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Abstract—The maturity of autonomous vehicles (AVs) has
reached a point where they can be used for tasks such as medicine
and food delivery and environmental monitoring in cities. These
operations rely on the integration of powerful and robust AI
models into AVs for safety, as any error in the decisions of the
AVs can cause damage to citizens and infrastructure. Our paper
contributes a vision for trustworthy city-scale deployments of
AVs, highlighting key requirements and challenges for the city-
scale deployment. We analyse the complexity of using explainable
AI (XAI) methods to monitor vehicle behaviour by inducing
changes in AI model behaviour with data poisoning attacks. Our
results show that XAI methods can detect such attacks, and the
combination of multiple XAI methods can improve the robustness
of the estimation. However, further research is needed to improve
the XAI methods to better and more robustly identify the root
cause of attacks.

Index Terms—Autonomous Vehicles; Explainable AI(XAI);
Data poison attack

I. INTRODUCTION

The integration of AI into autonomous vehicles is critical for
enabling operations that require minimal or no human inter-
vention. Indeed, AI is essential for autonomous navigation, tra-
jectory estimation, collision avoidance, and localization [1] to
name but some examples. As these techniques have matured,
vehicle applications that automate our daily life activities are
becoming a reality, e.g., delivery of food or medicine and
applications that harness vehicles for environmental purposes,
e.g., air quality monitoring [2], litter detection and separa-
tion [3]; and water pollution monitoring [4]. The emergence
of these application domains has started to pave the way
toward city-scale deployments of autonomous vehicles, yet
there still are challenges that need to be overcome before these
deployments can become a reality.

City-scale deployments of autonomous vehicles, such as
ground vehicles, cars, aerial drones, or even aquatic drones, are
only possible if the operations of the vehicles are trustworthy,
i.e., they can be guaranteed to operate safely without causing
harm to the citizens, the urban infrastructure, or the environ-
ment. Ensuring trustworthiness, however, is a complex chal-
lenge as it requires testing a wide range of environments and
dependencies between system components [5]. Traditionally

trustworthiness has been analyzed using formal verification
methods, but these are only suitable for systems that expose
their internal logic. Modern autonomous vehicles largely rely
on deep learning models which are black-box in nature,
making it difficult to verify the decisions that are made [6].
The emergence of federated learning and other paradigms that
perform continuous updates on the model becomes even more
complicated, as continuous updates can significantly change
the behaviour of the AI models.

Explainable AI (XAI) methods have recently emerged as
a mechanism that can help to understand the behaviour of
AI models and the factors affecting them. For example, XAI
methods can be used to evaluate the quality of the data used
for training [7] or to assess the suitability of the internal
model structure [8]. While these methods provide a foundation
for analyzing the trustworthiness of the AI models integrated
onto vehicles, they alone are insufficient as it is difficult to
distinguish between multiple factors that have a similar effect
on the model. For example, a decrease in model performance
may result from a malfunction in the vehicle, a targeted
attack, or a situational data bias. XAI methods also require
heavy instrumentation of the model, and they tend to rely on
offline analysis of the model, making these methods unsuitable
for ongoing deployments where threats need to be detected
immediately to ensure the safe operation of the vehicles.

We contribute a vision for trustworthy city-scale deploy-
ments of autonomous vehicles. In our vision, illustrated in
Figure 1, autonomous vehicles are widely used for societal and
other functions and that they are instrumented with methods
that enable diagnosing the AI and detecting possible threats
that can jeopardise their perception of their operating environ-
ment. We reflect on the current research landscape to identify
gaps and open challenges to establish a roadmap that serves
as a catalyst for research. We also experimentally demonstrate
the importance of trustworthiness by conducting experiments
on the effects of data poisoning on autonomous functionality.
Finally, we conduct a small-scale field test in ground vehicle
based litter monitoring to analyze the performance of different
XAI methods in identifying data poisoning attacks to gain
practical insights that pave the way to city-scale deployments



of autonomous vehicles. The results demonstrate that adverse
effects on the model can be identified but that the root cause
may not be easy to uncover. This means that integrating diag-
nostics into vehicles can help to identify potential periods of
misbehaviour, but at the same time further research is needed
to extend current XAI methods to be able to identify the root
causes of problems. We conclude the article by highlighting
further challenges and future directions for research.

II. KEY CHALLENGES AND REQUIREMENTS

Realising the vision of large-scale deployments of trust-
worthy autonomous vehicles is currently infeasible as there
are technical and technological challenges that need to be
addressed. We next highlight some important challenges and
reflect on state-of-the-art to identify research gaps.
Data bias and drift detection: vehicles that are deployed
should continue learning over time to improve their operation.
As the vehicles should operate in everyday situations, the
data that they capture is prone to contain privacy sensitive
information (e.g., face, speech or car registration plates) and
hence this task is best accomplished using privacy-preserving
techniques, such as federated learning [7]. Optimally this pro-
cess should integrate data from vehicles operating in different
parts of the environment as this helps improving the generality
and robustness of the AI models. Unfortunately, the model is
vulnerable to biases in the data and it can be a target of attacks
that affect the vehicle’s operations. As a result, there is a
need for methods that can quantify the resilience of the model
updates and detect abnormal or erroneous updates before they
affect the vehicle’s functionality. A key challenge is to separate
between non-intentional malfunctions (e.g., camera failure),
intrinsic data biases, and targeted attacks. Existing methods
largely target one type of issue (e.g., drift or poisoning)
without being able to separate between the different causes.
Another challenge is to ensure the methods can operate at
different temporal scale, i.e., can identify problems even when
biased or erroneous data is aggregated with valid data and
when the erroneous data arrives gradually.
Continuous model verification: Besides detecting issues in
the data, trustworthy operations require analyzing and verify-
ing the decisions the vehicles make [9]. For large-scale deploy-
ments (e.g., a city), the analysis needs to happen continuously
and on-site as otherwise the effort needed for verification limits
the scale of the deployments. Indeed, model diagnosis requires
accessing the internal structure of the model, which typically
requires instrumenting the source code of the vehicle, halting
operations, and accessing the internal logic of the vehicle. This
process usually requires taking the vehicle to a lab as accessing
the internal logic requires bypassing internal security features.
While XAI methods offer a partial solution for continuous
verification, they similarly need access to data and the model
structure. Hence, they cannot be adopted as a general solution.
A partial solution is to integrate the XAI methods directly as
part of the security features (e.g., as part of trusted execution
environments), but also this poses its own challenges as the
security features often limit available resources.

Model interpretability and resources: The performance
of AI models is intrinsically linked to the resources and
components integrated on the vehicles [5]. Over time, these
components need maintenance, or may be upgraded to improve
the operations of the vehicle. These operations can affect
the model and result in unexpected behavior. For example,
integrating a higher resolution camera on the vehicle affects
the dimensionality of the input data and may contain more
detail than previously. This can require replacing the model
or at least re-training it. In terms of interpretability, this
requires linking model diagnostics with physical components
of the vehicle and being able to analyze and interpret the
effects individual physical components have on the model’s
decisions. Note that these changes do not necessarily affect the
input data. For example, vehicles can operate using different
payloads which affects the weight and resource consumption
of the vehicle. This requires integrating physical configuration
directly into the model diagnosis. This is essential also for
detecting unsafe operation, e.g., detecting unsafe payloads.
Current methods are insufficient as they are unable to link
model behaviour with physical characteristics of the operating
environment. For example, while changes in input data can
be detected with current model diagnosis methods, they are
unable to detect whether these changes are a result of the
physical configuration or external interference.

Network-group diagnosis: Effective large-scale operations of
autonomous vehicles are likely to require cooperation between
the vehicles as this is essential for reducing resource drain and
ensuring optimal performance. Effective coordination results
in dependencies between the AI models deployed on the
different vehicles and understanding potential errors or threats
requires analysing the combined logic of all vehicles working
in tandem, e.g., swarm intelligence [10]. Current XAI and
other model diagnosis techniques are tailored to analysing
individual models and hence they can only be used if the
vehicles have a global model that integrates the decision
logic of all vehicles together. Note that this task is more
complex than analysing the performance of individual vehicles
as attacks or errors can affect only some of the vehicles, yet
have an influence on all of the vehicles by compromising
the coordination of the vehicles through the network [11].
Understanding the effects on coordination requires improved
diagnosis mechanisms to analyze network formation groups,
individual parts of the network (slices), as well as models
of how targeted errors can affect the performance of vehicle
collaboration.

III. MOTIVATING EXPERIMENT: THE IMPACT OF ATTACKS
ON AUTONOMOUS VEHICLES

Model diagnostics is essential not only for offering a
mechanism to analyze and understand the behaviour of AI
models but also for mitigating risks of external attacks that do
not require access to the model itself. We next highlight the
need for model diagnostics by drawing on an example from
computer vision based object detection to demonstrate how
external data poisoning attacks can result in abnormal model
behaviour and potentially even break the AI performance.
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Fig. 1: City-scale deployment of autonomous vehicles and how vehicles can misoperate in urban settings.

Threat Model: We consider a generic threat model where the
attacker attempts to case the AI model used in the autonomous
vehicle to fail. This can be a targeted attack that results in
a specific misbehaviour, e.g., causing accidents by making
the navigation support to fail to recognize pedestrians or
cars, or an attack that simply causes the AI to malfunction,
e.g., a sponge attack that drains the vehicle’s resources or
a ransomware attack that prevents normal operations. The
motivation for the attack can be causing damage or harm to
the city or the citizens, financial incentive, or desire for fame.

Application Scenario: We consider litter recognition on au-
tonomous vehicles as a representative example of operations
that rely on AI. The application operates on thermal images
which are analyzed in real-time to identify different litter ob-
jects and to determine their material. Specifically, the vehicle
analyses the dissipation of sunlight-induced thermal radiation
that is captured by a thermal camera integrated onto the
vehicle [3]. Attacks against the model can break the operations
of the vehicles or drain their resources. More serious attacks
naturally would target navigation, obstacle detection, or other
function that could directly result in harm to citizens or
damage to the environment. Our use case presents a benign
case that allows illustrating the risks of attacks without risking
the citizens or the environment, and our findings are applicable
to other AI applications that rely on computer vision.

Experimental Setup: Figure 2 shows our testbed and illus-
trates the use of thermal dissipation to analyze the thermal
dissipation fingerprints of materials. We consider three com-
mon litter objects with different materials in our experiment:
(A) Plastic bottle, (B) Face mask and (C) Cardboard cup.
The vehicle records video footage of disposed litter which
is pre-processed and analyzed to identify litter [3]. To attack

Fig. 2: Autonomous ground vehicle for litter identification
using sunlight and thermal imaging, a) Prototype sensing
litter in the wild and litter materials used in the experiment;
b) Analysis of thermal samples and estimation of thermal
dissipation time.

the model, we poison the data using blurring and steganogra-
phy [7], [12]. While the basic attacks themselves are relatively
innocuous on their own, they can be used to install backdoor
triggers [12], to drain vehicle resources [13], or otherwise
create unexpected behaviours. Note that these attacks do not
require access to the vision system of the vehicle as they
can simply manipulate objects in the environment, or use
additional devices, such as lasers, to manipulate what the
devices capture [14].

Results: We first calculate the thermal dissipation time of
each material without attacks: plastic bottle 62.5s, cardboard
cup 72.5s, and face mask 82s. The relative differences match
those reported in [3] for the same materials. The absolute
values differ due to the different intensity of thermal source,
size of the material and the total exposure time. To analyze
poisoning, we consider two levels of poisoning: 10% (low)
and 40% (high). Higher values than 40% result in poisoning

3



taking over the model. For blurring, the dissipation times after
poisoning are 51.5s (plastic bottle), 51.1s (cardboard cup),
and 38.4s (face mask) for 10% poisoning, and 49.3s, 22.9s,
and 40.5s when 40% is poisoned, respectively. The relative
differences in the thermal dissipation values thus change
significantly, breaking the AI model that is used for detecting
litter materials. We also observed a clear increase in the
processing time of the vehicle, thus resulting in higher resource
drain. In the case of steganography, the thermal dissipation
times were not influenced, i.e., the model is resilient against
this attack. This highlights how the model response may vary
depending on the attack type.

IV. XAI AS MODEL DIAGNOSTICS

Explainable AI (XAI) methods provide a natural starting
point for integrating model diagnostics on the vehicles and
to overcome the effects of attacks. We next analyze different
the potential of different XAI methods to detect targeted
poisoning attacks, focusing on understanding the benefits
and disadvantages of different methods. We first examine
the quantifiable values provides by XAI methods in benign
case, after which we analyze them against poisoned data. We
separately analyze the full image and a processed image where
the background is removed to better understand how different
processing techniques affect the behaviour of XAI methods.
Experiment Setup: We perform the experiment using the
TrashNet litter classification dataset which consists of 2527
litter images [15]. We rely on this dataset as it contains a
large amount of real-world images which makes it possible
to analyze different environments and contexts for litter clas-
sification. As AI model we consider a convolutional deep
learning model (CNN) as this has been shown to achieve
good performance on the dataset [15]. Images are resampled to
300×300 to have consistent input dimensionality. We augment
the training data using horizontal and vertical flipping and
rescaling. We train the dataset using 2276 images with batch
size of 32 for each epoch iteration. The remaining images
are used for testing and we separately consider a collection
of 10 poisoned and non-poisoned images for illustrating the
performance of XAI methods. Our experiment was conducted
on the Google Colab platform using the latest version of the
Keras library (2.8.0) with TensorFlow (v2.8.2).
XAI methods: We consider three model-agnostic XAI meth-
ods that can be applied for any type of AI model: LIME
(Local the Interpretable Model-agnostic Explanation), SHAP
(Shapley Addictive Explanations) and Occlusion sensitivity.
As these methods are model-agnostic, they do not require
any information about the CNN gradients to analyze model
behaviour. These methods are also perturbation-based, which
means that they manipulate the input (i.e., image pixels)
to extract details that can be linked with the predictions.
LIME creates an interpretable representation of the litter image
by segmenting the image pixels, based on similarity, into
superpixels [16]. SHAP explains the CNN’s prediction by
attributing importance values to the features that contributed
to a prediction. This is accomplished using a binary vector
of simplified inputs by perturbing the pixels (i.e. input space)

Fig. 3: Pipeline to analyze objects using XAI, a) Data sam-
ples (poisoned and unpoisoned), b) Object detection, c) XAI
methods output over samples (LIME, SHAP and Occlusion
sensitivity) and d) Object extraction.

of the litter image into superpixels (features) that represent
the image [17]. The features that contribute to the probability
of the prediction are highlighted in one color (red) and the
features that decreases the probability of the predicted class
in another color (blue). Finally, occlusion sensitivity explains
predictions by using a sensitivity heat map to observe the im-
pact a perturbation mask has on the neural network predictions.
Specifically, an occlusion mask (i.e small gray square patch) is
placed on the image and changes in the prediction probabilities
are observed [18]. As stated, the XAI methods are applied
separately for images where the background is removed (i.e.,
only the litter object) and for the original input image. The
process for extracting the object is shown in Figure 3 and
works by applying a dynamic patch (determined using object
detection) on the image to isolate it. From the final output of
the XAI methods, we calculate a pixel percentage metric that
captures the importance of a pixel.
Samples and Poisoning: We considered six litter categories:
glass, paper, cardboard, trash, metal and plastic. For poisoning
we consider two attacks, blurring and steganography, as de-
scribed in the previous section. Blurring can make autonomous
vehicles to misidentify targets in urban areas, e.g., crossing
signals and pedestrian sides. Steganography introduces extra
information in the binary information of the images, which
can become resources intensive for the autonomous vehicle as
more processing power is required to extract relevant infor-
mation (similar to a sponge attack). We systematically assess
how the level of poisoning affects the results by poisoning the
data in 10% increments from 10% to 40%.

V. RESULTS

Model Performance under Poisoning: The performance to
classify litter of our CNN is 0.7 when no data is poisoned,
but this performance is reduced as data is gradually poisoned.
After blurring attack, the model accuracy is reduced to 0.61
(10% poisoned); 0.53 (20% poisoned); 0.53 (30% poisoned)
and 0.60 (40% poisoned). Similarly, after steganography, the
model accuracy is reduced to 0.52 (10% poisoned); 0.52 (20%
poisoned); 0.62 (30% poisoned) and 0.67 (40% poisoned).
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In both cases, we observe a clear drop in accuracy. Unlike
our earlier experiment, the performance drop is higher for
data poisoned with steganography than with blurring. This
difference in results is simply due to differences in the sensors
(RGB vs thermal camera) and the processing pipeline and
highlights how the effectiveness of the attack is influenced
by the task and the specifics of the AI that is being used.
The performance drop resulting from poisoning depends on
how much the attack affects the patterns in the data. In
general, once larger amounts of the data become poisoned,
the inference process starts to be dominated by the poisoned
patterns whereas in smaller amounts they result in distortions
that can confuse the model. This pattern is observed with both
attacks with the sole exception being blurring at 10% rate. The
reason for this exception stems from small amount of blurring
failing to distort the patterns of the litter object.

Analysis of XAI Methods: We next analyze the effectiveness
of XAI methods to identify poisoning by considering 10
randomly chosen poisoned samples from each litter category
and report the accuracy of estimating the correct class for
each sample. Table I summarizes the results for the different
XAI methods. The effect of poisoning depends on the litter
category and the extent of poisoning. Paper and cardboard
objects with regular shape are easiest for the XAI methods,
whereas classes containing irregular shapes (metal, plastic,
trash) showing highest variation in results. As with the results
for the CNN model, in some cases a higher level of poisoning
can result in smaller drop – or in some cases even in an
increase – in performance. This pattern is more common
for steganography as the poisoned data starts to dominate
the inference process once a higher fraction of the data
is poisoned. While XAI methods can only help recognize
poisoning without directly enhancing the performance of the
classifiers, they can indirectly offer insights that can help to
improve the classifiers. For example, samples that are iden-
tified as poisoned can be used to develop data augmentation
techniques which can be incorporated into the model training
process to improve robustness of the classification models.
To illustrate this point, blurring already is a commonly used
data augmentation technique for improving the training of
AI models. From our experiments, we also visually observed
that the attacks tend to affect more the background and thus
processing techniques that separate the foreground object from
background are likely to improve performance.

Diagnosing Objects with XAI: Lastly, we examine the effect
of data poisoning over the important features of the object
when it is isolated from the background. As the metric we
consider the coefficient of variation of the poisoned pixels,
which depicts the ratio of the standard deviation to the
mean. The higher the value of the coefficient, the higher the
dispersion and thus the better the method is at identifying
poisoned data. Figure 4 shows the results for the 10 test
samples of each class. For the blurring attack, the average
values of the XAI methods are 0.35 (LIME), 0.17 (SHAP)
and 0.3 (Occlusion). For data poisoned with steganography,
the corresponding values are 0.22 (LIME), 0.10 (SHAP) and

0.26 (Occlusion). One-way ANOVA between the three XAI
methods indicates statistical significance, (F(2,1794)=118.4,
p-value < 0.001), indicating that there are differences in the
applicability of the different XAI methods. The higher average
values of LIME and Occlusion indicate that they generally
are better at identifying poisoned data. SHAP performs well
for metal objects which are the most irregular, but struggles
with other categories. We also used one-way ANOVA test
to verify that the difference in variation across classes is
significant across all XAI methods, poisoning attacks, and
levels of poisoning (F(5,1791)= 14.76, p-value < 0.001).
Across all XAI methods, the coefficients of variation are
larger for steganography than for blurring indicating that XAI
methods can also provide clues about the nature of the error.
We also investigated the effect between attack type and data
poison level. Two-way ANOVA test between attack type and
data poisoning level indicates significant effect (F(1,4)=3.396,
p-value < 0.01), i.e., the coefficients of variation depend not
only on the attack type but also the extent of poisoning. Taken
together, these results show that XAI methods help to identify
the important features of the image, even after data is poisoned
but their effectiveness is affected by the object, the type of
attack, and the extent of poisoning generated by the attack. In
any case, even when the objects can be separated and analyzed,
this requires more processing and more elaborate processing
pipelines which drains the resources of the vehicle faster and
limits their operations.

VI. TOWARDS AI ROBUSTNESS: REDUCING CAUSES AND
FAILURES

AI regulations stipulate a range of desirable properties for
ensuring AI trustworthiness within societal contexts. These
properties encompass properties such as robustness, safety,
privacy, fairness, accountability, and explainability. However,
the rigorous evaluation, analysis, and validation of these
properties to confirm their manifestation during deployment is
challenging and complex. Compliance with the requirements
for trustworthy AI involves trade-offs due to the intricate
nature of prioritizing and balancing these multifaceted proper-
ties. Among these properties, AI robustness is a very crucial
regulatory stipulation. It mandates that AI systems exhibit
resilience against diverse challenges and adversarial condi-
tions. Evaluating and validating AI robustness in light of the
trade-offs is no doubt tedious. We explore some approaches,
methods and technologies for fortifying robustness in AI
during deployment in the paragraphs that follow.

Digital Twin: Leveraging digital twins (DTS) can enable the
comprehensive observation and monitoring of AI behaviour
to enhance AI robustness. Beyond mere surveillance, DTs
can be utilized for logging and assessing the security of the
underlying models running in AI systems. Utilizing infor-
mation gleaned from DTs, we gain real-time insights into
AI behavior, enabling early detection of potential issues and
proactive intervention. Furthermore, empowering DTs with
interactive feedback mechanisms facilitates efficient tuning
and troubleshooting, further bolstering AI resilience.
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LIME SHAP Occlusion Sensitivity
Poisoning Level 0% 10% 20% 30% 40% 0% 10% 20% 30% 40% 0% 10% 20% 30% 40%
Poisoning type Blurring
Cardboard 1 0.9 0.9 0.8 0.9 1 0.8 0.8 0.8 0.9 1 0.8 0.9 0.8 0.9
Glass 1 0.7 0.7 0.8 0.6 0.9 0.8 0.8 0.8 0.6 1 0.8 0.8 0.8 0.6
Metal 0.7 0.8 0.7 0.8 0.4 0.6 0.8 0.7 0.8 0.4 0.7 0.7 0.7 0.8 0.4
Paper 0.9 0.9 0.7 0.7 1 0.9 0.9 0.9 0.7 0.9 0.9 0.9 0.9 0.7 1
Plastic 0.8 0.7 0.7 0.7 0.7 0.8 0.7 0.7 0.7 0.7 0.8 0.7 0.7 0.7 0.7
Trash 0.9 0.6 0.6 0.8 0.7 0.9 0.6 0.6 0.8 0.6 0.9 0.6 0.6 0.8 0.7
Average 0.9 0.8 0.7 0.8 0.7 0.9 0.8 0.7 0.8 0.7 0.9 0.8 0.8 0.8 0.7
Poisoning type Steganography
Cardboard 1 1 1 0.8 0.8 1 1 1 0.8 0.8 1 1 1 0.8 0.8
Glass 1 0.7 0.6 1 1 1 0.6 0.6 1 0.9 1 0.7 0.6 1 0.9
Metal 0.7 0.6 0.6 0.7 0.7 0.7 0.6 0.6 0.7 0.8 0.7 0.6 0.6 0.7 0.8
Paper 0.9 1 1 1 1 0.9 1 1 0.9 0.9 0.9 1 1 0.9 0.9
Plastic 0.8 0.7 0.7 0.7 0.8 0.8 0.7 0.7 0.7 0.8 0.8 0.7 0.7 0.7 0.8
Trash 0.9 0.8 0.6 0.9 1 0.9 0.6 0.6 0.9 0.9 0.9 0.7 0.6 0.9 0.9
Average 0.9 0.8 0.8 0.9 0.9 0.9 0.8 0.8 0.8 0.9 0.9 0.8 0.8 0.8 0.9

TABLE I: Individual performance of XAI methods on selected poisoned and unpoisoned samples.

(a) LIME method (b) SHAP method (c) Occlusion method

(d) LIME method (e) SHAP method (f) Occlusion method

Fig. 4: Object analysis with each XAI method as data is poisoned with, (a-c) Blurring and (d-f) Steganography

Formal verification: Formal verification of AI properties of-
fers a rigorous approach to ensure AI behaves as intended. This
method is particularly valuable for safety and robustness, key
pillars of trustworthy AI deployment. By formally validating
the satisfiability of expected behavior throughout its operation,
potential vulnerabilities and deviations can be identified and
mitigated. Additionally, deploying techniques like non-linear
activation functions allows for in-depth analysis of neuronal
activation, information propagation, and overall network ex-
pressiveness. This enhanced understanding facilitates rigorous
validation of the internal dynamics governing AI behavior,
strengthening its reliability and interpretability [19], [20].

Human Oversight: Human agency and oversight are among
the primary requirements for making AI trustworthy. Human
expertise and judgment can be leveraged throughout the lifecy-
cle of AI from design to deployment to ensure that AI operates
within defined boundaries, identifies undesirable outcomes for
review, and behaves expectedly during changing contexts after
deployment [21]. During an adversarial situation where the
underlying models of AI are attacked, a set of guidelines
can be proactively implemented by humans as guardrails

to prevent abnormal behavior. For instance, as validators or
testers can implement safety policies when AI inference is
considered unsafe and can conduct several test scenarios for
attack detection and verify the robustness and safety of the
AI. Similarly, humans can act as analysts to assess the risks
and potential impacts of the risk of an AI during deployment
[22]

Standardization: Several vulnerabilities that compromise the
robustness of AI have been explored [], and preventing them
from the outset is paramount. The reliability of AI systems can
be fortified against potential failures through the implementa-
tion of standardized design frameworks for AI designs. Adopt-
ing frameworks like NIST AI 100-2e2023 [23]and MITRE
[24] that categorise AI vulnerabilities by context, domain,
and applicable mitigations, alongside other adversarial tools
and best practices from leading practitioners, for instance,
Microsoft AI Security Risk Assessment Framework [25],
and Microsoft Counterfit [26] can enable developers and AI
engineers to address any flaws in AI design early enough.
Moreover, transparency in design practices in compliance with
standards enables traceability in the development and machine
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learning process, which fosters interpretability of the internal
workings of AI and its auditability.In addition, employing an
explainability-by-design approach during AI development, an
approach that caters to diverse audiences’ understanding of AI
decisions, can contribute to the trustworthiness of AI.

VII. DISCUSSION

Application Domains: While our experiments focused on
litter recognition, our results are more broadly applicable to
any scenario that involves camera as the sensor to collect
data. Indeed, we considered two different camera modalities
(thermal and regular) and two common attack models that have
been used on deep neural networks (blurring and steganogra-
phy). These data are widely used on autonomous vehicles,
e.g., for detecting pedestrians, signs, and obstacles, to support
navigation and positioning, and more broadly to analyze the
current operating environment. Naturally our results do not
apply to all operations, e.g., to those that involve other type
of input data (e.g., lidar or radar) or more targeted attacks (e.g.,
random spoofing of ultrasonic sensors [27]). Nevertheless, our
work serves as an important starting point for analysing and
understanding the benefits of XAI techniques in detecting and
countering attacks on autonomous vehicles.
Stakeholders: Model diagnostics are particularly important
for the companies and organizations that operate vehicles in
urban settings. At the same time, municipalities and govern-
mental authorities can require diagnostics to be integrated onto
the vehicles before they issue permits as this can help ensure
the vehicles are not vulnerable to targeted attacks. We would
expect diagnostics to eventually become a legal requirement
as well as this allows auditing the vehicle behaviour when
accidents or other harmful behaviours occur.
Improvement: As room to improve our work, it would be
important to study also other vehicle functionalities, such
as navigation, localization, or collision avoidance. As these
functions can result in dangerous behaviours, it is essential
to design experiments that minimize risks, as well as to
obtain the necessary ethical and legal permissions to carry
out the experiments. We are also interested in exploring other
environmental monitoring use cases, such as air quality [2]
or water pollution monitoring [4]. These are examples of
domains where vehicles could be used for emission accounting
and thus there would be financial incentives to influence the
performance of the AI models.
Practical Limitations: Attacks on AI models are not the only
aspect that changes the behavior of autonomous vehicles, as
hardware failures and software malfunctions can also affect
their behavior. This requires methods that can operate on the
vehicles and differentiate in real-time between targeted attacks
and other errors. Another essential aspect is to integrate the
vehicle with rollback mechanisms, return to home protocols,
or other procedures that allow them to react to situations where
erroneous data or other abnormalities are observed. Exploiting
infrastructure backdoors is another potential way to attack
vehicles.
End-User Support: Our work has demonstrated how changes
in data can affect predictions and how XAI methods can be

used to identify which parts of the data contributed to a given
prediction. While this can help to detect abnormal behaviors,
the output of the XAI methods can be difficult to interpret for
end-users that analyze the vehicle behavior (e.g., technicians
or vehicle operators). Further work is thus needed to develop
tools and mechanisms that can translate the results of the
XAI methods into insights that end-users that can use to fix
potential problems.
Debugging Models: Optimally the AI models could be de-
bugged in the wild semi-autonomously. This, however, would
require dedicated support mechanisms on the vehicle which
may be difficult to implement. For example, detecting points of
deviation would require maintaining a reference model and re-
training the model updates by replaying individual data points.
The model could then be analyzed with XAI methods after
each iteration to identify potential abnormalities in the data and
to support the detection of issues. This process easily becomes
highly resource intensive and requires sufficient memory and
physical storage on the vehicles. In parallel, there is a need
to verify the integrity of the reference models and XAI
tools, which requires dedicated mechanisms such as trusted
execution environments.

VIII. SUMMARY AND CONCLUSIONS

Powerful AI models are important for enabling autonomous
operations of vehicles, particularly in complex and highly
varying environments such as cities. These models need to be
accurate and perform robustly as otherwise the vehicles can
cause harm to citizens or damage the environment. We pre-
sented a research vision of how to enable the AI models to be
trustworthy, identifying key challenges and requirements, and
arguing that methods for model diagnosis should be integrated
to vehicles to verify that the operations are indeed safe. We
experimentally demonstrated the importance of model diagno-
sis by showing how targeted attacks, such as data poisoning,
can break the AI models integrated on the vehicles. What
makes these attacks particularly problematic is that they do not
require access to the device or the AI model, operating solely
by manipulating the inputs that it uses. We also demonstrated
that explainable AI (XAI) methods provide a foundation for
identifying issues but that they are also subject to limitations.
In particular, XAI methods are unable to distinguish between
targeted attacks and other malfunctions, their performance
depends on the sensor modality, the environment, and the
characteristics of the input data.
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