
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Why Smart Contracts Reported as Vulnerable
were not Exploited?

Tianyuan Hu, Jingyue Li, Bixin Li, André Storhaug

Abstract—Smart contract security is essential for blockchain applications. Studies show that few of the reported vulnerabilities are
exploited. However, no follow-up study is performed to why the reported vulnerabilities are not exploited. We aim to understand the
reasons for the low exploitation rate to help improve vulnerability detection practices. We first collect 136,969 unique real-world smart
contracts and analyze them using seven vulnerability detectors. Then, we apply Strauss’ grounded theory approach to understand if
they are exploitable. In addition, we analyze the transaction logs of the exploitable vulnerabilities to understand their exploitations in
history. Among the 4,364 smart contracts reported as vulnerable by the vulnerability detectors, 75.27% of them are unexploitable, and
only 66 (0.015%) have been exploited. We uncover 11 reasons for making the detectors misidentify unexploitable vulnerabilities and six
reasons for demotivating and preventing the attackers from exploiting the exploitable ones. We illustrate that: beyond treating the smart
contracts as yet another Object Oriented (OO) application, it is essential to consider the Solidity programming language’s design
principle, smart contracts’ application scenarios, and their execution environments. Our results can help differentiate exploitable smart
contracts to help allocate efforts to exploitable ones to mitigate emergent risks.

Index Terms—Ethereum, smart contract, vulnerability detection, source code analysis

✦

1 INTRODUCTION

Due to blockchains’ monetary and anonymous nature, they
are targets of adversaries. The security of smart contracts
is critical because they may handle and store digital assets
worth millions of dollars. The DAO hack [1] exploiting the
reentrancy vulnerability in contract code resulted in a 60
million dollars loss. It is, therefore, imperative to prune out
smart contracts’ security problems before deploying them.

Many methods and corresponding detectors, e.g., Oyente
[2], Securify [3], sFuzz [4], ContractFuzzer [5], ContraMaster
[6], DefectChecker [7], EXGEN [8], HONEYBADGER [9], have
been proposed to detect smart contract vulnerabilities. Ren
et al. [10] point out that the detectors are evaluated by the
tool authors using different datasets and metrics, which may
result in biased conclusions. Several empirical studies were
conducted by other researchers using manually annotated
datasets or real-world smart contracts to evaluate these
detectors fairly. SolidiFI [11] is used to evaluate six detectors
[2], [3], [12], [13], [14], [15]. The results show that none of the
detectors detect all the injected bugs correctly, and all the
evaluated detectors report several false positives. Durieux
et al. [16] evaluated nine vulnerability detectors [2], [3], [9],
[12], [13], [14], [15], [17], [18], and found that 97% of the
real-world contracts analyzed were labeled as vulnerable
by the detectors. Perez and Livshits [19] analyzed 821,219
real-world contracts using six detectors, namely, Oyente [2],

• T. Hu and B. Li are with the School of Computer Science and
Engineering, Southeast University, Nanjing, 211189, China.E-mail:
tianyuan.hu@foxmail.com, bx.li@seu.edu.cn

• J. Li and A. Storhaug are with the Department of Computer science,
Norwegian University of Science and Technology, Trondheim, Norway.
E-mail: jingyue.li@ntnu.no, andre.storhaug@ntnu.no

Manuscript received April 19, 2005; revised August 26, 2015.

ZEUS [20], MAIAN [17], Securify [3], TEETHER [21], Madmax
[22]. They classified the analyzed smart contracts as:

• Vulnerable: A contract is reported as vulnerable if
the vulnerability detector flags it.

• Exploitable: A contract is exploitable if an attacker
could exploit its vulnerability and cause security
compromise.

• Exploited: A contract is exploited if a transaction
on Ethereum’s main network has triggered one of its
vulnerabilities.

Results of the study by Perez and Livshits [19] show
that, among the 73,62 contracts reported as vulnerable by
at least two detectors, only 463 contracts were exploited.
They hypothesized that most reported vulnerabilities are
unexploitable. However, no follow-up study tried to con-
firm the hypothesis and understand the reasons for the low
exploitation rate. “Vulnerability deals with the theoretical, and
exploitability deals with actuals. Understanding what is vulnera-
ble and what remains exploitable can help companies prioritize and
acknowledge where their security efforts can be improved. [23]”
Thus, we are motivated to answer two research questions
(RQs):

• RQ1: Are vulnerable smart contracts reported by vul-
nerability detectors exploitable? If the exploitability
is low, what are the possible reasons for that?
If a smart contract is reported as vulnerable, we want
to know if the adversary could execute the vulner-
ability and if the execution could lead to security
compromises. In addition, we want to know what
causes the vulnerability from being unexploitable.

• RQ2: Are exploitable smart contracts exploited? If
not, what prevented attackers from exploiting them?
If a smart contract is exploitable, we want to know
if it has been executed at least once, although we



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

may not know the actual loss due to the execution. In
addition, we want to identify commonalities between
the exploitable smart contracts that have and have
not been executed.

To answer RQ1, we collected 136,969 unique real-world
smart contracts and used four efficient vulnerability detec-
tors, namely, Oyente [2], SmartCheck [13], Slither [14], SoliDe-
tector [24] to label their vulnerabilities. Then, we manually
analyzed the source code of the vulnerable contracts to
judge whether they are exploitable and adopted Strauss’
grounded theory method [25] to identify the reasons for the
low exploitability. The insights from the manual analysis
are further verified by three vulnerability detectors, namely,
Mythril [12], ConFuzzius [26], and Smartian [27]. To answer
RQ2, we collected the transaction logs of the reported
vulnerable contracts and replayed their transactions on a
full Ethereum node. We designed transaction log analysis
rules to identify the vulnerability exploitation and also
used Strauss’ grounded theory method to understand the
contracts’ exploitations.

Results show that 4,364 contracts are labeled as vulnera-
ble by at least two of the effective vulnerability detectors.
The vulnerabilities cover ten types. Among the 4,364 re-
ported vulnerable contracts, 3,285 are unexploitable. After
analyzing the 4,106,134 transaction logs of the 4,364 vulner-
able contracts, we found that only 66 exploitable contracts
had been exploited. Through open and axial coding, we
identified 11 reasons causing the detectors to misidentify
unexploitable vulnerabilities:

• missing path feasibility analysis
• overlooking preventive execution condition
• insufficient data flow analysis
• overlooking access control
• neglecting constraints caused by factory patterns
• neglecting constraints caused by contract inheritance
• assuming all fallback functions receive ether
• insufficient analysis of the values of the target con-

tracts’ addresses
• omitting the case that the ether transfer initiator is

the ether’s initial owner
• assuming critical operations after authorization
• assuming status inconsistency when the function call

results are not checked.

We have also found six reasons that may have demoti-
vated adversaries to attack the exploitable contracts:

• very little or no financial benefits for attacker
• insignificant impacts of the compromise
• attacker must develop attack contracts
• attacker must deposit ether as a prerequisite
• attacker must be lucky in random number competi-

tion
• attacker must be mining winner

Through selective coding, we concluded that the stud-
ied vulnerability detectors mainly adapted existing ap-
proaches to analyze OO applications. The detectors have
not sufficiently considered Solidity’s principle as a contract-
oriented programming language for applications running
on Ethereum Virtual Machine (EVM) and blockchain to

TABLE 1: Smart Contract Vulnerability Detectors (SC repre-
sents source code; BC represents bytecode)

Year and ref. Detector name Vul. types covered Inputs
Pattern Matching

2018 [13] SmartCheck 37 types SC
2021 [24] SoliDetector 20 types SC

Symbolic Execution
2016 [2] Oyente 6 types SC
2018 [20] ZEUS 7 types SC
2018 [18] Osiris Integer Vulnerability BC
2018 [12] Mythril SWC Registry SC
2018 [3] Securify 37 types SC/BC
2018 [21] TEETHER 4 types BC
2018 [17] MAIAN 3 types SC/BC
2019 [9] HONEYBADGER Honeypots BC
2021 [7] DefectChecker 8 types SC
2022 [8] EXGEN 4 types SC

Data Flow Analysis
2018 [22] MadMax 3 types BC
2019 [14] Slither 71 types SC
2020 [28] Clairvoyance Reentrancy SC
2020 [29] Ethainter 5 types BC

Machine Learning
2019 [30] GNN-based 3 types SC
2020 [31] ContractWard 6 types Opcode
2021 [32] VSCL 6 types BC

Fuzzing
2018 [5] ContractFuzzer 7 types BC+ABI
2018 [33] Reguard Reentrancy SC/BC
2020 [4] sFuzz 9 types BC
2020 [34] Ethploit 3 types SC
2021 [26] ConFuzzius 10 types SC
2021 [27] Smartian 13 types BC
2022 [6] ContraMaster 5 types SC

securely transfer assets or ether between supplier and client
and minimize the gas cost of execution.

The contributions of this study are:

• We have derived novel insights and theories regard-
ing the reasons for the low exploitation rate, which
can help security practitioners differentiate vulnera-
ble and exploitable smart contracts when analyzing
and ranking vulnerabilities.

• We have created a benchmark dataset containing
4,364 real-world Solidity smart contracts, which are
manually labeled with ten types of vulnerabilities.
The dataset is around 20 times bigger than the similar
state-of-the-art benchmark [10]. The dataset can help
evaluate the vulnerability detectors’ ability to detect
vulnerabilities and their exploitability and is avail-
able at https://github.com/1052445594/SC UEE.

The rest of the paper is organized as follows. Section 2
introduces related work, and Section 3 presents the research
design. The answers to RQ1 and RQ2 are given in Sections
4 and 5, respectively. Section 6 discusses the results and
Section 7 concludes.

2 RELATED WORK

The approaches to detect smart contract vulnerabilities can
be classified into pattern matching, symbolic execution,
dependency analysis, machine learning (ML), and fuzzing,
as shown in Table 1.

2.1 Detectors Using Pattern Matching Approaches
SmartCheck [13] translates Solidity source code into an XML-
based intermediate representation and checks it against



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

XPath patterns. SoliDetector [24] is a static detection tool
based on the knowledge graph of Solidity source code. For
each smart contract to analyze, it constructs the knowledge
graph containing the ontology and instance layers. Based on
the knowledge graph, it uses the SPARQL [35] query to ma-
nipulate the knowledge graph and identify vulnerabilities.

2.2 Detectors Relying on Symbolic Execution
Oyente [2] is the first smart contract vulnerability detector
based on symbolic execution. It builds control flow graphs
from smart contract bytecode and symbolically executes
the contract to identify vulnerabilities by analyzing execu-
tion traces. By analyzing dependency diagrams of smart
contracts, ZEUS [20] combines abstract interpretation and
symbolic execution to model smart contracts. As ZEUS
analyzes artifacts at the low-level virtual machine (LLVM)
intermediate level, it cannot locate vulnerabilities at the
EVM bytecode level. Osiris [18] is a framework that com-
bines symbolic execution and taint analysis to detect vulner-
abilities related to arithmetic operations in Ethereum smart
contracts. Mythril [12] uses symbolic execution and taint
analysis to detect vulnerabilities. It performs decompilation
and produces execution traces using a dynamic symbolic ex-
ecution engine called Laser-EVM. However, Mythril is slow
due to multiple symbolic executions. Securify [3] combines
abstract interpretation and symbolic execution. The tool
automatically classifies behaviors of a contract into three
categories, compliance (matched by compliance properties),
violation (matched by violation properties), and warning
(no matches). Krupp et al. [21] first give a generic definition
of vulnerable contracts and build TEETHER, a tool that em-
ploys symbolic execution to create an exploit automatically.
However, TEETHER has difficulty solving hard constraints
in execution paths and cannot simulate the blockchain
behaviors very well, causing a loss of coverage. MAIAN
[17] is a symbolic execution tool analyzing EVM bytecode.
MAIAN classifies vulnerable contracts into three categories,
namely, greedy, prodigal, and suicidal. HONEYBADGER
[9] uses symbolic execution and pre-defined heuristics to
expose honeypots. DefectChecker [7] symbolically executes
the smart contract bytecode and generates their control
flow graphs, stack events, and other features. Based on the
generated information, it uses eight rules to detect different
vulnerabilities. However, the public version of DefectChecker
supports only Solidity 0.4.24. EXGEN [8] generates multiple
transactions as exploits to vulnerable smart contracts and
verifies the generated contracts’ exploitability on a private
chain with values crawled from the public chain. EXGEN is
a cross-platform framework that supports Ethereum or EOS
contracts.

2.3 Detectors Applying Data Flow Analysis
MadMax [22] is a gas-focused vulnerability detection tool
consisting of a decompiler, which converts low-level EVM
bytecode to code represented using an intermediate lan-
guage. It then analyzes the code to detect out-of-gas vul-
nerabilities that require coordination across multiple trans-
actions. Slither [14] is a highly scalable static analysis tool.
It first converts Solidity smart contracts to an intermediate
representation called SlithIR through control flow graph

analysis. Then, it applies both data flow and taint analysis to
detect vulnerabilities. Clairvoyance [28], [36] presents a static
analysis tool that models cross-function and cross-contract
behavior to detect the reentrancy vulnerability. Brent et al.
[29] present Ethainter to detect composite vulnerabilities that
escalate a weakness through multiple transactions. Based on
the Datalog language [37] and the Soufflé Datalog engine
[38], Ethainter constructs graphs containing data flow and
control flow dependencies to identify vulnerabilities.

2.4 Detectors Using Machine Learning Technologies

Zhuang et al. [30] use a graph neural network (GNN)
to classify vulnerable smart contracts. ContractWard [31]
is a machine learning-based vulnerability detection tool
targeting six vulnerabilities. It employs three supervised
ensemble classification algorithms, namely, XGBoost, Ad-
aBoost, and Random Forest (RF), and two classification
algorithms, namely, Support Vector Machine (SVM) and
k-Nearest Neighbor (KNN). Their evaluations show that
XGBoost is the best-performing classifier algorithm. VSCL
[32] is a smart contract vulnerability detection framework
that constructs a control flow graph (CFG) to understand
program run time behavior. Further, n-gram and Term Fre-
quency–Inverse Document Frequency (TFIDF) techniques
are used to generate numeric values (vectors) to present
features of smart contracts. Finally, the generated feature
matrix is used as input for the deep neural network (DNN)
model.

2.5 Detectors Using Fuzz Testing

Fuzz testing [39] is an automated testing technique for ana-
lyzing computer programs. ContractFuzzer [5] is a fuzzing
tool that generates random inputs to smart contracts ac-
cording to the contracts’ Application Binary Interface (ABI).
ContractFuzzer defines a set of predefined test oracles that
describes specific vulnerabilities. However, due to the ran-
domness of the inputs, ContractFuzzer’s execution covers
only limited system behavior. ReGuard [33] is a fuzzing
tool to detect reentrancy vulnerabilities. It first converts
the input to smart contracts into a C++ program via the
Abstract Syntax Tree (AST) or CFG and generates random
inputs to perform the fuzzing. sFuzz [4] employs an efficient,
lightweight, adaptive strategy for selecting seeds to improve
the fuzzing method based on random input generator [5].
EthPloit [34] adopts static taint analysis to generate exploit-
targeted transaction sequences. It uses a dynamic seed strat-
egy to pass hard constraints and an instrumented EVM to
simulate blockchain behaviors. ContraMaster [6] is an oracle-
supported dynamic exploit generation framework that can
mutate transaction sequences. It uses data flow, control flow,
and dynamic contract state to guide its mutations of the
transaction sequences. ConFuzzius [26] combines evolution-
ary fuzzing, constraint solving, and dynamic data flow to
generate test cases and detect vulnerabilities. Smartian [27]
conducts both static and dynamic analysis for fuzz testing
smart contracts. It analyzes the EVM bytecode to predict the
transaction sequences and uses the dynamic data flow to
guide the test case generation.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

2.6 Empirical Evaluations of Vulnerability Detectors

Although studies proposing new vulnerability detectors
always provide evaluation results, the evaluations can be
biased. The studies may use different terms and definitions
of the same vulnerability and use datasets that favor their
detectors. Thus, other researchers performed empirical stud-
ies as shown in Table 2 to evaluate and compare the smart
contract vulnerability detectors.

TABLE 2: Empirical Study of Vulnerability Detectors

Year and ref. 2020 [11] 2020 [16] 2021 [10] 2021 [19]
SmartCheck [13] ✓ ✓

Oyente [2] ✓ ✓ ✓ ✓
ZEUS [20] ✓

Securify [3] ✓ ✓ ✓
Mythril [12] ✓ ✓ ✓
Slither [14] ✓ ✓

Manticore [15] ✓ ✓
MAIAN [17] ✓ ✓

Orisis [18] ✓ ✓
HONEYBADGER [9] ✓

ContractFuzzer [5] ✓
TEETHER [21] ✓
MadMax [22] ✓

sFuzz [4] ✓

Ghaleb et al. [11] proposed SolidiFI to evaluate six static
vulnerability detectors [2], [3], [12], [13], [14], [15] using a
dataset with injected vulnerabilities. Experiment results on a
set of 50 contracts injected with 9,369 distinct vulnerabilities
show that the evaluated detectors do not detect several
instances of vulnerabilities despite their claims of being able
to detect such vulnerabilities. Only one tool, i.e., Slither [14],
detected all injected reentrancy and TxOrigin vulnerabili-
ties. Ghaleb et al. [11] also found that all evaluated detectors
have reported several false positives, ranging from 2 to
801 for different vulnerability types. However, they only
manually analyze the vulnerabilities that are not reported by
the majority of the detectors because manually inspecting all
reported vulnerabilities involves a tremendous amount of
effort and is therefore impractical. As a result, the number
of false positives is underestimated.

Ferreira et al. [40] presented SmartBugs, an extensible
and easy-to-use execution framework that simplifies the
execution of detectors analyzing Solidity smart contracts.
SmartBugs supports ten detectors [2], [3], [9], [12], [13], [14],
[15], [17], [18], [41] and provides two datasets of Solidity
smart contracts. One dataset contains 143 annotated vulner-
able contracts with 208 tagged vulnerabilities, and another
contains 47,518 unique contracts collected through Ether-
scan [42]. However, the 47,518 real-world contracts are not
manually labeled. By using SmartBugs, Durieux et al. [16]
evaluated nine detectors [2], [3], [9], [12], [13], [14], [15], [17],
[18]. The evaluation was based on 69 annotated vulnerable
smart contracts and all the real-world smart contracts in
SmartBugs. The evaluation results showed that 97% of the
real-world contracts were labeled as vulnerable. Durieux et
al. [16] questioned that many reported vulnerabilities are
false positives.

Ren et al. [10] evaluated six detectors [2], [4], [5], [12],
[18], [43], and proposed a unified standard to eliminate
the evaluation biases. They constructed a benchmark suite

Fig. 1: Workflow of the study

with three datasets, including unlabeled real-world con-
tracts (UR), contracts with manually injected vulnerabilities
(MI), and confirmed vulnerable contracts (CV). The experi-
ment results on these datasets demonstrated that different
choices of experimental settings could significantly affect
tool performance and lead to misleading or even oppo-
site conclusions. The experiment results in [14] show that
SmartCheck has more false positives than Slither. However,
Ren’s study [10] gives opposite conclusions and shows that
SmartCheck reports fewer false positives than Slither on UR
and MI datasets.

Perez et al. [19] evaluated six detectors [2], [3], [17], [20],
[21], [22] on real-world smart contracts and found many
contradict results from different detectors [19]. Taking the
reentrancy vulnerability as an example, Oyente and Securify
agree on only 23% of the contracts reported as vulnerable to
reentrancy, while ZEUS does not agree with any other de-
tectors [19]. In addition, they analyzed more than 20 million
Ethereum blockchain transactions and found that only 463
contracts related to six vulnerability types were exploited.
Based on the evaluation results, they questioned whether
the vulnerabilities reported by the evaluated detectors were
either false positives or unexploitable.

Although the aforementioned empirical studies hypoth-
esized that existing vulnerability detectors report many
false positives or that the reported vulnerabilities are un-
exploitable, especially for real-world contracts, no follow-
up study was performed to confirm the hypothesis and to
understand the reasons for possible low exploitability. The
insights could help security practitioners rank the reported
vulnerabilities to allocate the security effort to the most
urgent vulnerabilities to fix, i.e., those exploitable ones.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

3 RESEARCH DESIGN

3.1 Research Design to Answer RQ1
To answer RQ1, we designed the research flow as shown in
Figure 1.

3.1.1 Step 1. Collect unique real-world smart contracts
We crawled all available smart contracts with at least one
transaction from Etherscan [42] on 1st April 2022. As there
are duplicated smart contracts, we filtered contracts for
uniqueness with a similarity threshold of 0.9, calculated
using the Jacard index [44]. This means that if two contracts’
code shares more than 90% of the tokens, one of the con-
tracts will be discarded. The low uniqueness requirement is
due to the often large amount of embedded library code. If
the requirement is set to high, the actual contract code will
be negligible compared to the library code. Most contracts
will be discarded, and the resulting dataset will contain
mostly unique library code.

3.1.2 Step 2. Select fast vulnerability detectors
For the vulnerability detector shown in Table 1, some, e.g.,
SoliDetector [24], run fast. SoliDetector took on an average of
1.33s to check 20 vulnerabilities on one real-world contract.
A few others, i.e., Mythril [12] and fuzzing-based detectors,
are a lot slower. The study [7] demonstrated that Mythril is a
slow tool and the maximum time to analyze a smart contract
using Mythril is 2480.26s. The fuzz-based detectors, e.g.,
ConFuzzius [26], Smartian [27], need to set a time-out, which
is usually more than 10 minutes for each real-world contract
to get decent detection accuracy. As we want to analyze a
large amount of real-world smart contracts, we decide to
first apply fast detectors to identify vulnerabilities. Then,
we can use the slower vulnerability detectors to verify if the
reported smart contracts by the fast detectors are vulnerable
and exploitable.

We use the following criteria to select the fast vulnera-
bility detectors.

• The detectors shall take smart contract Source Code as
Input (SCI): As we want to confirm whether the
vulnerable contract is exploitable and understand the
reasons for the possible low exploitability, we need
to access the smart contract source code. Thus, we
exclude detectors that do not analyze Solidity smart
contract source code.

• The detectors shall provide Vulnerability Localization
(VL): To analyze the reported vulnerabilities pre-
cisely, we only consider detectors that provide the
location, i.e., code line number, of the vulnerabilities
at the source code level. The detectors only label
the smart contract as vulnerable without providing
vulnerability location information are excluded.

• The detectors shall support multiple Solidity Versions
(SV): When we crawl real-world smart contracts, we
get smart contracts developed using various Solid-
ity versions. If the detectors support only a limited
number of versions of Solidity, the smart contracts
they can analyze are limited, meaning we cannot get
sufficient vulnerable smart contracts to study. Thus,
we require the detectors to support several versions
of Solidity.

• The detectors shall be available to us (Available): Not all
papers make their detectors publicly available. We
exclude detectors we cannot access.

3.1.3 Step 3. Choose vulnerability types to focus on and
use the selected detectors to detect the chosen types of
smart contracts
The vulnerability detection results from a particular detector
can be biased by the detectors’ design flaws or bugs. As we
want to identify generic reasons for the low exploitability,
we choose to detect only the vulnerability types supported
by at least two detectors to reduce the possible biases
introduced by a single detector.

After using the detectors to detect the chosen smart
contracts on the chosen vulnerability types, we get detection
results containing vulnerability type names and locations.

3.1.4 Step 4. Analyze the reported vulnerable contracts
manually
The vulnerability detectors report different vulnerabilities
and their locations for the same smart contracts. Again, to
avoid the biases caused by a single detector, we analyze
the smart contracts labeled as vulnerable to a particular
vulnerability type by more than one detector. The chosen
smart contracts are, hereafter, called cross-reported vulnera-
ble contracts.

Our study aims to understand why reported vulnera-
bilities are not exploited. We believe that there must be
unknown reasons for the low exploitation rate. Thus, we
use Strauss’ grounded theory approach [25], often used to
identify generic and unknown theories from data. Strauss’
grounded theory approach [25] is an iterative and recursive
approach where the researchers must go back and forth
until they achieve theoretical saturation. Our grounded
theory analysis included several steps. First, we read the
source code of each smart contract reported as vulnerable.
We classified them into two categories, i.e., exploitable or
unexploitable, in parallel with root cause analysis and open
coding to categorize the reasons for the low exploitability.
As a second step, these codes are grouped into conceptual
categories through axial coding. We did a constant compar-
ison and theoretical saturation to consolidate the reasons
for the low exploitability across vulnerability types. The
analysis ended when we could not derive more categories
of reasons from the open codes. The axial coding resulted
in 11 reasons for the low exploitability explained in Section
4.5. After that, we performed selective coding to connect
reasons identified through axial coding to generate coherent
explanatory schemes, i.e., the theories.

3.1.5 Step 5. Use other detectors to verify exploitability
analysis results
As explained in Section 3.1.2, after we have identified the
vulnerable contracts, we want to use other detectors, which
are relatively slow but effective due to the use of dynamic
approaches, to verify our manually-generated findings of
smart contracts’ exploitability. For the reported vulnera-
bilities that are found to be exploitable, we want to use
these detectors to check if the identified vulnerable lines
are reachable and triggerable. For the vulnerability found



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

to be unexploitable, we want to investigate if our identified
reasons for the low exploitability are still valid with these
detectors.

3.2 Research Design to Answer RQ2

As shown in Figure 1, the steps to answer RQ2 are as
follows.

3.2.1 Step 1. Collect transaction logs

For all the cross-reported vulnerable contracts, we retrieve
their transaction logs on Ethereum through the debug func-
tion of EVM, which supports replaying transactions and
tracing transaction logs. The EVM’s debug function is ac-
cessed through the Remote Procedure Call (RPC) provided
by the Ethereum client.

3.2.2 Step 2. Analyze transaction logs to identify vulnera-
bility exploitation

Step 4 to answer RQ1 identifies several exploitable contract.
For the vulnerable contracts that we label as unexploitable,
we analyze their transaction logs to check if they are ex-
ploited. The purpose is to verify that our low exploitability
analysis is correct. We expect that there shall have no
exploitation in the transaction logs of the unexploitable
contracts.

Step 4 to answer RQ1 also identifies exploitable smart
contracts. We analyze these smart contracts’ transactions
to determine if the exploitable vulnerabilities have been
exploited. We developed different detectors for each vul-
nerability type to analyze the vulnerability exploitation.

3.2.3 Step 3. Identify reasons for vulnerability exploitation

Step 2 finds exploited contract on Ethereum’s main network.
Nevertheless, there are many exploitable smart contracts
that are not exploited. We, again, use Strauss’ grounded
theory approach [25] to discover the possible reasons for this
phenomenon. Besides the transaction logs, the extra data
we analyze include the smart contracts’ account types and
balances. After the open coding and axial coding similar to
what we did to answer RQ1, we derived several possible
reasons, shown in Section 5.3. From the axial coding results,
we performed selective coding to schemes, which will also
be extensively recounted in Section 5.3.

4 RESULTS OF RQ1

4.1 Collected Unique Smart Contracts

We crawled 2,217,692 smart contracts from Etherscan. From
these contracts, 2,080,723 duplications were found, giv-
ing a duplication percentage of 93.82%. After duplica-
tion filtering, we got 136,696 unique smart contracts with
318,026,937 transactions (before 2022.6.1, UTC+2 08:23:22).
Figure 2 shows the transaction information of these con-
tracts and indicates that 88.37% of contracts have more than
one transaction. Figure 2 also shows that the contracts have
broad coverage of different numbers of transactions. Thus,
we believe the chosen smart contracts are representative.

Fig. 2: Distribution of the number of transactions of the
chosen smart contracts

4.2 Selected Fast Vulnerability Detectors
Based on the detectors selection criteria in Section 3.1.2,
we choose to study four detectors, namely, Oyente [2],
Smartcheck [13], Slither [14], SoliDetector [24]. The chosen
detectors cover pattern matching, symbolic execution, and
data flow analysis approaches. The other detectors are ex-
cluded because they do not satisfy one or multiple selection
criteria.

• Source Code Input (SCI): TEETHER [21], HONEYBAD-
GER [9], Osiris [18], MadMax [22], Ethainter [29],
VSCL [32] are excluded because they do not take
source code as input. Even though the framework
SmartBug [40] supports using HONEYBADGER [9]
and Osiris [18] with the source code as input, we
exclude them because they often report compilation
errors, such as “Solc experienced a fatal error”, when
detecting real-world contracts and return null results.
For example, when we run HONEYBADGER [9] and
Osiris [18] with 100 real-world smart contracts, they
reported 76 and 68 compilation errors respectively.

• Vulnerability Localization (VL): MAIAN [17], GNN-
based detector [30], VSCL [32], and ETHPLOIT [34]
do not provide location information of the identified
vulnerability and are, therefore, excluded.

• Solidity Versions (SV): Securify 2.0 [45] and De-
fectChecker [7] are excluded because they only sup-
port limited versions of Solidity. DefectChecker [7]
aims at Solidity version 0.4.25, which is the most
widely used version at the time of developing this
tool. The updated tool Securify 2.0 [45] only supports
contracts written in Solidity after its version 0.5.8.

• Availability: We cannot get access to the source or exe-
cutable code of three detectors [8], [20], [28], although
we have contacted the paper authors and asked for
the code.

A more structured summary of the reasons for excluding
the detectors is shown in Table 8 in Appendix.

4.3 Chosen Vulnerability Types
To choose vulnerability types supported by at least two
detectors, we did a mapping of the types between the
detectors and decided to focus on ten types of vulnerability,
as shown in Table 3. It is worth noting that the vulnerability



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

Fig. 3: An attack process exploiting TO

names in Table 3 are extracted from the detection results of
the detectors, which may be different from the names in the
papers presenting the detectors because the authors of the
detectors did not make the names consistent.

According to state-of-the-art books and literature, e.g.,
[46] and [47], the definitions and characteristics of the ten
chosen vulnerability types are as follows.

4.3.1 Unprotected Suicide (UpS)

The selfdestruct(address) function can remove all bytecode
from the contract address and sends all ether stored in
this contract to the address. If a contract is vulnerable to
UpS, attackers can self-destruct the contract and transfer all
contract balances to an attacker-specified address. According
to [46], a contract vulnerable to the UpS attack has the
following characteristics.

1) A function containing the selfdestruct(address) function.
2) No access control prevents attackers from calling the
selfdestruct(address) function to destroy the contract.

4.3.2 TxOrigin (TO)

In Solidity, tx.origin returns the address of the originating
Externally Owned Account (EOA) of a transaction [47].
Using tx.origin for authorization could make a contract
vulnerable if an authorized user calls into a malicious
contract. An example attack exploiting the TO vulnerability
is shown in Figure 3. The attacker first lures the owner
of VulnerableContract to transfer ether to the AttackContract.
After that, the tx.origin of this transaction is the owner
of the VulnerableContract. Once the AttackContract receives
ether, the fallback function of the AttackContract will be
triggered. A contract usually has one fallback function. The
fallback function is executed on a call to the contract if none
of the other functions match the given function signature
or if no data was supplied and there is no receive ether
function [48]. The fallback function can be declared using
function(), fallback(), or receive() in different Solidity versions.
Because the tx.origin of this transaction is the owner of
the VulnerableContract, the call from the fallback function
to the VulnerableContract can pass the authorization check
if(tx.origin==owner) and execute the addr.transfer() function,
which will cause unexpected ether transfer. According to
[47], a contract with TO vulnerability has the following
characteristics.

1) tx.origin is used for authorization in a function.
2) There are critical operations after successful tx.origin
authorization.

4.3.3 Arithmetic Overflow and Underflow
An arithmetic overflow or underflow [18], [49], which is
often also called Integer Overflow or Underflow (IOU),
occurs when an arithmetic operation attempts to create a
numeric variable value that is larger than the maximum
value or smaller than the minimum value of the variable
type. The popular IOU preventative technique is to use
secure mathematical libraries, i.e., SafeMath, to replace the
standard math operators, i.e., addition, subtraction, and
multiplication. Thus, the arithmetic overflow or underflow
may happen if a smart contract meets the following charac-
teristic [46].

1) The arithmetic operation may pass a variable type’s
maximum or minimum value. However, the arithmetic
operation is performed without using SafeMath.

4.3.4 DelegateCall (DC)
The function address.delegatecall allows a smart contract to
dynamically load code from the target contract (address) at
runtime. The code executed at the targeted address runs in
the context of the calling contract. Calling into untrusted
contracts can be dangerous. The code at the target address
can change storage values of the calling contract, e.g., to
change the caller’s contract balance [50], [51], because state-
preserving of delegatecall refers to the storage slots rather
than the variable name. According to [50], [51], [52], a con-
tract vulnerable to the DC attack usually has the following
characteristics.

1) A function containing the delegatecall function.
2) No access control on the function prevents the attacker
from specifying the calldata or changing the target con-
tract address.

4.3.5 Unchecked Call (UcC)
If a smart contract does not check the return value of a
message call and assumes that the call is always successful,
the failing of the call may lead to inconsistency between the
logic of the program and the system state [22], [46], [53].
The functions address.call() and address.send() are often used
to transfer ether, and they return a Boolean value indicating
whether the call succeeds. The transaction that executes
these functions may return a false value but will not revert
if the external call fails. So, a smart contract with the UcC
vulnerability has the following characteristic [22], [46], [53].

1) The functions address.call() or address.send() is used
without result checking.

4.3.6 Reentrancy (RE)
In Ethereum, insecure use of call() function can lead to
reentrancy attacks. In the reentrancy attack, a malicious
contract calls back into the vulnerable contract before the
first invocation of the vulnerable function is finished. If the
state variable change is after the call() function, the unex-
pected reentrancy into the vulnerable contract will result in
program execution and state variable change inconsistency.
Figure 4 shows an attack process exploiting the RE vul-
nerability. An attacker creates the AttackContract to call the
VulnerableContract to transfer ether the attacker. In the At-
tackContract, there is a fallback function. Once AttackContract



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

TABLE 3: Mapping of the different vulnerabilities analyzed

Vul. Oyente SmartCheck Slither SoliDetector
UpS - - Suicidal Unprotected Suicide
TO - Tx Origin Tx-Origin TxOrigin

IOU Integer Overflow/Underflow - - Integer Overflow and Underflow
DC - - Controlled-Delegatecall DelegateCall
UcC Callstack Depth Attack Unchecked Call Unchecked-Send Unchecked Send
RE Re-Entrancy - Reentrancy Reentrancy
FE - Locked Money Locked-Ether Frozen Ether
NC - Transfer in Loop Calls-Loop, Costly-Loop Nested Call
TD Timestamp Dependency - Timestamp Dependency of timestamp

TOD Transaction-Ordering Dependency - - Transaction Order Dependency

Fig. 4: An attack exploiting RE

receives the ether, the fallback function will be triggered to
call back into the VulnerableContract to perform the attacks,
e.g., transfer more ether to the attacker’s account before
changing the account’s balance.

1) A function transfers ether to another contract using the
call() function.
2) The state variable change is after the call() function.

4.3.7 Frozen Ether (FE)
A contract vulnerable to FE can receive ether but does not
contain any functionalities to transfer ether. It relies on
other contracts to transfer ether. However, if the contracts
to be called to transfer ether are accidentally or intentionally
terminated, the ether cannot be transferred from the contract
and will be frozen. A contact with FE vulnerability has the
following characteristic.

1) The contract can receive ether but cannot transfer ether
by itself.

4.3.8 Nested Call (NC)
If a loop contains the gas-costly instruction but does not
limit the loop iterations, the function containing the loop
has a high risk of exceeding its gas limitation and causing an
out-of-gas error [7]. An example of the gas-costly instruction
is a non-zero value transfer as part of the CALL operation,
which costs 900 gas [7]. According to [7], a contract vulner-
able to NC attack has the following characteristics.

1) In the contract, dynamic data structures (e.g., array or
mapping) or variables in the loop condition control the
number of loop iterations.
2) The loop body contains gas-costly instructions, e.g.,
CALL operation.
3) No access control prevents an attacker from controlling
the dynamic data structures or variables in the loop
condition.

4.3.9 Timestamp Dependency (TD)
When mining a block, a miner has to set the timestamp for
the block with the miner’s local system time. The miner

can vary this timestamp value by roughly 900 seconds
while still having other miners accept the block [2]. Suppose
the timestamp is used as a triggering condition to execute
some critical operations [2], e.g., sending ether. In that case,
miners can be incentivized to choose a timestamp that
favors themselves. Thus, a contract vulnerable to TD has
the following characteristic [2].

1) The contract uses the timestamp as the deciding factor
for some critical operations, e.g., sending ether.

4.3.10 Transaction Order Dependency (TOD)

Miners decide the transaction order because transactions
in the blockchain need to be packaged by miners before
they are finally recorded on the chain. Malicious contract
owners or attackers can exploit such order dependency. For
example, if the contract is a game [19], which gives partic-
ipants who submit a correct solution to a puzzle reward, a
malicious contract owner could reduce the reward amount
after the solution transaction is submitted. An attacker can
watch the transaction pool and steal the correct answer.
Then, he creates a transaction with the correct answer and
gives a higher gas to get his answer packed in a block
before the transaction of the answer provider is packed
[47]. As there are many variations of TOD attacks, finding a
precise characteristic of smart contracts vulnerable to TOD
is challenging. According to [47], a high-level characteristic
of a smart contract vulnerable to TOD is as follows.

1) The contract may send out ether differently according
to different values of a global state variable or different
balance values of the contract.

4.4 Vulnerability Reported by Chosen Detectors

The results of analyzing the 136,969 smart contracts focusing
on the ten vulnerability types are shown in Table 4. The
data in the Overlap column of Table 4 show the contracts
flagged as vulnerable by multiple detectors. Results in Table
4 show that the detectors reported a large number of IOU
and FE-type vulnerabilities. As we plan to use Strauss’
grounded theory approach to manually analyze each re-
ported vulnerability, analyzing all the reported IOU and
FE-type vulnerabilities will take an enormous time. Hence,
we randomly select 100 contracts for the IOU and FE-type
vulnerabilities to analyze, as shown in the Selected Contracts
column in Table 4. In total, we analyzed 4,364 contracts
reported as vulnerable.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

TABLE 4: Detection Results of Fast Vulnerability Detectors

Vul. Oyente SmartCheck Slither SoliDetector Overlap Selected
Contracts

UpS - - 218 1,046 137 137
TO - 2,292 1,807 45 45 45

IOU 65,829 - - 80,121 28,457 100
DC - - 1,186 24,227 924 924
UcC 940 2,0361 1,683 1,316 219 219
RE 314 - 31,287 2,031 97 97
FE - 27,882 10,240 17,901 2,934 100
NC - 807 15,702 33,393 473 473

TOD 4,298 - - 8,814 913 913
TD 4,298 - 29,941 28,365 1,356 1,356

Fig. 5: The reasons for the low exploitability of reported
smart contract vulnerabilities

4.5 Results of Analyzing the Reported Vulnerabilities

After analyzing the 4,364 vulnerable contracts, we identify
11 reasons for the low exploitability and show them in
Figure 5. The reasons can be further abstracted into three
schemes.

Scheme 1: Weaknesses of the detector in adapting
approaches to analyze OO-based applications result in
reporting vulnerabilities that are not reachable and trig-
gerable.

Reasons related to Scheme 1 are explained in detail in
Sections 4.5.1 to 4.5.3.

4.5.1 Missing path feasibility analysis (PathFeasibility)

SoliDetector [24] and Slither [14] overlook the path feasibility
analysis and assume all code paths are reachable. One con-
tract reported as vulnerable to UpS is unexploitable because
the vulnerable function selfdestruct locates in an infeasible
path and will never be executed. The condition to execute
the vulnerable selfdestruct is require(cancel == 1). However,
the initial value of cancel is 0, and no arithmetic operation
changes this state variable value to be one.

4.5.2 Overlooking preventive execution condition (Execu-
tionCondition)
Vulnerability detectors reported the vulnerability that could
not be triggered due to the preventive execution condi-
tion. For instance, in Listing 1, balances[ from] is greater
than value is checked before the arithmetic operation bal-
ances[ from] -= value to avoid underflow changes of the
storage value of balances[ from].

1 function transferFrom(address _from, address _to, uint256
_value) {

2 if (balances[_from] >= _value ) {
3 balances[_from] -= _value;
4 Transfer(_from, _to, _value);
5 }
6 }

Listing 1: A code with IOU vulnerability but is unexploitable

4.5.3 Insufficient data flow analysis (DataFlow)
Data flow analysis is essential to detect variable-related
vulnerabilities, such as IOU and NC. By analyzing the 100
smarts reported as vulnerable to IOU, we found cases where
variables involved in the arithmetic operation are fixed
values or have a fixed range. The arithmetic operations on
these variables will not trigger overflow or underflow due
to data flow control within a function or across functions.

Listing 2 shows an example of a vulnerable code with
IOU that is unexploitable caused by the data flow control
within one function. In Listing 2, the arithmetic operation in
line 2 is labeled as vulnerable to IOU. However, line 1 shows
that the variable allCards has at least one element. Therefore,
the length of allCards is always bigger than 1, which will not
cause arithmetic underflow.

1 allCards.push(Card(ids[i],0,CardStatus.Tradable,upIndex));
2 idToCardIndex[ids[i]] = allCards.length - 1;
3 cardToOwer[ids[i]] = _address;
4 ownerCardCount[_address] = ownerCardCount[_address].add(1);

Listing 2: A code with IOU vulnerability but is unexploitable

An example of data flow control preventing the reported
NC vulnerability from being exploitable is shown in Listing
3. In Listing 3, the session is a struct which has multiple
properties, including investor, investorCount, and amountIn-
vest. An attacker can add a new element into the session
by calling the function invest. However, the value of the
property investorCount cannot be greater than the value of
the global variable MaxInvestor, which is pre-defined as 20 in
line 1. Therefore, the total gas cost of the function closeSession
will not be more than the given gas. Thus, the reported NC
vulnerabilities will not lead to the permanent failure of the
function closeSession.

1 uint public constant MaxInvestor = 20;
2 function closeSession (uint _priceClose) public onlyEscrow{
3 for (uint i = 0; i < session.investorCount; i++) {...}
4 session.investorCount = 0;
5 }
6 function invest (bool _choose) public payable{
7 require(msg.value >= minimunEth && session.investOpen);
8 require(session.investorCount < MaxInvestor);
9 session.investor[session.investorCount]=msg.sender;

10 session.amountInvest[session.investorCount]=msg.value;
11 session.investorCount+= 1;
12 }

Listing 3: A code with NC vulnerability but is unexploitable



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

Scheme 2: Overlooking the characteristics of the So-
lidity programming language results in reporting unex-
ploitable vulnerabilities.

Gavin Wood designed Solidity to support condition-
oriented programming [54], a subdomain of contract-
orientated programming with the principle to “Never mix
transitions with conditions.” When developing smart con-
tracts, it is common to set complicated conditions to be sat-
isfied to allow the execution of the transitions. Without a lot
more comprehensive analyses of smart contract conditions,
the detectors will report the transitions as vulnerable, even
if the conditions can prevent them from being exploitable.
Thus, these reported vulnerabilities are unexploitable. Sec-
tion 4.5.4 presents several examples of methods in Solid-
ity language that can defend attackers against exploiting
the vulnerability. Although Solidity supports a few OO
programming language principles, such as inheritance, its
implementation of the OO features can differ. Two reasons
for low exploitability explained in Sections 4.5.5 to 4.5.7 can
also be coded to Scheme 2.

4.5.4 Overlooking access control (AccessControl)
Eight vulnerability types can be protected by access con-
trol, including UpS, TO, DC, UcC, RE, NC, TD, and TOD.
Examples of extra access control checking the identities of
critical functions’ caller or controlling a critical variable are
as follows.

① The if/require condition is set, such as require(msg.sender
== owner), before critical operations are called. For exam-
ple, the access control on the function containing the UpS
vulnerability prevents the attacker from exploiting it. In
Listing 4, the function closeStableCoin checks the caller’s
identity using the require condition in line 2 before executing
selfdestruct.

1 function closeStableCoin() public {
2 require(whitelist.isSuperAdmin(msg.sender), "Only

SuperAdmin can destroy Contract");
3 selfdestruct(msg.sender); // admin is the admin address
4 }

Listing 4: A code with UpS vulnerability but is unexploitable

Another example is that: a smart contract labeled vul-
nerable to TO if tx.origin is used for authorization. The TO
vulnerability is unexploitable because multiple-level access
control defends the vulnerability from being exploited. The
developer not only uses tx.origin for authorization but also
checks the identity of the msg.sender and recipient, such as
require(owner == tx.origin && msg.sender == tx.origin, “Not
token owner”), which can reject external contracts calling the
current contract and defend against the TO attack.

② In Solidity, modifiers are used to modify the behavior
of a function. A modifier usually contains code, e.g., code
to check the user’s identity, and a special symbol ” ”.
When executing the function claimed using the modifier, the
functions’ code will be inserted at the location of the symbol
” ” in the modifier. If the modifier’s code to check the user’s
identity is located before ” ”, the functions’ code inserted
will be protected by the identity checking. Otherwise, the
functions’ code can be called by any user. As shown in
Listing 5, even though tx.origin is used for authorization, the
modifier onlyMain checks the identity of msg.sender before

executing the function addBrick, which prevents intermedi-
ate contracts from being used to call the current contract
[47]. In 13 RE vulnerabilities, the code of the modifier checks
whether the msg.sender is tx.origin or owner, which makes the
recursive call from another contract impossible.

1 modifier onlyMain() { require(msg.sender == main); _;}
2 function addBrick(uint _value) external onlyMain returns (

bool success){
3 require(_value >= 10 ** 16);
4 require(owner == tx.origin);
5 return true;
6 }

Listing 5: A code with TO vulnerability but is unexploitable

③ Across control is performed across functions. Some
NC vulnerabilities are unexploitable due to access control
across multiple functions or modifiers. In Listing 6, the
loop in line 7 is labeled with the NC vulnerability, and
the max number of loop iterations is equal to the length
of variable landmarks that the function totalSupply can ac-
cess. The variable landmarks is global and can be modified
through the function createLandmark. However, the function
createLandmark is modified by the modifier onlyCOO, which
requires that the caller is the authenticated user coo. There-
fore, the attacker cannot arbitrarily increase the elements
in the variable landmarks to exploit the NC vulnerability in
function buy.

1 uint256[] private landmarks;
2 function totalSupply() public view returns (uint256) {
3 return landmarks.length;
4 }
5 function buy(uint256 _tokenId) public payable {
6 require(msg.sender != address(0));
7 for (uint i = 0; i < totalSupply(); i++) {
8 uint id = landmarks[i];
9 landmarkToOwner[id].transfer(feeGroupMember);

10 }
11 }
12 modifier onlyCOO() { require(msg.sender == coo); _; }
13 function createLandmark(uint256 _tokenId) public onlyCOO {
14 ... ...
15 landmarks.push(_tokenId);
16 }

Listing 6: A code with NC vulnerability but is unexploitable

4.5.5 Neglecting constraints caused by factory patterns
(FactoryPattern)

Factory pattern is one of the most used design patterns in
Java. “In the factory pattern, instead of directly creating
instances of objects, a single object (the factory) does it for
you” [55]. Solidity supports the factory pattern, and smart
contracts are the objects. A factory in Solidity is a contract
(called main contract) that can deploy multiple instances
of other contracts (called template contracts in this paper)
at runtime. In Listing 7, SwapperFactory is a main contract
that creates the template contract objects multiple times and
destruct the objects by calling the function destroy.

When using the factor pattern, the selfdestruct in the
instances created from the template contract cannot destruct
the main contract SwapperFactory. The vulnerability detec-
tors report six contracts vulnerable to UpS with the factory
pattern constraint as shown in Listing 7. The selfdestruct
in the reported vulnerable contract cannot be exploited by
attackers.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

1 contract SwapperFactory {//Main contract
2 function performSwap(address payable user){
3 Swapper swapper = createClone(user, srcToken, dstToken

, uniqueId);
4 swapper.destroy(user);
5 }
6 function createClone( ) private onlyAdmin() returns (

Swapper) {... ...}
7 }
8 contract Swapper { //Template contract
9 function destroy(address payable user) external {

10 selfdestruct(user);
11 }
12 }

Listing 7: A code with UpS vulnerability but is unexploitable

4.5.6 Neglecting constraints caused by contract inheri-
tance (ContractInheritance)
Solidity supports inheritance between smart contracts. A
contract can inherit multiple contracts. The contract from
which other contracts inherit is called a base contract, while
the contract which inherits the features of the base contracts
is called a derived contract. “With the inheritance construct,
the derived contract inherits all the methods, functionality,
and variables of the base contract and can extend a base
contract with additional functionality” [47].

If the contract can receive ether but cannot transfer it
by itself, the vulnerability detectors tag it vulnerable to FE.
Fourteen contracts tagged as vulnerable to FE are base con-
tracts containing no transfer operation. These base contracts
do not have an account on Ethereum’s main network and do
not own ether. Other contracts inherit these base contracts
and implement ether transferring. Therefore, these base con-
tracts will not lock the ether, meaning the FE vulnerability
is unexploitable.

4.5.7 Assuming all fallback functions receive ether (Fall-
backFunction)
66 of the 100 contracts tagged as vulnerable to FE will
never lock ether because their fallback functions cannot or
refuse to accept ether. To receive ether, the fallback function
must be marked payable, as shown in line 1 in Listing 8.
The contract cannot receive ether if it does not contain the
fallback function or if the fallback function is not marked
as payable, as shown in line 2 in Listing 8. The approach to
refuse ether is to insert the revert() into the fallback function
as shown in lines 3 and 4 in Listing 8. Once the contract
receives the ether, this transaction will revert. Therefore, any
transaction transferring ether to these contracts will fail, and
these contracts will not receive any ether. Therefore, the FE
vulnerability cannot be exploited to cause the ether lock.

1 function() payable public{ }//Accept ETH
2 function() public{ }//Don’t accept ETH
3 function () payable public{ revert(); }//Don’t accept ETH
4 receive() external payable { revert(); }//Don’t accept ETH

Listing 8: Fallback functions

Scheme 3: Smart contract application scenarios reduce
exploitability.

The application scenarios of the smart contracts are to
transfer assets or ether between suppliers and clients. With-
out being able to manipulate or sabotage the asset transfer
maliciously, the likelihood of security compromise or giving

benefits to attackers by executing the code is low [56]. The
reasons for low exploitability associated with Scheme 3 are
presented in Sections 4.5.8 to 4.5.11.

4.5.8 Insufficient analysis of the values of the target con-
tracts’ addresses (TargetContractAddress)

Calling an external contract or transferring ether to an
address can be dangerous if the attacker controls the con-
tract or the target address. However, in some cases, the
target contracts’ addresses are hard-coded, fixed, or under
the complete control of the contract owner. The specific
target contracts’ addresses can prevent the attacker from
exploiting the RE, TD, and TOD vulnerabilities.

In 12 contracts that are reported as vulnerable to RE,
the target contracts’ addresses are hard-coded. The hard-
coded address may be a global variable used in multiple
functions. Defining the target address as immutable can also
freeze the value of the addresses. Therefore, an unexpected
call from the fallback function in the target contract will not
happen. For TD and TOD, if the recipient address is fixed
or fully controlled by the contract owner, the attack will not
get profit by attacking the vulnerability even if an attacker
can manipulate the timestamp or determine the order of
function calls and transactions.

4.5.9 Omitting the case that the ether transfer initiator is the
ether’s initial owner (EtherOwner)

To detect TOD vulnerability, Oyente and SoliDetector focus
on the ether flow because TOD may lead to undesirable
outcomes when dealing with ether [2]. Oyente labels a
contract as vulnerable to TOD if it sends out ether dif-
ferently when the order of transactions changes. Oyente,
Slither, and SoliDetector label the contract as vulnerable to
TD if the block timestamp is used as the condition to send
ether. However, Oyente, Slither, and SoliDetector all ignore
the scenario that the ethers transferred to a user after the
timestamp checking may come from the user himself. For
example, many contracts vulnerable to TD or TOD are
wallet contracts that support users to purchase or withdraw
tokens within the specified time range. If the time range
passes, the ether to purchase the token will be returned to
the user. Such ether transfer after the timestamp checking
is not harmful because the ether is returned to its initial
owner. Listing 9 shows an example, in which users can send
a message with msg.value to the contract OpportyPresale to
purchase token. OpportyPresale contains a fallback function
labeled as vulnerable to TD, and the vulnerability is in line
5. Once this contract receives ether, the fallback function
will be triggered to verify whether the transaction meets
the conditions regarding timestamp (now >endDate) and
amount of ether (msg.value >= 0.3 ether). The contract will
return the ether to the token purchaser if the transaction is
not within the valid time. As a result, the ether is returned
to its initial owner.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

1 contract OpportyPresale is Pausable {
2 function() whenNotPaused public payable {
3 require(msg.value >= 0.3 ether);
4 require(whiteList[msg.sender].isActive);
5 if (now > endDate) {
6 state = SaleState.ENDED;
7 msg.sender.transfer(msg.value);
8 return ;
9 }

10 }
11 }

Listing 9: A code with TD vulnerability but is unexploitable

4.5.10 Assuming critical operations after authorization
(CriticalOperation)
One main characteristic of TO is having critical operations,
e.g., sending ether, after successful authorization. If there
is no critical operation following successful authentication,
the TO vulnerability is not risky. Seven contracts vulnerable
to TO are unexploitable because successfully bypassing the
authentication will not bring security risks. The example
vulnerable code is : if(tx.origin == owner()) return;.

4.5.11 Assuming status inconsistency when function call
results are not checked (StatusInconsistency)
If there is no status change after calling the functions send()
and call(), it is not risky even though the result of the mes-
sage call is not checked. There is no status change following
the message call in 14 contracts vulnerable to UcC. Listing
10 shows an example of such vulnerable codes. The function
executeCall() transfers ether by the call() function in line 4.
The variable underExecution is set to avoid the recursive
calling from the target. The initial value of underExecution
is false (line 2). It will change to true (line 3) before executing
transferring by call() and turn back to false after transferring
(line 5). Therefore, no status change follows the execution
of the function call() because the value of underExecution is
always false regardless the function call call() fails or not.
The failed call in line 4 does not cause any compromise.

1 function executeCall()external onlyAllowedManager(){
2 require(underExecution == false);
3 underExecution = true; // Avoid recursive calling
4 _target.call.gas(_suppliedGas).value(_ethValue)(

_transactionBytecode);
5 underExecution = false;
6 }

Listing 10: A code with UcC vulnerability but is
unexploitable

4.6 Results of Verification Using Other Detectors
To select other detectors to verify exploitation analysis re-
sults, we first excluded unavailable fuzzing detectors, i.e.,
Reguard [33], ContraMaster [6], and Ethploit [34]. Then, we
excluded the ContractFuzzer [5] and sFuzz [4] because the
empirical evaluation [10] on nine detectors [2], [3], [4], [5],
[12], [13], [14], [18], [43] demonstrates that Mythril [12]
outperforms other fuzzing detectors. In addition to using
Mythril [12], we choose to use two latest fuzzing detectors,
i.e., ConFuzzius [26] and Smartian [27] for the verification.

Compared to the fast detectors, Mythril [12], ConFuzzius
[26], and Smartian [27] apply more dynamic code analysis
approaches and are good at identifying vulnerabilities in

a runtime environment. For the exploitable smart contracts
resulting from our manual analysis, we run these detectors
to see if the exploitable vulnerabilities are reachable and
triggerable. Results are in Table 5 and show that 56.72%
of the 1,079 exploitable contracts are executable by Mythril
[12], ConFuzzius [26], or Smartian [27]. Specifically for the
RE vulnerability, 59 vulnerable contracts reported by Smar-
tian are all exploitable. Such results give support to the
conclusions of our manual analysis. However, Mythril [12],
ConFuzzius [26], andSmartian cannot guarantee to explore all
paths of the code. In addition, they may encounter execution
errors due to missing external contract dependencies we
cannot resolve. Therefore, they cannot verify all exploitable
contracts we identify.

TABLE 5: Detection Results of Mythril, ConFuzzius, and
Smartian on Exploitable Smart Contracts (ExploitableSC)

Vul. Nr. of ExploitableSC Mythril ConFuzzius Smartian Total P(%)
UpS 112 50 49 32 72 64.29
TO 24 8 - 20 20 83.33

IOU 63 1 - 17 18 28.57
DC 122 - - - - -
UcC 41 15 21 33 37 90.24
RE 71 54 22 59 67 94.36
FE 14 - 1 0 1 7.14
NC 182 45 - 85 94 51.65
TD 250 84 94 118 187 74.80

TOD 196 - 116 - 116 59.18
Total 1079 257 303 364 612 56.72

Note: The ”Total” column shows the number of unique vulnera-
ble smart contracts detected by Mythril, ConFuzzius, and Smartian.
The ”-” indicates that the tool does not support detection for the
vulnerability type; the ”P(%)” indicates the percentage of contracts
detected out of all exploitable smart contacts.

As shown in Section 4.5, our manual exploitability anal-
yses illustrate that Oyente [2], SmartCheck [13], Slither [14],
and SoliDetector [24] are weak at analyzing infeasible path,
preventative execution condition, and data flow control to
identify unexploitable smart contracts. Mythril [12], Con-
Fuzzius [26], and Smartian use more dynamic approaches
and are usually better at covering complex paths. For the
vulnerabilities that are labeled as unexploitable, we apply
Mythril [12], ConFuzzius [26], and Smartian [27] to see if they
can exploit them. Results are in Table 6 and show that those
dynamic detectors are better at dealing with infeasible path,
preventative execution condition, and data flow control than
fast detectors. For example, a contract vulnerable to UpS
with an infeasible path is found to be exploitable.

However, Mythril [12], ConFuzzius [26], and Smartian
are not perfect. Similar to the fast detectors, they are also
weak at differentiating unexploitable vulnerabilities related
to other reasons listed in Section 4.5. For instance, they all
ignore the access control when detecting the UpS vulner-
ability. Listing 11 shows the code reported as vulnerable
by Mythril, ConFuzzius, and Smartian. The selfdestruct in line
6 is labeled as vulnerable to UpS. However, an execution
condition of selfdestruct is ”tx.origin == O”. The address O is
the creator of this contract. Only the creator of the contract
can destroy the contract, and all balances of the contract will
be sent to the creator. The attacker can neither destroy the
contract nor get ether. Therefore, the UpS vulnerability in
line 6 is unexploitable.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

TABLE 6: Detection Results of Mythril, ConFuzzius, and
Smartian on Unexploitable Smart Contracts (UnExploita-
bleSC)

Vul. Nr. of UnExploitableSC Mythril ConFuzzius Smartian
UpS 25 7 3 1
TO 21 3 - 6

IOU 37 0 - 0
DC 802 - - -
UcC 178 43 62 103
RE 26 3 3 0
FE 86 - 0 0
NC 291 33 - 73
TD 1106 390 336 562

TOD 717 - 72 -

1 contract GrungeTuesday{
2 address O = tx.origin;
3 function() public payable {}
4 function multi_x() public payable {
5 if (msg.value >= this.balance || tx.origin == O) {
6 selfdestruct(tx.origin);
7 }
8 }
9 }

Listing 11: A code with UpS vulnerability but is
unexploitable

5 RESULTS OF RQ2
As mentioned in Section 3.2, we collect the transaction logs
of the contracts that are reported as vulnerable and analyze
them. The transaction log consists of several log blocks. Each
block reflects the running state of EVM, in which:

• pc is the program counter.
• op represents a low-level machine language consist-

ing of a series of instructions, each of them represent-
ing an operation.

• gas represents the remaining gas.
• gasCost refers to the gas consumption of the current

opcode.
• depth of call stack indicates the depth of nested calls,

which has a maximum value of 1024.
• stack is an internal place where temporary variables,

such as local variables, intermediate calculation re-
sults, and return addresses, are stored.

• memory is a temporary place to store data, of which
a contract obtains a freshly cleared instance for each
message call [48].

• storage is a key-value store. Data in storage are stored
permanently between function calls and transactions.
For instance, the global variables declared in the
smart contract are stored in the storage.

5.1 Analyzed Transaction Logs

In the analysis, we excluded transaction logs of TD and TOD
vulnerabilities because these two types of vulnerabilities ex-
ploit the mining process. Therefore, information in the trans-
action log cannot reflect the exploitation. The 219 contracts
vulnerable to UcC have 5,450,975 transactions, too many for
us to replay and perform the ground theory analysis. We
randomly selected 100 UcC contracts reported as vulnerable,
which have 145,469 transactions. Of the 219 contracts, one

contract had the largest number of transactions at 4,911,428,
accounting for ninety percent of all transactions (5,450,975).
Because we selected 100 contracts randomly, the contract
that had the largest transaction number was excluded. Thus,
the selected 100 UcC contracts only have 145,469 transac-
tions. The numbers of transactions analyzed for the eight
vulnerability types are as follows: UpS (33,920), TO (77,934),
IOU (131,643), DC (1,683,694), UcC (145,469), RE (5,362), FE
(396,127), and NC (1,631,985).

We designed analysis rules as shown in Figure 6 to
analyze vulnerability exploitation. The analysis rules con-
tain opcode, information to search in stack or storage, and
additional constraints. Each of the rules is explained as
follows.

5.1.1 Unprotected Suicide (UpS)
The EVM opcode SELFDESTRUCT destroys contracts. The
SLEFDESTRUCT opcode used to be called SUICIDE, but
SUICIDE was deprecated due to the negative associations
of the word [47]. It is insecure if the attacker exploits SELF-
DESTRUCT. However, it is challenging to identify whether
a user is malicious. In this study, we define the contract’s
creator as benign and assume any other users who destroy
the contract they do not own are malicious.

5.1.2 TxOrigin (TO)
Attacks exploiting the TO vulnerability usually follow the
attack process shown in Figure 3. We designed the TO
analysis rule according to that attack process. To find a
call from the fallback function in the attacker’s contracts,
we search the CALL instruction ①, in which the target
address is the vulnerable contract address (1). Then, we look
for the ORIGIN instruction ②, in which the origin address
(2) is usually used for authorization. Finally, we identify
the EQ instruction ③ for the authorization and expect the
authorization result to succeed (3).

5.1.3 Arithmetic Overflow and Underflow (IOU)
The arithmetic overflow is usually caused by arithmetic in-
structions ADD or MUL, and the arithmetic underflow may
happen when executing the SUB instruction. We first find
the log block containing the arithmetic instruction ADD,
MUL, or SUB ① and get two operands from the stack to
calculate the expected result (1) of the arithmetic operation.
Then we compare the actual value (2) with the expected
value. If the actual value that has been pushed onto the
stack is not equivalent to the expected value, it means that
the arithmetic overflow or underflow has occurred. Torres et
al. point out that not every overflow is considered harmful
because the compiler may also introduce it for optimiza-
tion purposes [26]. Thus, we only trace the overflow or
underflow that has updated the blockchain state. If the error
result flows into an SSTORE instruction ②, we will label the
transaction as IOU exploitation.

5.1.4 DelegateCall (DC)
The delegetacall is insecure if the state of the called contract
affects the calling contract. At the transaction log level, we
recognize DC exploitation according to the storage state
caused by the delegatecall. If a DELEGATECALL ① causes a



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

Fig. 6: Analysis rules of transaction logs

storage variable modification by SSTORE ② when executing
an external contract, and this storage variable is used in the
calling contract by SLOAD ③, we label the transaction as DC
exploitation. When conducting an external call, e.g., CALL
or DELEGATECALL, depth increases by one. To distinguish
the external and the current contract call, we check if the
depth value (depth1) of SSTORE (2) is exactly one bigger
than the depth value (depth2) of SLOAD (3). When the
delegatecall call ends, the depth turns back to the value it has
had when DELEGATECALL is executed [19]. To identify the
storage variable used in the calling contract but modified in
the external contract, we check if the two storage variables
share the same key and value at different depths. It is
worth noting that the external call should be secure if the
external contract address and the calldata are specified by
the contracts’ owners. Therefore, we must manually check if
the initiator of the identified DC exploitation is the contract’s
owner to exclude false positive exploitation.

5.1.5 Unchecked Call (UcC)
The send() and call() functions are used to send ether and
are compiled into the EVM CALL instructions. The CALL
instruction results are pushed onto the stack, where 0 means
failure and 1 means success. The CALL result is stored in
the log block where the depth of the trace turns back to the
value it has had when the CALL instruction is executed [19].
If CALL ① results in value 0 (1) and the SSTORE changes
the storage status ③ without executing an opcode to check
the CALL result ②, we will flag the transaction as an UcC
exploitation.

5.1.6 Reentrancy (RE)
As shown in Figure 4, a reentrancy attack usually calls ether
transferring functions in the vulnerable contract to trigger
the malicious fallback function in the malicious contract.
Therefore, an RE exploitation has at least two CALL instruc-
tions ①② in one transaction. The target address of the first
CALL is the attack’s contract address (1), and the target
address of the second CALL is the vulnerable contract’s
address (2). The state in the contract is updated by executing
the SSTORE ③ instruction.

5.1.7 Frozen Ether (FE)
There are several reasons for funds being locked in a con-
tract. Perez et al. [19] focus on the case that the contract
relies on an external contract to transfer ether, but the

TABLE 7: Information about Vulnerability Exploitation

UpS TO IOU DC UcC RE FE NC TD TOD Total
VC 137 45 100 924 219 97 100 473 1,356 913 4,364

UnExploitableSC 25 21 33 802 178 26 86 291 1,106 717 3,285
ExploitableSC 112 24 67 122 41 71 14 182 250 196 1,079

ExploitedC 19 0 15 0 2 0 2 28 - - 67
VC: The number of contracts reported as vulnerable.
UnExploitableSC: The number of contracts labeled as unex-
ploitable.
ExploitableSC: The number of contracts labeled as exploitable.
ExploitedC: The number of contracts that were exploited.

external contract does not exist any longer. In this study,
the vulnerable contracts are labeled by detectors that cannot
know whether the contract being relied on to transfer ether
is destroyed. Therefore, if the contract balance is not 0 and
the contract’s transaction logs do not contain any instruction
supporting transferring ①, we flag the contract as a FE
exploitation. A potential issue of our analysis rule is that
no ether transfer in the contract’s transaction does not mean
the contract cannot transfer ether. Thus, the analysis rule
may report false positives of FE exploitation.

5.1.8 Nested Call (NC)
In Ethereum, when transactions fail due to gas shortage,
the transaction log will contain error messages, such as
“error”:“out of gas”. To search NC exploitation, we first look
for the transaction log containing an error tag, and the
reason is “out of gas.” Gas shortage can also be caused by
other failed transfer transactions irrelevant to NC. These
unrelated transactions usually do not call any function,
and their transaction logs contain mostly only one PUSH1
instruction. To exclude unrelated transactions and reduce
false positives, we manually check if the nested call is the
reason for the transaction failures.

5.2 Identified Vulnerability Exploitation
If at least one contract’s transaction on Ethereum’s main
network matches our analysis rules, we count the contract
as exploited. The numbers of identified exploitations are
shown in Table 7. We do not find any exploitation of
contracts that we labeled as unexploitable, which confirms
our manual analysis in answering RQ1. For the identified
exploitable contracts, their exploitations are explained be-
low.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 15

Unprotected Suicide (UpS). We found 19 contracts
vulnerable to UpS that have been exploited, meaning 19
contracts were destructed but not by their owners. Listing
12 shows an example of the exploited contracts. The con-
tract is related to a game, and the function takeAGuess() of
the contract is to let users take a guess after transferring
0.0001 ether. If the number inputted by the user equals
the winningNumber, the function will transfer 90% of the
contract’s balance to the user, then kill the contract and
return the remaining balance to the contract owner. The
transaction details of the exploited UpS are shown in Figure
8 in Appendix A, which shows that an attacker input the
number nine that satisfied the if condition in line 3 and
then executed the selfdestruct() function successfully and got
0.0468 ether from the contract.

1 function takeAGuess(uint _myGuess) public payable {
2 require(msg.value == 0.0001 ether);
3 if (_myGuess == winningNumber) {
4 msg.sender.transfer((this.balance*9)/10);
5 selfdestruct(owner);
6 }
7 }

Listing 12: A code with UpS that was exploited

An interesting finding is that some contracts still
have balances even though the contracts have been self-
destructed. The reason is that the contract account will not
disappear even if the contract is destroyed. The contract
account can receive ether but does not support transferring
ether, leading to the locked ether. An example in Figure 9
in Appendix A shows the transactions of a self-destructed
contract, in which 0.033 ether are locked.

TO. The transaction log analysis does not reveal ex-
ploitation of the TO vulnerabilities.

IOU. We found 15 occurrences of arithmetic overflows.
Listing 13 shows the source code of an example contract
that is exploited. The transaction has an invocation of
the function transport(), in which an arithmetic operation
was conducted based on the function addDungeonRewards(),
which calculated the reward for different originDungeonId in
the dungeons without using SafeMath.

1 DungeonToken public dungeonTokenContract;
2 function transport() external payable {
3 // ** STORAGE UPDATE **
4 // Increment the accumulated rewards for the dungeon.
5 dungeonTokenContract.addDungeonRewards(originDungeonId,

requiredFee);
6 ......
7 }
8 contract DungeonToken {
9 function addDungeonRewards(uint _id, uint _Rewards) {

10 dungeons[_id].rewards += uint128(_Rewards);
11 }
12 }

Listing 13: A code with arithmetic overflow

DC. We did not find any exploitation of the 924 contracts
reported as vulnerable to DC.

UcC. We found three UcC exploitations, which contained
failed calls and storage status changes after the call failures.
An example of the exploited contracts is shown in Listing
14. In the contract’s transaction, at a certain point in time,
there was insufficient ether in the contract supporting the
transfer in line 7. Therefore, the log shows that a transaction

calling the function sendTokensManager did not call the send()
function in line 7 successfully. However, the contract, e.g.,
Exxcoin, calling the function sendTokensManager still changed
the storage variable balances in line 8 after the invocation of
the send() function failed.

1 contract ExxStandart is ERC20 {
2 mapping (address => uint) balances;
3 }
4 contract Exxcoin is owned, ExxStandart {
5 function sendTokensManager(address _to, uint _tokens)

onlyManager public{
6 require(manager != 0x0);
7 _to.send(_tokens);
8 balances[_to] = _tokens;
9 Transfer(msg.sender, _to, _tokens);

10 }
11 }

Listing 14: A code containing failed functions
RE. We found no exploitations of the 71 contracts with

RE vulnerabilities.
FE. Among the 100 FE vulnerable contracts we choose

to analyze, four of them have ether. We analyzed the trans-
action logs of these four contracts and found two contracts
had never transferred ether to other accounts. Thus, we label
these two contracts as exploited.

NC. 28 out of the 182 contracts with NC vulnerabilities
were exploited when executing the functions containing
a for loop. Listing 15 shows an example of the exploited
contract, in which the for loop in the function distribute
iterates over the input parameter addresses of the function.
The total size of addresses in this transaction is 202 and the
gas limit of this transaction is 2,417,107 as shown in Figure
10 in Appendix A. This transaction used up all the given gas
and failed due to the gas shortage.

1 function distribute(address[] calldata addresses, uint256[]
calldata amounts) payable external {

2 require(addresses.length > 0);
3 require(amounts.length == addresses.length);
4 for (uint256 i; i < addresses.length; i++) {
5 uint256 value = amounts[i];
6 address _to = addresses[i];
7 address(uint160(_to)).transfer(value);
8 }
9 }

Listing 15: A code related to out-of-gas transactions

5.3 Results of Analyzing Vulnerability Exploitation

As shown in Table 7, only 6% (66 out of 1,079) exploitable
contracts were exploited. We categorize the reasons for un-
exploitation through open and axial coding. The results are
shown in Figure 7.

By performing selective coding, we acquired Scheme 4:
the smart contracts’ application scenario and the execu-
tion environment and cost on blockchain demotivate or
prevent vulnerable contracts from being exploited.

5.3.1 Application scenarios demotivate exploitations
We found that attackers may not be motivated to exploit the
vulnerability because their gains or the attacks’ impact are
trivial.

Very little or no financial benefits (LowBenfit). By
exploiting the UpS, TO, RE, TD, and TOD vulnerabilities,
the attacker may get profit. However, many vulnerable
contracts contain no or very little ether. For example, 70 out



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 16

Fig. 7: Reasons to demotivate and prevent the attackers from
exploiting the vulnerabilities

of 71 contracts vulnerable to RE have no ether, and only
one contract vulnerable to RE holds 0.001307 ether. There
are four game contracts vulnerable to TD from which users
may win some rewards. However, three of them contain no
balance, and the fourth one contains only 0.03 ether.

Insignificant impacts (LowImpact). Attackers may
cause contract function failure or user losses by exploiting
FE vulnerabilities to freeze ether or exploiting NC vulnera-
bilities to use up gas. Very few of the contracts vulnerable
to FE have ether. Thus, locking a limited amount of ether
will not bring significant impacts. Although the 28 NC vul-
nerability exploitations, few of them bring severe impacts.
The for loops in 27 contracts iterate over function input
parameters, meaning the size of for iteration is controlled
by the function caller. If the caller sets a small number for
iterations or gives enough gas, the function will execute
successfully. Therefore, most reported NC vulnerabilities
will not lead to the permanent failure of the functions, and
the failure of transfer functions caused by NC will not lock
ether in contracts.

5.3.2 Execution environment and cost imply defense

Some characteristics of Solidity language and Ethereum
mechanisms demand attackers to putting in extra effort and
investment and be lucky to exploit the vulnerabilities, which
may demotivate their exploitation.

Attacker must develop attack contracts (HighDev-
Cost). To exploit some vulnerabilities, e.g., RE, DC, UcC,
and TO, attackers must develop attack contracts, which
should be customized according to different vulnerabilities.
For instance, designing an attacking contract containing a
specified fallback function is vital to trigger the contracts
vulnerable to RE. To exploit the contracts vulnerable to
DC, the attacker needs an attacking contract that controls
different global variables and modifies the storage values in
vulnerable contracts.

Attacker must deposit ether is a prerequisite (Costly-
Deposit). Some vulnerable contracts are used for bidding,
games, or wallets. 42 smart contracts vulnerable to TD are
wallet contracts supporting users to purchase or withdraw
tokens within a limited time. Users must deposit ether into
the contract and exchange it for other digital assets. These

contracts usually require users to send ether to contracts first
to get an authenticated identity. Therefore, sending ether
is a prerequisite for an attacker to call the contract. In the
example contract in Listing 16, line 11 has a TD vulnerability.
Suppose an attacker wants to exploit the vulnerability and
get all ether of this contract. In that case, the attacker must
meet the condition in line 12, i.e., sending more than 0.001
ether (line 3) and getting a correct randomNumber (line 4) to
start the exploitation.

1 function () public payable {
2 require(msg.sender == tx.origin);
3 require(msg.value >= 0.001 ether);
4 uint256 randomNumber = uint256(keccak256(blockhash(

block.number - 1)));
5 if (randomNumber > highScore) {
6 currentWinner = msg.sender;
7 lastTimestamp = now;
8 }
9 }

10 function claimWinnings() public {
11 require(now > lastTimestamp + 1 days);
12 require(msg.sender == currentWinner)
13 msg.sender.transfer(address(this).balance);
14 }

Listing 16: A code containing a puzzle
Attacker must be lucky in random number competition

(Randomness). We found that setting a puzzle as a deciding
condition for some critical operations is a popular defense
method in our studied contracts. An attacker cannot get
permission to run critical operations or get benefits unless
the attacker is lucky enough to solve the puzzle successfully.
As shown in Listing 16, the randomNumber is calculated by
the keccak256 function in line 4 based on the block.number,
which cannot be controlled by the attacker.

Attacker must be mining winner (CostlyMining). If
attackers want to exploit TD and TOD vulnerabilities, they
must monitor the transaction pool to capture critical trans-
action information, such as a puzzle answer. After that,
the attacker can initiate a new transaction to compete with
the old transaction. The attack will not succeed unless the
attacker is a mining winner and the attacker’s transaction is
successfully packaged.

6 DISCUSSION

Results of RQ1 and RQ2 bring novel insights to vulnerability
detector development and evaluation.

6.1 Comparison with related work

Durieux et al. [16] hypothesize that the detectors they
evaluate report a considerable number of false positives
because the percent of vulnerable contracts (44,589/47,518,
93%) is high. Perez and Livshits [19] also hypothesized that
most reported vulnerabilities are either false positives or
unexploitable. They identified one factor affecting the actual
exploitation of smart contracts, e.g., ether distribution. How-
ever, no follow-up study tried to identify and understand
other possible reasons for the low exploitation rate.

Different from [19], we uncover that vulnerabilities re-
ported by the detectors are possibly unexploitable and there
are 11 reasons for that. These reasons are not limited to the
imperfect implementation of the vulnerability detectors but
are also relevant to overlooking the characteristics of the



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 17

Solidity programming language and smart contract appli-
cation scenarios. For the exploitable vulnerabilities, beyond
ether distribution mentioned in [19] that may demotivate
exploitations, our results of RQ2 uncover five other reasons,
which are related to financial aspects and blockchain mech-
anisms, that can help defend the exploitable smart contract
against exploitation.

6.2 Implication to Vulnerability Detector Development

Results of RQ1 reveal that state-of-the-art smart contract
vulnerability detectors using pattern matching, symbolic
execution, data flow analysis, and fuzzing approaches are
limited to adapting classical static and dynamic OO ap-
plication analysis approaches to check smart contracts.
Vulnerability detectors for smart contracts need to better
consider the unique characteristics of blockchain and smart
contract programming languages to identify vulnerabilities
and differentiate between vulnerable and exploitable ones.
Several issues that cause low exploitability, as shown in
Section 4.5, are blockchain specific and require novel or
unique detection technologies. Thus, identifying exploitable
vulnerabilities needs a more comprehensive analysis of
programing language characteristics, contract application
scenarios, and digital assets associated with the contract.

Results of RQ2 show that several factors could influence
vulnerability exploitation possibilities and vulnerability crit-
icality. When reporting and ranking the vulnerabilities, vul-
nerable contracts with no ether can be lower ranked. The
extra effort and investments needed from attackers and the
attackers’ chance to execute the attack shall be considered in
vulnerability criticality evaluation.

6.3 Implication to Vulnerability Detector Evaluation

Existing studies, e.g., [10], [11], [16], [19], applied three
main methods to construct evaluation benchmarks, namely,
collecting vulnerable contracts with manual labels, crawl-
ing real-world contracts, and injecting vulnerabilities into
contracts. Durieux et al. [16] and Ren et al. [10] collected
vulnerable contracts with clear labels to evaluate different
detectors. However, the number of vulnerable contracts is
small, e.g., 69 contracts in [16] and 214 contracts in [10].
These vulnerable contracts are often short and have no com-
plex business logic. Ghaleb et al. [11] constructed a dataset
containing 50 contracts with 9,369 injected vulnerabilities.
However, the vulnerability injection is limited to known
characteristics of vulnerabilities. SolidiFi [11] provides 50
vulnerability patterns for each vulnerability, many of which
share the same code logic and only differ in function or
variable names. Although studies [10], [16], [19] construct
the dataset using real-world contracts, the type and amount
of vulnerabilities in these contracts are unknown. This study
collected unique 4,364 real-world smart contracts which
are cross-labeled by at least two tools as vulnerable. In
addition, we categorized the contracts into exploitable and
unexploitable. Thus, our dataset can be used as a novel
benchmark to evaluate the vulnerability detectors’ capabil-
ity to identify exploitable smart contracts.

6.4 Threats to Validity

In this study, we only focus on the types of vulnerabilities
covered by at least two fast vulnerability detectors to avoid
bias caused by a single tool. This filtering excluded several
types of vulnerabilities that may have different reasons for
the low exploitability than those we identified. We found
that more than one reason caused the low exploitability of
a contract. We give only one reason for each smart contract
because we focus on understanding the reasons rather than
counting their numbers. The percentage numbers in Figure
5 are calculated based on this strategy. However, such a
strategy will not impact the main findings of RQ1, i.e., the 11
reasons. For RQ2, there are probably false negatives due to
unknown attacks and exploitations because our log analysis
is limited to the rules presented in Table 6.

When manually analyzing the source code of the vul-
nerable smart contract to label their exploitability, a possible
risk is mislabelling. However, we believe that such a risk
is low because there are often easy-to-distinguish code fea-
tures associated with the reasons for the low exploitability,
as shown below:

• Access control: There is the modifier, i.e., onlyOwner,
onlyAdmin, onlyManager or if/require statement.

• Constraints caused by factory patterns: The con-
tracts using the factory Pattern use the same template
as shown in Listing 7.

• Constraints caused by contract inheritances: The
contract inheritance relationship is declared with the
contract name.

• fallback functions refuse ether: If the revert state-
ment is in the fallback function, the contract refuse to
receive ether.

• Ether transfer initiator: The amount of ether is
msg.value that comes from the caller.

• Critical operation: Critical operations include func-
tion calls or assignment statements, etc.

• Status inconsistency: There is a statement after the
call function that may cause inconsistency between
the transfer and the state variable change.

• Target contract’s address: The address is hard-coded,
fixed, or under the control of the contract owner.

7 CONCLUSION AND FUTURE WORK

As smart contracts’ security is critical, many vulnerability
detectors have been proposed. Several empirical studies
show that the detectors report many vulnerabilities and the
exploitation rate is low, and, therefore, hypothesize many
reported vulnerabilities are either false positives or unex-
ploitable. In this study, we have analyzed the exploitability
of 4,364 unique real-world smart contracts that are reported
as vulnerable by multiple detectors. We identified 11 reasons
causing low exploitability. In addition, we discover six as-
pects that may demotivate attackers to exploit vulnerable
contracts. The results of this study delight the need to
consider more the characteristics of smart contract program-
ming languages and smart contract application scenarios
and execution environments to analyze and rank the smart
contract vulnerabilities.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 18

Besides recognizing exploitable vulnerability, another
critical aspect of improving vulnerability detectors is reduc-
ing false negatives. Our future work will focus on analyzing
the false negative results of the vulnerability detectors and
give more suggestions to improve the detectors.

ACKNOWLEDGMENTS

This work is jointly supported by the National Key Research
and Development Program of China (No. 2019YFE0105500)
and the Research Council of Norway (No. 309494) and
the Key Research and Development Program of Jiangsu
Province (No. BE2021002-3). TY.H thanks the Chinese Schol-
arship Council (CSC) for financial support (202106090057).

REFERENCES

[1] N. Atzei, M. Bartoletti, and T. Cimoli, “A survey of attacks on
ethereum smart contracts (sok),” in International conference on
principles of security and trust. Springer, 2017, pp. 164–186.

[2] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making
smart contracts smarter,” in Proceedings of the 2016 ACM SIGSAC
conference on computer and communications security, 2016, pp. 254–
269.

[3] P. Tsankov, A. Dan, D. Drachsler-Cohen, A. Gervais, F. Bünzli,
and M. Vechev, “Securify: Practical security analysis of smart
contracts,” in Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, 2018, pp. 67–82.

[4] T. D. Nguyen, L. H. Pham, J. Sun, Y. Lin, and Q. T. Minh,
“sfuzz: An efficient adaptive fuzzer for solidity smart contracts,”
in Proceedings of the ACM/IEEE 42nd International Conference on
Software Engineering, 2020, pp. 778–788.

[5] B. Jiang, Y. Liu, and W. K. Chan, “Contractfuzzer: Fuzzing smart
contracts for vulnerability detection,” in Proceedings of the 33rd
ACM/IEEE International Conference on Automated Software Engineer-
ing. Association for Computing Machinery, 2018, pp. 259–269.

[6] H. Wang, Y. Liu, Y. Li, S. Lin, C. Artho, L. Ma, and Y. Liu, “Oracle-
supported dynamic exploit generation for smart contracts,” IEEE
Transactions on Dependable and Secure Computing, vol. 19, no. 03, pp.
1795–1809, may 2022.

[7] J. Chen, X. Xia, D. Lo, J. Grundy, X. Luo, and T. Chen, “De-
fectchecker: Automated smart contract defect detection by ana-
lyzing evm bytecode,” IEEE Transactions on Software Engineering,
pp. 1–1, 2021.

[8] L. Jin, Y. Cao, Y. Chen, D. Zhang, and S. Campanoni, “Exgen:
Cross-platform, automated exploit generation for smart contract
vulnerabilities,” IEEE Transactions on Dependable and Secure Com-
puting, pp. 1–1, 2022.

[9] C. F. Torres, M. Steichen, and R. State, “The art of the scam:
Demystifying honeypots in ethereum smart contracts,” in 28th
USENIX Security Symposium (USENIX Security 19). Santa Clara,
CA: USENIX Association, Aug. 2019, pp. 1591–1607.

[10] M. Ren, Z. Yin, F. Ma, Z. Xu, Y. Jiang, C. Sun, H. Li,
and Y. Cai, “Empirical evaluation of smart contract testing:
What is the best choice?” in Proceedings of the 30th ACM
SIGSOFT International Symposium on Software Testing and Analysis,
ser. ISSTA 2021. New York, NY, USA: Association for
Computing Machinery, 2021, p. 566–579. [Online]. Available:
https://doi.org/10.1145/3460319.3464837

[11] A. Ghaleb and K. Pattabiraman, “How effective are smart contract
analysis tools? evaluating smart contract static analysis tools using
bug injection,” in ISSTA ’20: 29th ACM SIGSOFT International
Symposium on Software Testing and Analysis, 2020.

[12] (2018) Mythril: an open-source security analysis tool
for ethereum smart contracts. [Online]. Available:
https://github.com/ConsenSys/mythril

[13] S.Tikhomirov, E.Voskresenskaya, I.Ivanitskiy, R.Takhaviev,
E. Marchenko, and Y. Alexandrov, “Smartcheck: Static analysis
of ethereum smart contracts,” in 2018 IEEE/ACM 1st International
Workshop on Emerging Trends in Software Engineering for Blockchain,
2018, pp. 9–16.

[14] J. Feist, G. Grieco, and A. Groce, “Slither: A static analysis frame-
work for smart contracts,” in 2019 IEEE/ACM 2nd International
Workshop on Emerging Trends in Software Engineering for Blockchain,
2019, pp. 8–15.

[15] (2019) Manticore: a symbolic execution tool for analysis
of smart contracts and binaries. [Online]. Available:
https://github.com/trailofbits/manticore

[16] T. Durieux, J. a. F. Ferreira, R. Abreu, and P. Cruz, “Empirical
review of automated analysis tools on 47,587 ethereum smart
contracts,” in Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering, ser. ICSE’20. New York, NY,
USA: Association for Computing Machinery, 2020, pp. 530–541.
[Online]. Available: https://doi.org/10.1145/3377811.3380364

[17] I. Nikolic, A. Kolluri, I. Sergey, P. Saxena, and A. Hobor, “Finding
the greedy, prodigal, and suicidal contracts at scale,” in Proceedings
of the 34th Annual Computer Security Applications Conference. New
York, NY, USA: Association for Computing Machinery, 2018, pp.
653–663.

[18] C. F. Torres, J. Schütte, and R. State, “Osiris: Hunting for
integer bugs in ethereum smart contracts,” in Proceedings
of the 34th Annual Computer Security Applications Conference,
ser. ACSAC ’18. New York, NY, USA: Association for
Computing Machinery, 2018, pp. 664–676. [Online]. Available:
https://doi.org/10.1145/3274694.3274737

[19] D. Perez and B. Livshits, “Smart contract vulnerabilities: Vulnera-
ble does not imply exploited,” in 30th USENIX Security Symposium
(USENIX Security 21). USENIX Association, Aug. 2021, pp. 1325–
1341.

[20] S. Kalra, S. Goel, M. Dhawan, and S. Sharma, “Zeus: Analyzing
safety of smart contracts,” in Network and Distributed System Secu-
rity Symposium, 2018, pp. 18–33.

[21] J. Krupp and C. Rossow, “Teether: Gnawing at ethereum to
automatically exploit smart contracts,” in 27th USENIX Security
Symposium, 2018, pp. 1317–1333.

[22] N. Grech, M. Kong, A. Jurisevic, L. Brent, B. Scholz, and Y. Smarag-
dakis, “Madmax: Surviving out-of-gas conditions in ethereum
smart contracts,” Proceedings of the ACM on Programming Lan-
guages, vol. 2, no. OOPSLA, pp. 1–27, 2018.

[23] (2017) Vulnerability vs. exploitability:
Why they’re different. [Online]. Available:
https://cloudtweaks.com/2017/07/vulnerability-vs-
exploitability/

[24] T. Hu, B. Li, Z. Pan, and C. Qian, “Detect defects of solidity smart
contract based on the knowledge graph,” IEEE Transactions on
Reliability, pp. 1–17, 2023.

[25] K.-J. Stol, P. Ralph, and B. Fitzgerald, “Grounded theory in soft-
ware engineering research: A critical review and guidelines,” in
2016 IEEE/ACM 38th International Conference on Software Engineer-
ing (ICSE), 2016, pp. 120–131.

[26] C. Ferreira Torres, A. K. Iannillo, A. Gervais et al., “Confuzzius:
A data dependency-aware hybrid fuzzer for smart contracts,” in
European Symposium on Security and Privacy, Vienna 7-11 September
2021, 2021.

[27] J. Choi, D. Kim, S. Kim, G. Grieco, A. Groce, and S. K. Cha,
“Smartian: Enhancing smart contract fuzzing with static and dy-
namic data-flow analyses,” in 2021 36th IEEE/ACM International
Conference on Automated Software Engineering (ASE), 2021, pp. 227–
239.

[28] Y. Xue, M. Ma, Y. Lin, Y. Sui, J. Ye, and T. Peng, “Cross-contract
static analysis for detecting practical reentrancy vulnerabilities in
smart contracts,” in 2020 35th IEEE/ACM International Conference
on Automated Software Engineering (ASE), 2020, pp. 1029–1040.

[29] L. Brent, N. Grech, S. Lagouvardos, B. Scholz, and Y. Smaragdakis,
“Ethainter: a smart contract security analyzer for composite vul-
nerabilities,” in Proceedings of the 41st ACM SIGPLAN Conference
on Programming Language Design and Implementation, 2020, pp. 454–
469.

[30] Y. Zhuang, Z. Liu, P. Qian, Q. Liu, X. Wang, and Q. He, “Smart
contract vulnerability detection using graph neural networks,” ser.
IJCAI’20, 2021.

[31] W. Wang, J. Song, G. Xu, Y. Li, H. Wang, and C. Su, “Contractward:
Automated vulnerability detection models for ethereum smart
contracts,” IEEE Transactions on Network Science and Engineering,
vol. 8, no. 2, pp. 1133–1144, 2020.

[32] F. Mi, Z. Wang, C. Zhao, J. Guo, F. Ahmed, and L. Khan, “Vscl:
Automating vulnerability detection in smart contracts with deep



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 19

learning,” in 2021 IEEE International Conference on Blockchain and
Cryptocurrency (ICBC), 2021, pp. 1–9.

[33] C. Liu, H. Liu, Z. Cao, Z. Chen, B. Chen, and B. Roscoe, “Reguard:
Finding reentrancy bugs in smart contracts,” in Proceedings of the
40th International Conference on Software Engineering: Companion
Proceeedings. Association for Computing Machinery, 2018, pp.
65–68.

[34] Q. Zhang, Y. Wang, J. Li, and S. Ma, “Ethploit: From fuzzing
to efficient exploit generation against smart contracts,” in 2020
IEEE 27th International Conference on Software Analysis, Evolution
and Reengineering (SANER). IEEE, 2020, pp. 116–126.

[35] (2013) World wide web consortium, sparql 1.1 update. [Online].
Available: https://www.w3.org/TR/sparql11-update

[36] J. Ye, M. Ma, Y. Lin, Y. Sui, and Y. Xue, “Clairvoyance: Cross-
contract static analysis for detecting practical reentrancy vulner-
abilities in smart contracts,” in 2020 IEEE/ACM 42nd International
Conference on Software Engineering: Companion Proceedings (ICSE-
Companion), 2020, pp. 274–275.

[37] (2021) Wikipedia, datalog: a declarative
logic programming language. [Online]. Avail-
able: https://en.wikipedia.org/w/index.php?title=Datalog ol-
did=1053711548

[38] H. Jordan, B. Scholz, and P. Subotić, “Soufflé: On synthesis of
program analyzers,” in International Conference on Computer Aided
Verification. Springer, 2016, pp. 422–430.

[39] H. Liang, X. Pei, X. Jia, W. Shen, and J. Zhang, “Fuzzing: State of
the art,” IEEE Transactions on Reliability, vol. 67, no. 3, pp. 1199–
1218, 2018.

[40] J. a. F. Ferreira, P. Cruz, T. Durieux, and R. Abreu, “Smartbugs: A
framework to analyze solidity smart contracts,” in Proceedings of
the 35th IEEE/ACM International Conference on Automated Software
Engineering, ser. ASE’20. New York, NY, USA: Association for
Computing Machinery, 2020, pp. 1349–1352. [Online]. Available:
https://doi.org/10.1145/3324884.3415298

[41] (2022) Solhint: an open source project for linting solidity code.
[Online]. Available: https://www.npmjs.com/package/solhint/

[42] (2019) Ethereum (eth) blockchain explorer. [Online]. Available:
https://etherscan.io

[43] J. He, M. Balunović, N. Ambroladze, P. Tsankov, and M. Vechev,
“Learning to fuzz from symbolic execution with application to
smart contracts,” in Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security, 2019, pp. 531–548.

[44] (2022) Jaccard index: a statistic used for gauging the
similarity and diversity of sample sets. [Online]. Available:
https://en.wikipedia.org/wiki/Jaccard index

[45] (2021) Securify 2.0: a security scanner for ethereum smart contracts
supported by the ethereum foundation and chainsecurity.
[Online]. Available: https://github.com/eth-sri/securify2

[46] “Smart contract weakness classification and test cases,”
https://swcregistry.io/, 2020, accessed 28 May 2022.

[47] A. M. Antonopoulos and G. Wood, Mastering ethereum: building
smart contracts and dapps. O’reilly Media, 2018.

[48] “Solidity: a statically-typed curly-braces programming language
designed for developing smart contracts that run on ethereum,”
https://soliditylang.org/, 2022, accessed 25 July 2022.

[49] J. Gao, H. Liu, C. Liu, Q. Li, Z. Guan, and Z. Chen, “Easyflow:
Keep ethereum away from overflow,” in 2019 IEEE/ACM 41st
International Conference on Software Engineering: Companion Proceed-
ings (ICSE-Companion), 2019, pp. 23–26.

[50] (2020) Delegatecall to untrusted callee. [Online]. Available:
https://swcregistry.io/docs/SWC-112

[51] P. Praitheeshan, L. Pan, X. Zheng, A. Jolfaei, and R. Doss, “Sol-
guard: Preventing external call issues in smart contract-based
multi-agent robotic systems,” Information Sciences, vol. 579, pp.
150–166, 2021.

[52] C. F. Torres, H. Jonker, and R. State, “Elysium: Automagically
healing vulnerable smart contracts using context-aware patching,”
arXiv preprint arXiv:2108.10071, 2021.

[53] L. Brent, A. Jurisevic, M. Kong, E. Liu, F. Gauthier, V. Gramoli,
R. Holz, and B. Scholz, “Vandal: A scalable security analysis
framework for smart contracts,” arXiv preprint arXiv:1809.03981,
2018.

[54] G. Wood. (2016, Jun.) Condition-orientated programming.
[Online]. Available: https://gavofyork.medium.com/condition-
orientated-programming-969f6ba0161a

[55] E. Gamma, R. Helm, R. Johnson, R. E. Johnson, J. Vlissides et al.,
Design patterns: elements of reusable object-oriented software. Pearson
Deutschland GmbH, 1995.

[56] Y. Xue, J. Ye, W. Zhang, J. Sun, L. Ma, H. Wang, and J. Zhao,
“xfuzz: Machine learning guided cross-contract fuzzing,” IEEE
Transactions on Dependable and Secure Computing, pp. 1–14, 2022.

Tianyuan Hu is currently working toward the
Ph.D. degree with the School of Computer Sci-
ence and Engineering, Southeast University un-
der the supervision of Dr. Bixin Li. Her research
interests include program analysis, vulnerability
detection, blockchain security, and software en-
gineering.

Jingyue Li is a Professor at the Computer
Science Department, Norwegian University of
Science and Technology (NTNU). He received
his Ph.D. degree in software engineering from
the Department of Computer Science, NTNU,
in 2006. His research interests include software
engineering, software security, and blockchain
technologies.

Bixin Li received his bachelor’s degree and
master’s degree both in mathematics from Anhui
University in 1991 and 1994, respectively, and
received his doctor’ degree in software engineer-
ing from Nanjing University in 2001. He is a full
Professor of School of Computer Science and
Engineering of Southeast University, he is the
chairman of Technology Committee of Software
Engineering Standards of Jiangsu Province, and
he is also the header of Software Engineering
Institute of Southeast University in that he is

working hard together with more than 50 young people on software
architecture and blockchain security projects etc. His main research
interests include program slicing and its application, software evolution
and maintenance, software testing and verification, software safety and
security techniques etc. He has published over 180 research papers and
patented more than 80 inventions of china up to now.

André Storhaug is a Ph.D. student in the De-
partment of Computer Science at the Norwegian
University of Science and Technology (NTNU).
His research interests include machine learn-
ing, software engineering, software security, and
blockchain technologies.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 20

APPENDIX

TABLE 8: Reasons for Excluding Some Fast Vulnerability
Detectors

Year and ref. Tool Name SCI SV VL Availability
Pattern Matching
2018 [13] Smartcheck
2021 [24] SoliDetector
Symbolic Execution
2016 [2] Oyente
2018 [20] ZEUS •
2018 [18] Osiris •
2018 [12] Mythril
2018 [3] Securify •
2018 [21] TEETHER •
2018 [17] MAIAN •
2019 [9] HONEYBADGER •
2021 [7] DefectChecker •
2022 [8] EXGEN •
Data Flow Analysis
2018 [22] MadMax •
2019 [14] Slither
2020 [28] Clairvoyance •
2020 [29] Ethainter •
Machine Learning
2019 [30] GNN-based •
2020 [31] ContractWard •
2021 [32] VSCL • •

Note: • means that the tool does no meet the criterion.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 21

Fig. 8: The transaction details of the exploited UpS

Fig. 9: Locked ether in a self-destructed contract

Fig. 10: Transaction information on Etherscan


