskeletons, for which the availability of Big Data of conversations about exoskeletons is necessary. The Internet of Everything style of today’s living, characterized by people spending more time on the internet than ever before, with a specific focus on social media platforms, holds the potential for the development of such a dataset by the mining of relevant social media conversations. Twitter, one such social media platform, is highly popular amongst all age groups, where the topics found in the conversation paradigms include emerging technologies such as exoskeletons. To address this research challenge, this work makes two scientific contributions to this field. First, it presents an open-access dataset of about 140,000 tweets about exoskeletons that were posted in a 5-year period from May 21, 2017, to May 21, 2022. Second, based on a comprehensive review of the recent works in the fields of Big Data, Natural Language Processing, Information Retrieval, Data Mining, Pattern Recognition, and Artificial Intelligence that may be applied to relevant Twitter data for advancing research, innovation, and discovery in the field of exoskeleton research, a total of 100 Research Questions are presented for researchers to study, analyze, evaluate, ideate, and investigate based on this dataset.
Published in SSRN Electronic Journal. 10.2139/ssrn.4170991