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Abstract—When humans and robots work together, ensuring
safe cooperation must be a priority. This research aims to
develop a novel real-time planning algorithm that can handle
unpredictable human movements by both slowing down task
execution and modifying the robot’s path based on the proximity
of the human operator. To achieve this, an efficient method for
updating the robot’s motion is developed using a two-fold control
approach that combines B-Splines and Hidden Markov Models.
This allows the algorithm to adapt to a changing environment
and avoid collisions. The proposed framework is thus validated
using the Franka Emika Panda robot in a simple start-goal task.
Our algorithm successfully avoids collision with the moving hand
of an operator monitored by a fixed camera.

Index Terms—Human-Robot Interaction, Obstacle Avoidance,
Splines, Hidden Markov Models

I. INTRODUCTION

In modern industries, the demand for collaborative robots
is constantly increasing because of their versatility and pre-
cision in a wide variety of applications. In a collaborative
cell, humans and robots work together, sharing the same
workspace. Therefore, the robot must adapt to external events
while complying with safety regulations [/1]]. Safe human-robot
cooperation can be achieved if the control system can gather
information about the state of the robot as well as the state
of the worker inside the collaborative workspace. Obstacle
avoidance algorithms are employed whenever the presence of
a target, such as an object or an operator, should be accounted
for the proper and safe operation of the robot. The latter
must be able to adapt its behavior in real-time with respect
to dynamically changing environments [1]].

In general obstacle avoidance applications [2], the robot
uses the position of a target object to modify its path and avoid
collision with it. Although safety distance margins can be
imposed on the target object, unexpected movements can cause
the robot to collide if the algorithm is not reactive enough to
prevent the impact [3]]. Moreover, to enhance productivity, the
robot should restore its original path after avoiding a collision
and when the obstacle no longer interferes with its motion.
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In this work, the moving obstacle is represented by the hand
of a human operator who shares the same workspace as a
cobot and whose position is monitored by a fixed camera.
The robot must repeat a pre-planned task, but according to the
proposed framework, when the risk of a collision occurs, it can
either modify the geometry of the path or reduce its velocity
according to the requirements of the specific application. Then,
when the obstacle is no longer within the robot’s reach, the
programmed motion is restored.

The literature is full of methods that guarantee obstacle
avoidance and safe coexistence of humans and robots. To
highlight the contribution of our proposal, the main state-of-
the-art techniques are reviewed and briefly discussed in the
following.

A. Related Work

Collision avoidance methods for robotic systems operating
in dynamic environments with obstacles moving at high ve-
locity typically rely on a combination of real-time trajectory
planning and reactive control. These methods may vary in their
level of integration, ranging from pure re-planning to the use
of repulsive forces that act directly on the robot.

On one hand, collision avoidance motion planning problems
can be treated as an optimal control problem [4]. These
approaches are widely used because they allow for the min-
imization of cost functions subject to disparate constraints,
such as danger fields, temporal aspects, or even metrics for
evaluating safety in collaborative manufacturing [3]], [S]]. Op-
timization methods can be applied to both motion planning and
control problems. A noteworthy optimization-based algorithm
is CHOMP [6], i.e. Covariant Hamiltonian Optimization for
Motion Planning, which guarantees collision-free and locally
optimal trajectory generation by means of a covariant gradient
update rule. Another example is presented in [7|], where a par-
allel optimization scheme is successfully used to manipulate
a cable-towed load with multiple collaborative quadrupeds.

Probabilistic inference methods [8]-[10] optimize trajec-
tories subject to task constraints, goals, and motion pri-
ors, replacing classical cost functions with joint distributions
formulated as conditional dependencies. In [[11]], the author
introduces a Learning by Demonstration (LbD) framework that
exploits Gaussian Mixture Models (GMM) to encode multiple
tasks and retrieve the associated skill by means of regression
techniques.
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A different class of methods for motion planning and
collision avoidance is composed of so-called sample-based
planning algorithms [12]]; according to these approaches, the
environment is randomly sampled using techniques such as
probabilistic road maps or exploring random trees. An example
is given in [[13]], where sampled-via points are transformed into
a set of candidate collision-free trajectories subject to prede-
fined kinodynamic limits. In [14], if a moving obstacle will
collide with the manipulator, the motion is locally replanned
by using a Bi-RRT-based algorithm connecting the current
robot position with a target on the unperturbed trajectory.

While the above-mentioned algorithms mainly work at the
planning levels, an approach for reactive collision avoidance
that acts directly on the robot control relies on potential field
methods, originally introduced in [15[]. Virtual repulsive and
attractive fields are utilized to move the robot towards a
target while avoiding obstacles. Specifically, repulsive fields
are associated with obstacles, while attractive fields are asso-
ciated with the target. The original concept has been further
refined and applied to properly modify the shape of motion
trajectories, which are seen as elastic bands subject to virtual
forces [16]], and is now a standard technique for real-time
trajectory planning [2], [[17].

If all the techniques cited above modify the geometry of the
robot motion, state-of-the-art methods in the industrial practice
for guaranteeing safety in human-robot applications are based
on a completely different philosophy. They basically consist
of stopping or slowing down robot motion in the presence of
humans. For instance, according to ISO/TS 15066, the velocity
and acceleration of the robot must be set to safe values based
on the minimum distance from the operator [[18[]. This ap-
proach is commonly used in collaborative applications, where
the position of human workers is continuously monitored with
different types of cameras and the timing along the curve is
properly scaled. See, for example, 5[], [19], among many other
publications on this topic. Note that, in the case of dynamic
obstacles, this technique based on the velocity modulation of
the robot can also be a way to avoid obstacles that are currently
on the desired geometric path but could move in the following
instants.

B. Methodology and Contributions

In this work, we propose a novel framework for collision
avoidance that merges the modification of the geometric
path of the robot with a speed adaptation mechanism. The
basic idea, derived from observations reported in [20], is to
split the task representation into two fundamental categories:
the trajectory and the symbolic level. The former comprises
continuous signals that change over time, such as the position
or orientation of the end-effector (EE); the latter uses sequen-
tial or hierarchical information to establish a discrete set of
movements with predefined rules. The goal of this work is to
provide evidence, through an obstacle avoidance application,
that task performance can benefit from the merging of these
two domains.

The two basic tools used to implement this framework are
B-Splines, which encode spatial data and modify the path in
Cartesian space [21], and Hidden Markov Models (HMMs),
which encode temporal and sequential information by scaling
down task velocity [22].

The main goals and contributions of this research work are:

1) Design an online controller that can fit generic tasks and
smoothly avoid collision with dynamic obstacles.

2) Include the possibility to restore the original task when-
ever the robot is not prone to any collision.

3) Exploit a probabilistic framework to gather information
about the obstacle and modify the robot’s velocity ac-
cordingly.

4) Combine trajectory and symbolic domains in a unified
framework.

The paper is structured as follows: Section [lI| details the
theoretical background of the proposed solution. Section
describes the online control algorithm conceived in this work.
Section [IV| describes the experimental setup and validates the
results of our framework. Finally, section concludes this
work by discussing the results and possible future steps.

II. TASK ENCODING

The simplest way to define a robotic task is by specifying
the trajectory, which is a mapping between time and space,
that the end-effector or joints must track. However, a task can
also be interpreted as a sequence of action units or elements
that follow loops or rules, as is the case with a symbolic
representation as seen in [23] and [24].

This work attempts to bridge and combine these two do-
mains for an obstacle avoidance application. This is achieved
through a control system that modifies the nominal robot path
defined by B-Spline functions [21]], while also varying the
phase of the task - and thus its velocity - using HMM [22]]. The
following paragraphs provide a brief review of the theoretical
background of these techniques.

A. Spatial encoding based on B-Splines

Spline functions are extensively used for generating
smooth and optimal-time trajectories in robotic applica-
tions [13]] [25] [26]]. B-Splines are a particular representation
of generic spline curves based on a linear combination of N
basis functions [25], i.e.

N
p(s) = Zpiﬁid(s)7 Smin <8< Smax ()
1=1

where (¢(s) are basis functions of degree d, which only
depends on the phase variable s (that in many applications
coincides with time ¢), while p, are called control points
and determine the geometric shape of the curve. As shown
in Fig[I] a B-spline is basically a smooth approximation of
the control polygon defined by the control points. Usually,
they are defined by imposing some interpolation condition
p(si) = p;, © = 1,..,N, depending on the desired task.
A noteworthy property of the basis functions 3¢(s) is that
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Fig. 1. Example of B-Spline trajectory: p(s) (black line) is an approximation
of the control polygon (red dashed line) defined by the control points p;.

their value is zero everywhere except in the interval defined
by knots [s;, S;+4+1]. As a consequence, a change in the i-th
control point p; only influences the B-Spline in this interval,
allowing for local modifications in the trajectory described.
Another useful property of B-Splines is time-scaling, i.e. the
possibility of changing the velocity along the curve by simply
applying the transformation § = a:s to the knot vector s, where
« 18 a constant. For more details, see [21].

B. Temporal and Sequential encoding based on Hidden
Markov Models

Hidden Markov Models (HMMs) are based on a Markov
chain, which describes the probabilities of sequences of ran-
dom variables, called states, that take values from a defined
set [27]. In many applications, such as gesture and speech
recognition [22], [24], HMMs are used to model human
behavior, with the aim of identifying gestures or predicting the
most likely pattern of subsequent control states. Specifically,
given a set of hidden states H = hi,ho,... hy and a
sequence of 1" observations O = 01,09, ...,07, the purpose
of HMMs is to analyze sequences of events in terms of a
reduced set of parameters A = [II, A, B, where:

o II is called the prior distribution, which tells us about

the probability of starting a sequence in state h;;

o A is the transition probability matrix, where each element
a;,; encodes the probability of moving from state i to
state j;

o B are the observation likelihoods, also called emission
probabilities, where each element b;(o;) expresses the
probability of an observation o, being generated from
state ©.

Note that, according to the usual definition of HMMs, A
describes a model in terms of discrete observation likelihoods
[28]]. However, since the proposed framework deals with a
continuous observation space, i.e., trajectories in Cartesian
space, the HMM can be represented as

A=[IL A, p;, 3] i=1,..,. M )

where M is the number of components characterized by mean
and covariance values (p;,3;) of the multivariate Gaussian
Mixture Model (GMM). Thus, the A parameters can be learned
to encode the desired robot task, such that the regression of
the model resembles the desired end-effector path [29].

The proposed methodology can be explained as follows:
using control points p, as hidden states h;, a forward-chained
left-right HMM is adopted (see Fig[2) to account for the
evolution of the trajectory [30]. With this model, in nominal
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Fig. 2. Example of forward chained left-right HMM: being in state h;, it is
only possible to move to the next state h;4; or remain in the current state.
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Fig. 3. Block scheme representation of the proposed framework for collision
avoidance.

conditions (i.e., no obstacles in the workspace), m; = 1 and
transition probabilities a; ;11 ~ 1, meaning that the robot
evolves from one control point to the other with a probability
close to one. In particular, let’s analyze the transition matrix
A for the HMM in Fig[2%}

ai;p a2 0 e 0 0
0 a22 a3 - 0 0
A= : 3)
0 0 0 AM-1M—-1 OM-1M
0 0 o - 0 amMMm

Here, the elements of each row of A sum up to 1. Parameter
a;; is the probability of staying in state h,;, while a; ;41 is
the probability of moving from state h; to state h;y1. Thus,
the transition probabilities a; ;41 can be used to slow down
or eventually stop the robot every time their values warn the
system about a potential collision, as will be explained in the
next section.

III. PROPOSED METHOD

We consider a typical industrial scenario in which a robot
is required to perform a specific task within a monitored
workspace, using a fixed camera. When an obstacle enters the
workspace, such as the hand of a human operator, its actual
position is tracked, filtered through a Kalman filter, and sent
to the controller that implements the proposed framework in
order to prevent possible collisions. The functional blocks of
the entire algorithm are displayed in the scheme shown in
Fig[3] while the working principles are detailed below.
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Fig. 4. B-Spline with associated dynamical systems to control points p;:
when an external force Fep 2 acts on p,, it locally changes the desired
path.

A. Spatial modulation with dynamical control points

Given the presence of moving obstacles, we assume that
the task is modified only if they interfere with the nominal
trajectory. However, if the obstacles move far from the robot,
the task should restore to its original trajectory. To achieve this,
we use B-Spline functions to induce a reversible deformation
on the original trajectory. Specifically, a dynamical system is
associated with each control point p; [31]:

M;,p;,+Bi,p; + Ki,pi = Frepi 4)

where, p; = p(*) —p, represents the displacement of the actual
position p(*) of the i-th control point with respect to its original
location p,;. The matrices M; = diag{m;}, B; = diag{b;},
and K; = diag{k;} are 3-by-3 diagonal matrices, where m,,
b;, and k; are positive constants such that the system in Eq. @)
is critically damped. Finally, F',., ; is a virtual repulsive force
applied in the direction from the obstacle to the ¢-th control
point. This idea is explained in Fig. ] The module of the
repulsive force F'.p,; acting on the ¢-th control point does
not depend on its Cartesian distance from the obstacle but
varies in intensity according to the Mahalanobis distance:

Das(a, . 2) = /(@ — p) TS (2 — p)

that accounts for the occupation probability of the obstacle
Dops ~ N (Hobs, Xobs), caused by uncertainties in the esti-
mation of its location [4f], [32]]. The module of the force can
therefore be computed as follows [4]]

| Frep,i

Xi
= - 4)
DM (p(z)’ Hobs, Z:obs )

where Y; is a free parameter that enables to vary the repulsive
force field intensity.

B. Temporal modulation with varying transition probabilities
in HMM

In our framework, the path of the task is encoded by p(s)
in (), while velocity is varied through HMM’s parameters A\,
accounting for the temporal modulation.

The connection between B-Splines and HMM domains is
established through the continuous observation likelihoods
N(pi, 2;) = bi(or), i = 1,..., M, as shown in (2). In partic-
ular, (p;,33;) are the components of a GMM that encodes the
likelihood of a point € R3 being described by the HMM’s
model A:

aN-1,N

Fig. 5. B-Spline and HMM combined together: while the former describes the
nominal path p(s) in the Cartesian domain, the latter provides a probabilistic
map of it as described in (), together with transition probabilities a; ; among
control points p, computed such that a left-right HMM is obtained, thus
ensuring always going from a start position to a goal one.

HMM and B-Spline task encoding in 2D
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Fig. 6. Control at both trajectory and symbolical level using B-Splines and
HMM (£ = 0.5). A planar task, also used in the experiments, has been
considered for illustration purposes. It is encoded using a B-Spline exploiting
7 control points (with fixed height z = 0.3m), and an HMM with observation
space described by a GMM with 7 components.

M

B~ P(r) =) Wi(r)N(r; i, i) (6)

i=1

where the weighting factor Wi with Zf\il W; = 1 is called
the mixing coefficient and represents the influence of the ¢-
th component [[11]]. Gaussian distributions are encoded such
that their regression corresponds to the nominal trajectory
p(s) [33]]. Furthermore, in equation @ B accounts for the
variability introduced by the movement of control points,
thus giving a stochastic topological representation of the task.
Figure [5]illustrates a graphical representation of this approach.
It is worth noting that the number of states M of the HMM can
be generally different from the number of control points N that
define the B-spline. For instance, it is possible to encode with
the same state a segment of the trajectory curve, corresponding
to a subtask, composed of several control points. However, for
the sake of simplicity, it is convenient to assume M = N. As
explained in Section[[] the evolution of the B-spline trajectory
can be modified by applying the transformation § = as to the
knots vector of p(s). In this way, the desired velocity §$ is
multiplied by a factor @ € [0,1] and reduced accordingly.
To implement a mechanism that is able to slow down the



robot and eventually stop it in case of a collision risk, the
transition probabilities of the HMM have been directly mapped
into proper values of ¢, as explained below. Assume that the
robot’s trajectory is in state h; (associated with the control
point p;), and consider the transition probability a; ;i to the
next state h; 1. For the purposes of this project, it is required
that:

e If a; ;11 = 1.0 the robot moves at nominal velocity.
e If 0.0 < a; ;41 < 1.0 the robot slows down.
e If a; ;11 = 0.0 the robot stops.

By computing the transition coefficient as a Sigmoid function
¢ based on the Mahalanobis distance Dy (P,ps; 1, 24) be-
tween the obstacle position and the observation space of the
HMM, ie.,

1
1+ e Du+y)’

aiiv1 = ¢(Dy) = (N
its value changes according to the probability of colliding with
the obstacle. Note that the free parameter - can be used to tune
the sensitivity of the robot with respect to the presence of an
obstacle in the workspace. Finally, if the scaling factor « is
computed as

&= Qi i+1, ®)

the nominal velocity along the B-spline trajectory is modulated
as required by the specifications reported above.

In this way, the coefficients a; ;41 acquire a new meaning,
which is the probability of passing from control point p,
to p,,; without collision. Figure @ reports an example of
2D encoding merging the two techniques introduced in the
previous paragraphs.

C. Switching between Trajectory and Symbolic domains

The proposed motion planner combines two different con-
trol domains. However, there could be situations where op-
erating at the trajectory level is preferred over the symbolic
one, or vice versa. The algorithm is provided with a knob
parameter, £ € [0, 1], so the user can choose the influence of
each controller. Precisely, we expect the following behaviors:

e« £ =00 = only the time-scaling mechanism based
on HMM is active;
e 0.L0<¢ < 1.0 = B-Spline and HMM cooperate with
different proportions;
e £ =1.0 = only B-Spline modification algorithm is
applied.
To achieve this, the parameters (m;, b;, k;) in equation (@) for
trajectory control, and « in equation (§) for symbolic control,
are modified according to the following laws:

(mwl;w]%z) .
(mibi ki) =<4 26 if 0<¢<05 -
(i, biy ki) if 05<€<1
- a if 0<£<05
i _{(26‘_1)(1—§)+§ if 05<¢<1 (9b)

where (m;, I;i, 12:2) are the default values assigned in equation
(@), and & is the result of equation (). In this way, as &
approaches 0, the values of the parameters (m;, b;, k;) increase
rapidl making the system in (@) extremely rigid and thus
insensitive to external (virtual) forces. As a consequence,
no spatial modifications of the trajectory are observed. On
the other hand, as & approaches 1, the spatial modification
mechanism is restored, but in this case &« — 1 and there-
fore no changes in the velocity profile occur. Finally, when
& =~ 0.5, both the trajectory and symbolic level controllers
work together, producing spatial and temporal modulation of
the trajectory.

IV. EXPERIMENTAL VALIDATION

In this section, the experimental setup is described and the
results of the proposed framework are shown.

A. Experimental setup and methodology

For the experimental tests, we used a Franka Emika Panda
collaborative robot under a Cartesian pose controller developed
in C++ running on a standard PC equipped with an Intel
i7 8-core CPU and 8 GB RAM. In the same PC the tra-
jectory/symbolic motion control has been implemented using
the Matlab/Simulink environment. As already mentioned, the
moving obstacle was represented by the hand of a human,
sharing the same working area of the robot, and whose
position in the Cartesian space was constantly tracked by a
fixed camera. In particular, an Intel RealSense D435 depth
camera has been used, whose output was elaborated by a
second PC, with characteristics similar to the first one. All
the software components was connected using ROS [34], in
order to simplify the communication among them.

Since the precise detection of the obstacles is not the main
focus of this research work but is prerequisite for the suc-
cessful execution of the proposed approach, to simplify the
computation of the pose of the hand from the camera’S data an
ArUco marker [35]] directly placed on the hand of the operator
have been exploited.

Finally, the position coordinates derived from the images are
sent to a multi-step Kalman filter to predict the future positions
of the hand [32]] [36]. This is particularly useful in situations
where the camera’s view of the scene is obstructed. It is worth
noting that the output of the Kalman filter, denoted as &, can be
associated with a uniformly distributed random variable, i.e.,
& ~ N(pzx,Xx) [37]. This is important because it justifies
the use of the Mahalanobis distance in modifying the task, as
shown in (B) [4].

For the tests, a cubic B-spline with N = 7 disposed in the
plane z — y is used at the trajectory level. The values of
(mg, bi, k;) in equation (@) are chosen such that the stiffness
related to the first and last control points is high enough to
keep their positions constant. At the symbolic level, the task is
encoded into a GMM with 7 components (i.e. M = N) in 3D
space. These components are used as observation likelihood

'In practical experiments an upper bound on the three parameters is
imposed.



Fig. 7. Five snapshots of experiments conducted on the B-Spline-HMM based controller. The control points corresponding to the nominal path are displayed
in magenta. In sequence A, the hand holding the marker moves slightly above the end-effector, inducing the robot to slow down and modify its path to
pass under the hand. In sequence B, the hand suddenly moves in front of the end-effector, giving the robot no time to modify its path. Therefore, the robot
controller decides to stop and wait until the hand changes position. Here is a link to the related video: https://www.youtube.com/watch?v=z6HBSz704qo

parameters in equation (2)) to obtain a left-right HMM.
During the experiments, the robot was programmed to follow
a desired trajectory while an operator moved their hand close
to it to simulate collisions. The { parameter in (O) was varied
to individually analyze the B-Spline control, HMM, and the
ensemble of the two controllers. By doing so, we aimed to
provide evidence of the improvements that can be achieved
by combining the two techniques, and to validate our novel
planning methodology for obstacle avoidance.

Performance was evaluated using four parameters: the average
computation time for a single iteration T¢,,;, the normalized
average path deviation AL, which was calculated as the mean
deviation of the traveled distance normalized over the nominal
path, the average stop time T;,,, which was calculated as the
average time taken for parameter « in (§) to reach zero (i.e.,
stop the robot) once the hand was perceived to collide, and
finally, the success rate p. The success rate was defined as the
percentage between the number of cases where the distance
did not go down under a given safety threshold and the total
number of situations where an incipient collision was detected.
Figure [/| shows snapshots of the real experiments conducted
on the robot to test the B-Spline-HMM-based controller.

B. Results

In Fig. [8] for comparison purposes, the trajectory of the
hand was recorded and then reproduced virtually in three
different tests with B-Spline, HMM, and B-Spline-HMM-
based controllers. Here, we can observe path modifications
(in the XY projections reported on the right) and temporal
modulation (along the time axis) behaviors produced by the
three controllers. On the other hand, several experiments
have been conducted in which the robot executes the same
task repeatedly in different scenarios where &, task execution
speed, and acceleration are varied. In these experiments, the
operator moves their hand randomly to simulate collisions
with the robot. The results are summarized in Table [l and
Fig. and explained in the following paragraphs. For the
controller at the trajectory level only (i.e., £ = 1.0), an average
computation time of T, = 3.515 ms was recorded for a
single iteration. A total of 59 possible collision situations were
realized in 6 different experiments, resulting in a success rate
of p = 77.97% with a normalized average path deviation of
AL = 0.590. In this case, no value of Ty, was reported

as the controller does not include temporal modulation In
the second test, the same task was performed but only with
the controller at the symbolic level (i.e., & = 0.0), using an
HMM with an observation space described by a GMM with
7 components, and recording an average computation time
of T¢omp = 1.480 ms. During the experiment, a total of
58 possible collision situations were registered in 5 different
experiments, resulting in a success rate of p = 89.66% with
an average stop time of Ts;,, = 0.431 s and AL = 0.0 as no
spatial controller was implemented. Finally, the encoding of
the task using control at both the trajectory and symbolic levels
was validated, i.e. £ = 0.5. The same configuration parameters
as the first and second tests were maintained. The results
showed that the algorithm runs at an average computation
time of T,omp = 4.649ms, which is clearly higher than
the previous cases, but still within 16ms to meet real-time
requirements [2]. In this test, 143 possible collision situations
were evaluated in 10 different experiments, obtaining a success
rate of p = 94.41%, with a normalized average path deviation
of AL = 0.304m and an average stop time of Ts;,, = 0.514s.

In particular, we observed that in the first scenario where
only B-Spline modification was used as control, poor per-
formance was achieved, i.e. p = 77.97%, as the controller
could not modify the robot’s path quickly enough to avoid
a collision. The same applies to the controller implementing
only HMM control, where the performance is better than
the B-Spline controller (p = 89.66%) as the robot stops or
slows down when its position is too close to the operator.
However, this behavior is not sufficient in all cases where
the operator’s hand moves toward the robot. In this case,
significant improvements can be obtained by combining B-
Spline and HMM controllers, i.e. p = 94.41%. Despite the
improved success rate, a higher value of T;,, was registered
for the B-Spline-HMM controller compared to the symbolic
level-only controller. However, this can be explained as the
robot always tries to slow down and modify its path until the
safety distance is violated, before completely stopping. On the
other hand, we observed a lower AL value compared to the
trajectory level-only controller since the robot now reduces
its velocity toward the hand and eventually stops before the
collision. Finally, note that we can always reduce AL by
simply increasing the values of (m;, b;, k;) in (@).
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Fig. 8. Three different experiments using the same obstacle trajectory
(represented by the black dashed line). The trajectory was virtually reproduced
in each case. In every figure, the nominal path is plotted in blue and the
modified path is plotted in red. The plots show how the XY coordinates of
the end-effector vary over time with respect to the obstacle position. For
clarity, the overall trajectory is projected onto the XY plane on the right-hand
side of the figure, allowing us to appreciate the geometric path modifications.
In experiment (a), only B-Spline control was used (§ = 1.0). Here, the path
was modified but not the task duration, as can be seen from the fact that
the nominal and modified trajectories are aligned in time. In experiment (b),
only HMM control was used (§ = 0.0). Here, we can observe that even
though the end-effector trajectory slows down when close to the obstacle,
no path modification was registered as the XY projections of the nominal
and modified trajectories perfectly overlap. In experiment (c), control was
implemented at both the trajectory and symbolic levels using B-Splines and
HMM (£ = 0.5). When the obstacle approached the robot, both the spatial
and temporal evolutions were modified.

TABLE 1
VALIDATION TESTS RESULTS IN TERMS OF AVERAGE COMPUTATION TIME
FOR SINGLE ITERATION 7 ¢omp, NORMALIZED AVERAGE PATH DEVIATION
AL, AVERAGE STOP TIME Ts¢op AND SUCCESS RATE p.

Teomp [mS] AL T'stop [5} P
B-Spline 3.515 0.590 / 77.97 %
HMM 1.480 0.0 0.431 89.66 %
B-Spline+ HMM 4.649 0.304 0.514 94.41%

V. CONCLUSION AND FUTURE WORK

In this paper, a novel framework for obstacle avoidance
applications is introduced. After several real-world experi-
ments, we believe that our methodology is suitable for human-
robot shared environments, meeting real-time requirements
for safe cooperation. The proposed work introduces a motion
planning algorithm that can be adapted to different scenarios
with moving and static obstacles, achieving a success rate of
94.41%. By combining the trajectory and symbolic domains,
our framework can smoothly adapt the Cartesian path and slow
down the execution of the task in the proximity of a human
operator. Moreover, by associating a dynamical system with
each control point, the controller autonomously restores to its
original task, while using HMM the robot never stops after
overtaking the operator’s hand, ensuring correct and complete
task execution.

Future work might involve the use of multiple cameras to
span over a wider workspace and improve the detection of
obstacles, no longer limited to the operator’s hand. Moreover,
it could be desirable to improve the algorithm that predicts
the motion of moving obstacles and operators to obtain a
larger time-horizon, more consistent with a smooth obstacle
avoidance application.
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